
DESY Report

Simulation of Cosmic Ray Particles

in C++

Björn Sperling

14th September 2007

1 Introduction

During my stay at DESY in Hamburg, i have worked in the FLC-Group. In this sub-
division they will be developing a TPC (Time Projection Chamber) for the ILC (Inter-
national Linear Collider). My supervisor was Adrian Vogel. It was my task to write
a program which generate cosmic particles. This can help to simulate perturbations
for the TPC, because it is important to separate hits between cosmic ray particles and
real e+/e- interactions. They planed some measurements with cosmic ray particles at
a prototype. To simulate these experiments in Geant4, it is important to have cosmic
rays at sealevel as input.

2 Cosmic Particles

Muons are the most numerous charged particles at sea level. Most muons are produced
high in the atmosphere (typically 15km) and lose about 2 GeV to ionization before
reaching the ground. Their energy and angular distribution re�ect a convolution of
production spectrum, energy loss in the atmosphere, and decay.
The integral intensity of vertical muons above 1 GeV/c at sea level is approx 70m−2s−1sr−1,

with recent measurements tending to give lower normalization by 10-15%.
The overall angular distribution of muons at the ground is prop cos(theta)2, which is

characteristic of muons with E approx 3 GeV. At lower energy the angular distribution
becomes increasingly steep, while at higher energy it �attens, approaching a sec(theta)
distribution for θ < 70. [1]
Other particles are not important for the simulation, because they can't penetrate

hard materials (e.g. electrons) or they are very rarely. (Or they don't interact with the
detector.)
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3 The Generator Program

I have written this program in C++ and divided it in di�erent classes. The �rst main
problem was to generate cosmic particles and save the data to a �le. The main class is
CosGun, which manage all particles. The constructor of CosGun will be accept three
parameters: period of time in sec, a in mm, b in mm (a and b de�ne the area of the
detector / generator zone). With this three values can CosGun calculate a expected
value of number of particles because the integral �ux is known. This is a Poisson
distribution. By side, the random number generator is used form CLHEP. This is a big
library of math functions and methods for high energy physics. Until now there is a
number of particles but no real particles are generated. So CosGun will create objects
they represent particles. This objects are derived from CosPar which create a muon or
anti-muon (this ratio is also a �at asymmetric distribution) with a stochastic value of
energy by this distribution [1]

dN

dE
≈ 0.14 · E−2.7

cm2 · s · sr ·GeV
·

(
1

1 + 1.1·E·cos(θ)
115·GeV

+
0.054

1 + 1.1·E·cos(θ)
850·GeV

)
and a stochastic direction. For this we need θ and φ. θ follow this

dN

dθ
≈ cos(θ)1.85

and φ is evenly distributed [2]. Also it needs a randomly selected start position.
To produce random numbers of a common distributions like Poisson, it is easy to use a

existing function of a commercial library. But to produce unequally distributed numbers
like this one of energy, it is impossible to �nd a commercial function.
One solution is to use the so called 'hit and miss'-method.

Assumption: f(x) is a probability distribution function, x ∈ [a, b]
This algorithm consist of two steps:

• generate a pair of pseudo random numbers x and y which are evenly distributed
with x ∈ [a, b] and y < max(f(x))

• if y < f(x) then is x the new random number otherwise you need a new pair.

But this method is very slow, if the ratio between
∫ b

a
f(x)dx and (b−a) ·max(f(x)) is

small. Because they need many trials for one new number with y < f(x). To preventing
this problem, there is a improvement. Get a function g with g(x) > f(x) for all x ∈ [a, b]
and reverse the integral of g. Then you can produce random numbers they are distributed
by g. Now you can use the hit and miss method on these new values to generate random
numbers they are distributed by f. (The ratio between

∫ b

a
f(x)dx and

∫ b

a
g(x)dx should be

small, if g is a adequate function.) Fig. 1 shows f for some θ's and g. This improvement
save a lot of time.
For example:

Old version to generate about 5000 particles on this machine used 34sec of time.
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Figure 1: This plot shows the distribution function of energy for some θ values and the
envelope function which is used by the improvement of hit and miss.

New version with same parameters takes about 1sec!!

Well, every particle need a creation time, too. But this is a �at distribution like φ.
CosWrite is a class which write all generated particles to �le in stdHEP format. For

this it used the HEPEVT common block and some function of the stdhep library. stdhep
is also used by other generators like pytha.

3.1 What aspects are not in the simulation?

• Only anti-muons and muons above 0.35 GeV energy will be simulated, because all
other particles are very rare or don't penetrate hard materials.

• no geomagnetic e�ects are implemented which produce a systematic error at all
muons below 1 GeV

• no variation of solar wind is implemented
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Figure 2: Picture of the simulation without any event

I think the last two aspects are all but impossible to inculde in such a simulation.
One Reason is the varitation of such input parameters with the time. The other is the
complexity of the problem.

4 Geant4 Simulation

Adrian Vogel had programmed a simulation based on geant4 which can simulate a ex-
periment on a medi tpc. One scintillator is above of the medi tpc and the other below of
them. Between the two scintillators is lead to reduce trigger events from electrons and
other light particles (Fig. 2).
This experiment was done by Helena Stange in Juli 2005. But there were some prob-

lems and so real data didn't agree with simulated. She found an increase of the trigger
rate after she put a second layer lead between the scintillators [6]. This is strong devia-
tion of the normal expectation.
To investigate these problems, i have implemented a method in this simulation to

read stdHEP �les. Now it is possible to produce a �le with the correct detector area
and measurement period with my program. Then it is available in the simulation and
produce trigger rates in the order of magnitude of the real data. For this i have modify the
simulation and add a other mechanism to associate two trigger event on both scintillators
to one event. To do this, the simulation save any event in the detector and the time
when it happens. After the run it searches for all event-pairs (top and bottom detector)
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Figure 3: Picture of the simulation with cosmic particle events. The TCT simulation
was a good test of my generator program.

which are inside a time frame. This is very close to the real experimental practice. Fig.
3 shows cosmic particle events in the TCT simulation.
My results show a reduction of trigger rates, if there is a second layer of lead. This is

a expected, but a di�erent result compared to the experiment of Helena Stange.
I don't know the details of the measurement, but one plausible explanation is the varia-
tion of cosmic rays after a CME (Coronal Mass Ejections). - If we know the date of the
measurement, we can look at ACE for solar activities.
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A Histograms of energy and angle distribution

Figure 4: Histogram of energy distribution Figure 5: Histogram of energy distribution

Figure 6: Histogram of φ distribution Figure 7: Histogram of θ distribution
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