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1 Introduction to ATLAS Very Forward Detectors

The ATLAS experiment at the LHC will measure collisions of two 7000 GeV
protons. The aim of the Very Forward Detectors (VFDs) is to detect intact
protons scattered at small angles, which would make possible to have some
events with measured all particles in the final state.

Protons travel the distance between the interaction point and the detec-
tor in the beamline, i.e. in the magnetic field. The curvature of the proton
that interacted will be different that the one that did not. For some range
of energy, at the detector region, the proton is still inside the beamline,
but far enough from the beam itself to be detected.

There are plans to install a few different very forward detectors in the
distance of 200 – 500 meters from the interaction region. The detectors
are to be placed in the roman pots to be able to move the detector close
(few millimeters) to the beam, when it is stable enough.

The physics motivation of such detectors is to investigate diffractive
events which would lead to better understanding of QCD. The large dis-
tance from the interaction point cause a good mass resolution for some
events, for example a double pomeron Higgs production, so VFDs can be
also be used for research on a new physics.

1.1 Roman pots at 220 m

As said before, there are a few projects of forward detectors for the ATLAS
experiment. I was mainly analyzing behavior of detectors “at 220 m”. This
project contains 4 detectors (2 from each side) located at 216 m and 224
m from the interaction point.
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Detectors will measure the horizontal (x) and vertical (y) position (z is
the coordinate along the beamline) of protons at each plane with resolution
of 10 µm.

Below I introduce symbols and assumptions I will use. Incoming pro-
tons have their four-momenta respectively:

P01 = (p0, 0, 0, −p0) P02 = (p0, 0, 0, p0) (1)

where p0 = 7000 GeV is the beam energy. After the interaction, if proton
remains intact, it has four-momentum:

P = (p, px , py , pz) (2)

where p =
√

p2
x + p2

y + p2
z . To describe proton after interaction I will use

another, equivalent variables ξ , pT (transversal momentum) and φ defined
as:

ξ = ∆p
p0

= p0 − p
p0

(3)

pT =
√

p2
x + p2

y (4)
φ − angle between x axis

and the ~pT = (px , py ) vector (5)

1.2 My research

All my work was done with use of the FPTrack – program written by Peter
Bussey (Department of Physics and Astronomy, University of Glasgow)
with my tiny modifications. FPTrack computes proton transport through
the beamline using the LHC Optics files. I used the “LHC Optics Version
V6.500 Collision” for 7000 GeV protons.

2 Beam profiles

Using beam characteristics at the ATLAS interaction region I generated a
set of particle momenta that was used as an input to FPTrack to see how
beams look like at the detectors planes. I used: σ (x0) = σ (y0) = 16.6 µm,
σ (θx) = σ (θy ) = 30.2 µrad, σ (E) = 0.77 GeV.

The beam profiles that I managed to obtain are included in figure 1,
their parameters – in table 1.



Studies of ATLAS Forward Detectors 3

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

y 
[m

m
]

x [mm]

Beam 1, plane 216m

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

y 
[m

m
]

x [mm]

Beam 1, plane 224m

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

y 
[m

m
]

x [mm]

Beam 2, plane 216m

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

y 
[m

m
]

x [mm]

Beam 2, plane 224m

Figure 1: Beam profiles at ”220 m” planes

Beam Plane σ (x) σ (y)

1 216 m 84 µm 547 µm
1 224 m 72 µm 508 µm
2 216 m 117 µm 407 µm
2 224 m 77 µm 368 µm

Table 1: Beam profiles parameters
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3 Protons behavior

I studied how the hits left by the protons in the detectors depend on its
kinematics. I generated another set of momenta corresponding to ξ =
0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14. For each ξ I used one proton with
t = 0 and φ = 0 and a set of protons with t = −0.05 GeV2 and φ ∈ [0; 2π)
with step 2π/16. I present the results in figure 2.
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Figure 2: Hits of protons of different ξ , t and φ

It was interesting to find out which protons can be seen at the forward
detectors. In order to study this I created a plot of acceptance as a function
of ξ and t . In this case acceptance is understood as a ratio of particles
with given ξ and t observed in the beamline at 220 m (small differences
between 216 and 224 m are not important here) to the number of particles
produced in the interaction point (with the same ξ and t). In figure 3 I
include the plot of acceptance.

As we cannot build a detector that is able to measure particles in the
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Figure 3: Acceptance at 220 m for beam 2

center of the beampipe (where the main beam is located) I checked what
is the acceptance for a detector, that can measure only particles, with
|x| > 2 mm and |y| > 2 mm. I present appropriate plot in figure 4.

The plots in figures 3 and 4 were created using uniform particle dis-
tribution in (ξ, t, φ) space. I created plot similar to the one in figure 4,
but in order to investigate the real physics events I installed Pythia event
generator and modyfied the output in such a way, that it was readible for
FPTrack. Selecting process 93 from Pythia (single diffraction) I repeted
the study of acceptance at 220 m. The results ars shown in figure 5.

4 Position in detectors as function of kinematic vari-
ables

Computing the positions of protons at the detectors planes using FPTrack
is rather time consuming and doesn’t give any easy way of event recon-
struction. That is why I investigated the possibility of describing the posi-
tion in the detector as a function of kinematics at the interaction point. In
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Figure 4: Acceptance at 220 m for beam 2 for a detector measuring only
|x| > 2 mm and |y| > 2 mm
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Figure 5: Acceptance at 220 m for beam 2 for a detector measuring only
|x| > 2 mm and |y| > 2 mm. Particles generated with Pythia process 93
(single diffraction)
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this part i will use following variables:

E = Eloss = ∆p = p0 − p = ξp0 (6)
x′

0 = px
pz

(7)

x0 − position of the interaction point (8)

As can be seen in figure 2 x coordinate od protons is more sensitive to
changes of Eloss (or ξ) then the y coordinate. That is why I focused on the
x-position. In this section everything is done for beam 2 and plane 220 m.
In plots I used the most convenient units, whereas all the coefficients are
computed for Eloss in GeV and everything else in SI units.

4.1 Dependence on Eloss

As a first step I checked the dependence of the x-position on the Eloss (for
x′

0 = 0 and x0 = 0). The results are shown in figure 6 where I also present
a fitted cubic polynomial defined in equation (9). Figure 7 contains a plot
of dependence of the difference between real (FPTrack) value of x and
x(Eloss). The degree of the polynomial is the smallest one that gave errors
in figure 7 below 10 µm (which is the detector resolution). Values of the
coefficients of the fitted polynomial can be found in table 2.

x(Eloss) = c3E3
loss + c2E2

loss + c1E1
loss + c0 (9)

Coefficient Value Error

c0 −7.5849 · 10−07 3.407 · 10−08

c1 1.72336 · 10−05 3.104 · 10−10

c2 2.63245 · 10−09 7.588 · 10−13

c3 5.01785 · 10−13 5.245 · 10−16

Table 2: x(Eloss) fit coefficients (see eq. (9))

4.2 Dependence on x-slope

Like in the previous analysis I checked (for few different Eloss) how the x
position depends on the x′

0. In this case a linear function was good enough
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Figure 6: Dependence of x on Eloss
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Figure 7: Fit error (difference between real (FPTrack) x and x(Eloss) from
fit)
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to fit the data. The plotted points and fitted lines are presented in figure 8,
while differences between the FPTrack position and the fit are shown in
figure 9.
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Figure 8: Dependence of x on x′
0 for few different energies

Knowing that the linear function is a good approximation, the next
question is how its coefficients change with changing energy. This question
was partially answered in the previous section, where x(Eloss) was found
for x′

0 = 0, so:
x(x′

0, Eloss) = A(Eloss)x′
0 + x(Eloss) (10)

To parametrize A(Eloss) I wrote a script that generates a number of
sets of plots like the one in figure 8 for different energies and for each
of them it computes the linear regression slope coefficient. In figure 10
I present these coefficients as a function of Eloss . I fitted the distribution
with a quadratic polynomial:

A(Eloss) = a2E2
loss + a1E1

loss + a0 (11)

Values of the coefficients of the fitted polynomial can be found in table
3, and error of the fit in figure 11.
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Figure 9: Fit error (difference between real (FPTrack) x and x(x′
0) from

fit)

Coefficient Value Error

a0 −2.17214 0.0001551
a1 0.0428596 7.171 · 10−7

a2 5.8288 · 10−6 6.95 · 10−10

Table 3: A(Eloss) fit coefficients (see eq. (11))
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Figure 10: Slope coefficients of linear regressions for x(x′
0) plot as a func-

tion of Eloss
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Figure 11: Fit error for A(Eloss)
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4.3 Dependence on x0

The last variable to check is x0. In figures 12 and 13 are presented plots
of the dependence for fixed Eloss and x′

0 and error of the linear fit. As can
be seen in figure 13 linear fit works fine for this data, so we can write:

x(x0, x′
0, Eloss) = B(x′

0, Eloss)x0 + A(Eloss)x′
0 + x(Eloss) (12)
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Figure 12: Dependence of x on x0 for Eloss = 100 GeV, x′
0 = 200 µrad

Now the task is to find B(x′
0, Eloss). In figures 14(a) and 14(b) I present

dependence of B on x′
0 for fixed Eloss = 0 and dependence of B on Eloss

for fixed x′
0 = 0, respectively. Due to the fact that B changes only slightly

with x′
0 I will treat it as a function of Eloss only. For fitting I take a quadratic

polynomial as in the equation (13), the coefficients from fitting are included
in table 4.

B(x′
0, Eloss) = B(Eloss) = b2E2

loss + b1E1
loss + b0 (13)

4.4 Fit result

Summarising, we have a following parametrization:

x(x0, x′
0, Eloss) = B(Eloss)x0 + A(Eloss)x′

0 + x(Eloss) (14)
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Figure 13: Fit error (difference between real (FPTrack) x and x(x0) from
fit)

Coefficient Value Error

b0 3.991 0.000112
b1 0.000543821 5.372 · 10−7

b2 −1.23759 · 10−7 5.401 · 10−10

Table 4: B(Eloss) fit coefficients (see eq. (11))
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Figure 14: Dependence of B on x′
0 and Eloss
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Figure 15: Fit error for B(Eloss)
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with B(Eloss), A(Eloss) and x(Eloss) given by the equations (13), (11) and (9),
respectively.

To check how good the overall fit is I created another set of points with
Eloss , x′

0 and x0 covering the whole range of theirs values, that are seen
at the detector plane. For each particle the difference between FPTrack
x and x(x0, x′

0, Eloss) from fit was computed. The results projected into a
(Eloss, x) plane are presented in figure 16, where the detector resolution
level is also shown.
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Figure 16: Overall fit error

As one can see, the precision of posiotion reconstruction provided by
the proposed parametrisation is better then the detector resolution, so
the formula can be used for faster simulation and event reconstruction of
particles in the VFDx.


