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Abstract

The Large Detector Concept is a design for a future, high precision
detector foreseen to investigate the nature of physics at centre-of-mass
energies up to 1 TeV using electron - positron collisions at the Inter-
national Linear Collider. An approach to an automated method to
perform a global calorimeter energy calibration using the energy con-
servation law has been implemented in a Marlin processor. This report
describes the method itself and presents some results as well.
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1 Introduction

1.1 The International Linaear Collider

The International Linear Collider (ILC) [3] is a high precision electron
positron collider reaching centre-of-mass energies up to 500 GeV. An ex-
tension up to 1 TeV is foreseen. The ILC is thought to be the next step
investigating the nature of physics at high energies after the experiments
at the Large Hadron Collider at CERN, Geneve have been performed. It
is foreseen to install two detectors at the ILC, whereas only one of them
will be residuing at the interaction point. Exchanging the Detectors will be
possible due to a ”push-and-pull” mechanism allowing easy exchange.

1.2 The Large Detector Concept

The Large Detector Concept (LDC) [2] is one of four proposals to build a
high precision detector for the ILC. The LDC calorimeter consists of two
parts: the electromagnetic calorimeter (Ecal) and the hadronic calorimeter
(Hcal). The Ecal is a silicon-tungsten sampling calorimeter having in total 30
layers. One layer consists of a sensitve silicon pad and a thungsten absorber.
The 30 layers are split in two sections having different sampling fractions.
The transversal cell size in the Ecal is 1 x 1 cm2. The Hcal is a steel -
scintillator sampling calorimeter having a cell size of 3x3x3 cm3

1.3 Marlin

Marlin [4] is a simple modular application framework for analysis and re-
construction code based on the LCIO [5] data model. The main purpose of
Marlin is to provide a framework to the worldwide ILC community that is
easy to handle an allows distributed modular software developement. Each
Marlin Module is of the basic class Marlin::Processor. Marlin is steered
by a file steerfile.xml (see Section A). Input data (slcio files) which will be
processed by the selected Marlin modules and the parameters required by
the processors are indicated in the steering file.

The task is to develop a Marlin module, i.e. a processor, that is able to
perform an calorimeter energy calibration. Due the future ”mass-production“
of Monte Carlo events based on full detector simulation (Geant 4) [6] a com-
pletely automated and stable calibration procedure has to be developed.
The basics of a method to perform a energy calibration will be described in
Section 2.

2 Calorimeter Energy Calibration

In general, calibration “refers to the process of determining the relation
between the output (or response) of a measuring instrument and the value
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of the input quantity or attribute, a measurement standard“ [7]. Applying
the above definiton to the LDC calorimetry we get the following overview:� The measuring instrument are the calorimeters in the LDC detector.� The input quantity for this particular method of calorimeter calibra-

tion is the center-of-mass energy ECM of the e+e− collisions.� Output of the calorimeters is the measured energy deposit of particles
E(~x) as a function of space, i.e clorimeter cell.� The relation in between input and output can basically be described
as

ECM = f(Etot), (1)

where Etot is the total energy deposited by paricles in the calorimeter.
Assuming a relation of e.g.

f(c,Etot) = c ∗ Etot (2)

calibrating the calorimeter means to determine the constant c.

Generating output from a well known input quantity to perfor a cali-
bration, one can use several methods, whereas some are mentioned in the
following:

Using computer simulations one can shoot single particles to the calorime-
ter and study the response. Electrons, photons or photons are usually used
to calibrate the electromagentic calorimeters and charged pions to to cal-
ibrate the hadronic calorimeter. However, this method is very complex.
Especially to calibrate a hadronic calorimeter on this way is a highly sophis-
ticated task.
Known radioactive sources can be set into the detector to calibrate it by
measuring the energy deposit of the radiation.
In addition the Engegy conservation for entire events (see Equation 2) can
be used to calibrate calorimeters. The big advantage of this approach is
its applicability to both simulated events and data of real events. It is also
good to perform a first, rather raw calibration of simulated data samples.

As the LDC detector is still under construction, i.e. design studies are
performed, only simulation of both collisions (events) and the calorimeters
itself are available. So there is no real data yet. The LDC calorimeter
consist of three different sampling structures as there are two different sam-
pling structures in the Ecal and one in the Hcal. Therefore the relation to
determine is

ECM = c1 ∗ E1,vis + c2 ∗ E2,vis
︸ ︷︷ ︸

E

+ c3 ∗ Hvis
︸ ︷︷ ︸

H

, (3)
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where the ci are the calibration coefficents that are to be determined. E and
H are the measured total energies of an event that were desposited in the
electromagnetic and hadronic calorimeter respectively. A visusalisation of
the calibration of a set of events is achieved by plotting the energies H vs E
as it is shown in Figure 1. The scatter plot shows a cloud of entries having
an upper edge and a tail towards lower energies. This is due to energy losses
caused by neutrinos, muons which deposit only a little percentage of their
energy in the calorimeters and the finite acceptance of the calorimeter.
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(a)

(b)

Figure 1: (a) Each point in the scatterplot represents a e+e− to six jet event.
The total measured energy in the hadronic calorimeter H (Ehcal in the plot) is
plotted versus the total measured energy in the electromagnetic calorimeter (Eecal
in the plot). Theoretically, the center-of-mass energy is conserved and ECM =
H + E + Emiss, therefore the cloud shows an upper edge. As neutrinos, muons and
the finite acceptance of the calorimeter cause missing energy in the measurement,
Emiss, the cloud has a tail towards low energies. (b) A rotated cloud (ot exactly the
same as in (a)) after the coordinate transformation x = E → x′ = H − E, y =
H → y′ = H + E.

Given a uncalibrated data set the new calibration cefficients are cal-
culated as shown in Formulae 4 to 11. The equations follow the method
described by V. L Morgunov in ”Calorimeter energy calibration using the
energy conservation law“ [1]. Basically, Equation 5 describing the uncali-
brated data sample is multtiplied by the factor f = ECM/E0 which contains

6



the requirement of energy conservation in an event. This multiplication is
actually a simple rescaling of the total energy E0 of the event measured with
both calorimeters to get the centre-of-mass energy ECM. The parameters a0

and E0 of the function g(E) in Equation 4 are determined by fitting g(E)
to datapoints describing the orientation of the cloud. How to calculate the
parameters from a given data set will be described in Section 2.2.

g(E) = a0 · E + E0 (4)

|a0| · (c1 · E1,vis + c2 · E2,vis) + c3 · Hvis = E0 (5)

|a0| · f · c1 · E1,vis + |a0| · f · c2 · E2,vis + f · c3 · Hvis = f · E0 (6)

f = ECM/E0 (7)

c1,calib = |a0| · f · c1 (8)

c2,calib = |a0| · f · c2 (9)

c3,calib = f · c3 (10)

c1,calib · E1,vis + c2,calib · E2,vis) + c3,calib · Hvis = ECM (11)

In the following Section will be described how which adaptions to the
above method have been made to develop the Marlin processor CalibProces-
sor that is able to perform a recalibration of an existing, not well calibrated
set of data. An initial calibration is the same as recalibrating an data sample
where ci = 1. Therefore, the processor will also be applicable for this task
which has to be fulfilled may times as a large number of Monte Carlo data
samples need to be calibrated during a ”mass-production“ of Monte Carlo
events based on a full detector simulation.

2.1 Calorimeter Calibration with CalibProcessor

Basically the method to perform an energy calibration using the energy
conservation law is implemented in the Marlin processor CalibProcessor.
The goal is to calculate the new calibration coefficients ci automatically.
Crucial point of the procedure is to determine the upper edge as its position
indicates the measured energy E0 of an event. The edge is desctribed by the
function g(E). The parameters a0 and E0 have to be determined in order
to calculate the new calibration coefficients according to Formulae 8 to 10.
Fitting the g(E) to the data in the H vs. E representation would cause large
errors on the parameters due to binning effects. Therefore the cloud is in a
first step rotated to get a horizontal position of the edge. The coordinate
transformation is introduced to do the rotation:

x = E → x′ = H − E (12)

y = H → y′ = H + E (13)
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Bin limits in H-E [GeV]
−250 −100 −50 0 25 50 100 150 250

Table 1: The rotated cloud, see Fig. 1(b) is divided in eight binsas shown.

The second step is to slice the rotated cloud in eight H-E bins indicated
in table 2.1.

In each bin the distribution of the total measured energy H+E is of
interest as the position of the maximum H+E|max indicates the position
of the edge, see Figure 4. Details about finding H+E|max are described
in Section 2.2. Except for the outermost bins the bin centre H-E|i and
H+Ei, max are determined. Fitting a stight line h(H −E) = a · (H −E) + b
to the data set (H-E|i, H+Ei, max), i = 1, . . . , 6 determines the position of the
edge. The parameters a0 and E0 are calculated according to the following
formulae and the new calibration coefficients are given in Equations 18 to
refc3n.

h(H − E) = a · (H − E) + b (14)

a0 = −
1 + a

1 − a
(15)

E0 =
b

1 − a
(16)

f =
ECM · (1 − a)

b
(17)

c1,calib =
1 + a

1 − a
· f · c1 (18)

c2,calib =
b

1 − a
· f · c2 (19)

c3,calib = f · c3 (20)

(21)

2.2 Determination of the Edge

In this section the determination of the edge is described. This step is cru-
cial for the calibration methode. The edge of the cloud is determined using
the coordinates H+E vs H-E as described in Section 2.1. The upper edge
is assumed to be a stright line. Therefore it is sufficient to determine the
position (H − E,H + E) of the edge in several areas of the cloud and fit a
stright line to the selected set of data points, see Figure 7. In the current
imlementation of the CalibProcessor the cloud is divided in eigth bins, see
Table 2.1. Exept for the outermost bins, the position of the edge is deter-
mined in each bin by examining the distribution of the total Energy H+E.
The location of the upper edge is currently considered to be the position of
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the maximum H+E|max of the distribution, see Figures 2 and 4.
In this way six points (H − E|i,H + E|max, i), where H − E|i is the bin

centre, give the position of the edge. A line f(H − E) = a0 ∗ (H − E) + b0

is fitted to the six points. The maximum can be determined by various
methods. I concentrated on two approches. The first one, which is looking
for the position of the bin having most entries, is a very simple one that was
basically used to check out wheter the calibration method is working. The
second approach is to fit a function the histogram describing the shape of
edge best and to determine the position of the maximum of the function.

Method 1 — Selecting the maximal bin:

Methode 1 is very easy: the bin having the maximal number of entries is
selected and its position H+E|max on the axis is considered as the position
of the edge. However, this methode has obvious disatvantages as an ap-
propriate binning has to be chosen to find a unique maximum and will not
be likely to fullfill the requests of an precices and automated calibration
procedure. This metod is implemented in CalibProcessor.

Method 2 — finding the edge by a fit:

The basic idea used in methode 2 is to describe the distribution apearing
in the bins of the cloud with a function and determine the position of the
functions maximum. To check out wheter a function can be fitted to the
histogram and how to achieve an appropriate result, studies have been done
using the ROOT [8] analysis framework.

As the distribution, see Figure 2, has a tail on the lefthand side1 and
looks like a gaussian on the righthand side, one could try to convolute a
gaussian with other functions to describe the whole distribution. However,
only the position of the edge of the cloud is of importance to perform the
calibration. Therefore, it is sufficient to fit a gaussian only to the righthand
side (i. e. the edge) of the distribution. As one can see in Figure 2, itera-
tion step 6, a gaussian is suitable if only the rightand part of the data is
considered and the lefthand tail is ignored.

To find the suitable range [a, b] in which the binned maximum likelyhood
fit of a gaussian is performed, an iterative procedure has been implemented.
The C++ program and its application on processor output is described in
Section 3. The iterative fit procedure contains the following steps:

1. Fitting a gaussian to the whole distribution. The initial fit parameters
p1, p2, p3 of the gaussian

g(x) = p0 · e
−0.5·(

x−p1

p2
)2

(22)

1due to not measurable energy (neutrinos, finite detector acceptance,...)
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Slice_6, Iteration Step 6

Figure 2: Each of the histograms shows the same distribution of the H+E values
in the bin containing all events having H-E values in [50, 100[ GeV. Six iteration
steps were performed to determine the range in H+E where the assumed gaussian
fits the shape of the righthandside the best.

and the initial range [a, b] the fit is performed on have to be chosen
suitable to the given situation in the bin. Compare with Figure 2,
iteration step 1.

2. The fit range [a, b] is reset to [p1 − p2, b] and the fit is reperformed.

3. Repeat step 2 as long as necessary. The number of iterations should
be limited if certain criteria is fulfilled, i.e the quality of the fit using
χ2/ndf or a certain number of iterations.

As in a gaussian the the position of the maximum x|max is the same as
the mean, x|max = p1 The edge of the cloud therefore is determined by the
mean p1 of the determined rightsided gaussian. See Figure 2, iteration step
6. However, to consider the edge at the position of the maximum may not
be the most appropriate definition. Considering a different position of the
edge is easy once the gaussian is determined. One could take p1 + 1 ∗ p2

as edge position and its implementation would be straightforward as only
minor changes in the code are necessary.
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As Figure 2 shows this metod of determining the shape of the distribu-
tion in a bin by a righthandside gaussian works quite well. The next step
in improving the performance of CalibProcessor would therefore be to im-
plement this metod in the processor source code. To be consitent with the
guidelines for Marlin applications this implementation should be done using
the GNU Scientific Library GSL [9] providing similar tools as ROOT does.
The implementation using GSL should be easily possible as only standard
tools like fitting a gaussian to a histogram are used.

2.3 Statistical Limit on the Number of Bin Entries

The data sample of simulated tt to six jets events contains not more than
3000 events. As these events are distributed on a total of eight bins only
about 500 events are to expect in a central bin of the cloud. To study the
error of the mean of the fitted gaussian more statistics are needed. Therefore,
a data sample for this process with 50000 events has been generated, see
figure3. Based on this large data set the estimated errors on the mean of
the guassian has been studied.

H-E [GeV]
-150 -100 -50 0 50 100 150 200 250

H
+E

 [
G

eV
]

250

300

350

400

450

Rotated Cloud

Figure 3: This cloud has about a factor ten times more entries than the first data
sample of tt to six jets events contained. The cloud has 50000 entries and provides
enough statistics to study statistical effects in the fit procedure used to determine
the edge of the cloud.

Only one bin, containing the entries having H-E ∈ [−10, 10] GeV, is
selected (see Figure 4). This bin contains contains 3115 events of the 50000
events in the cloud. To study the error on the mean as a function of the
entries in the bin (see Figure 5), only a fraction of n

10 ∗Nbin, n = 1, . . . , 10,
has been selected and the fit procedure has been performed on the ten
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subsamples. Important is that the error is likely to become stable above
2500 entries in a bin as it gives an lower limit of the number of events a slice
should become. The first data point at 500 entries corresponds to a total
number of 5000 entries and the last data point at 3100 entries corresponds
to a total number of 50000 entries in the cloud.
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Figure 4: This Figure shows the distribution in the bin (H −E) ∈ [−10, 10] GeV.
The histogram contains 3115 events that are selected of the central region of the
cloud. The full data sample contains 50000 events.

3 The CalibProcessor

The calorimeter calibration is implemented as described above using method 1.
Some constants as ECM of the events have to be set in the sourcecode. There-
fore, the processor is not ready to any kind of input data without changes in
the source code. All histograms are allocated twice: once as GSL histograms
and for a second time as Aida histograms to provide data transfer to ROOT
for the fiting studies that have been done. To use the processor first create
a suitable steering file and execute it using Marlin.

Input — Steering Parameters:

A example of a steering file is shown in the Appendix. The CalibProcessor
needs the follwoing parameters:

Name of the ECAL hit collection: Default setting = Ecal
Name of the HCAL hit collection: Default setting = Hcal
The existing calibration coefficients: c 1, c 2, c 3.
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Figure 5: The plot shows the of the error on the mean as a function of the numer
of events in the bin. The bin range in (H-E) is [−10, 10] GeV and it contains
Nbin = 3115 events. To get lower statistics only a fraction of n

10
∗Nbin, n = 1, . . . , 10

has been selected. The error seems to become stable above 2500 entries in the. This
gives an lower limit to the of the number of events a bin should contain of 2500
events. The first data point at 500 entries corresponds to a total number of 5000
entries in the cloud and the last one to 3100 entries.

Output:

CalibProcessor generates the output files listed in Table 2 and stores them
in the directory Marlin runs. The current processor is still in a rather experi-
mental implementation. All files except the file CalibProcessor calibration coeff.txt
are only to provide the data transfer to ROOT or Gnuplot. The scripts to
generate plots using Gnuplot and to perform the iterated fit procedure using
a ROOT are also decribed.
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Filename Content

CalibProcessor calibration coeff.txt Calibration coefficients c1,calib,
c1, calib, c1,calib.

Output.root ROOT trees of all created his-
tograms. To generate this output
the Processor MyAidaProcessor has
to be enabled.

CalibProcessor data fit.txt Data points (H-E|i, H+E|i, max) to
fit edge h(E) to.

CalibProcessor data histo.txt Data of the 2d gsl histogram H vs E

CalibProcessor data histo r.txt Data of the 2d gsl histogram H+E
vs H-E

CalibProcessorRot lparam.txt Parameters of the fitted funcion
g(E) = a0 ·E + E0 and h(H −E) =
a · (H − E) + b where a0 = a prime
and E0 = b prime

Table 2: Output files produced by the CalibProcessor.
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How to perform the fit of a gaussian to the H+E distribution in

a bin of the cloud using executeScriptSlice.C:

Script: executeScriptSlice.C
Task: Fiting a gaussian to the histogram to. The mean of the

gaussian is the edge position.
Comments: The script compiles and executes all needed functions itself.

Number of iterations that are performed has to be changed
in the script.

Input: DrawSliceHistogram.C
FitRsGaussToSlice.C
SetStyle.C
Output.root

Output: Slice i.eps, i = 1, . . . , 8
FitRsGaussToSlice output.txt

Step 1: Define the Number of iteration N iter steps you want to per-
form in the file executeScriptSlice.C by setting the argument
of FitRsGaussToSlice(N_iter).

Step 2: Start ROOT.
Step 3: Load the file Output.root containing the trees called Slice 1,

. . . , Slice 8.
Step 4: Type .x executeScriptSlice.C to execute the script.
Step 5: The output is written into the current directory.

15



How to create plots like Figurefig:recal shows using the script

gnuplot CalibProcessor contour.sh:

Script: gnuplot CalibProcessor contour.sh
Task: Creates plots like Fig. 7 from processor output.
Comments:
Input: CalibProcessor data fit.txt,

CalibPro cessor data histo.txt, CalibPro ces-
sor data histo r.txt, CalibPro cessorRot lparam.txt

Output: CalibProcessorRot data histo con tour data.txt,
CalibProcessorRot data histo contour.eps,
CalibProcessorRot data histo r contour data.txt,
CalibProcessorRot data histo r contour.eps

Step 1: Run CalibProcessor on data. Several ASCII files are created
as indicated in reftab:files.

Step 2: Run the script gnuplot CalibProcessor contour.sh in the
same directory. Commandline argument of the script is
CalibProcessor_data_histo. The plots are saved as en-
capsulated postscript files do not appear on the screen. They
are written directly into the current directory.

3.1 To do� The Implementation of the iterated fit procedure (methode 2) in the
processor using GSL has to be done. In addition to the described
method the iteration should be performed until a certain criteria is
fulfilled, i.e the quality of the fit using χ2/ndf or a certain number of
iterations.� Automated, non aequidistant binning in [H − E] of the cloud has to
be implemented as it is already not suitable anymore if the processor
is applied to a well calibrated data sample, compare Figure 7. The
number of of bins has to be selected with respect to the number of
entries in the full data sample and the entries in the bins in order to
keep the error on the fit parameters minimal. See Section 2.3.� The processor has to be tuned to be user friendly, e.g more steering
parameters such as ECM of the used file should be defined.� The gnuplot script could be implemented in the Processor as well, if
desired.
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4 Results

The following plots in Figures 7 and 9 show that implemented method to
perform and automated calorimeter calibration is basically working.
In Figures 7 and 9 two examples of a recalibration of a data set are given.
The used data is for both the same. The difference is that different initial
calibration coefficients are used. In Figure 7 wrong initial calibration coeffi-
cients as indicated in 3 were chosen on purpose. In Figure ?? the calibration
coefficients used in 2006 for detector optimisation and PFA studies were ex-
amined. It turned out that the used calibration was not perfect. Therefore
a recalibration of those data samples could be considered.

However, the performance of the existing processor seems not to be very
good as one takes into accout that in both Figures 7 and 9 the same data
sample has been used and different calibrations result. Both the plots and
some the coefficients show a clear deviation, i.e the difference of a factor
of 2 between the new c2 coefficients is not understood, whereas the new
coefficients c1 and c3 seem to agree.

Before doing necessary processor performace studies to understand the
error on the calibration coefficients, the processor must be improved with
respect to tune the determination of the edge position as described in Section
3.1.

Calibration Coefficients:

Calibration Coefficients

coeff Processor test Calibration used 2006

old new old new

c1 33.0235 49.8505 46.7703 53.7973

c2 93.5682 141.27 86.3749 99.3523

c3 21.19626 24.6161 22.01925 23.2179

Table 3: The calibration coefficients that have been used (old) and the coefficients
calculated by the processor (new) are indicated in the table. To test the Processor,
wrong old coefficients have been put into the processor. The new coefficient have
been calculated and are listed above. It is not understood is why the two different
inputs bring different new calibration coefficients, i.e. the deviation of 50 in between
the new c2 coefficients is remarkable.

Determination of the edge: maximal bin vs. gaussian

The two methodes are compared by visualising the determined edge on a plot
to get a first hint on the improvement of the performace using the iterated
fit procedure. As Figure 10 shows the edge determined with the iterated
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fit procedure (black) describes the oritentation of the cloud better as the
method implemented in the processor does (red). The ’red‘ fit is performed
within the processor and its parameters a and b are loaded by the Gnuplot
script to plot the graph. As the iterated fit procedure is not implemented in
the processor, the position of the edge has been calculated using the ROOT
script. The fit of the black line to the data is performed in gnuplot to get a
visualisation of the performance of the iterated fit procedure.
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Figure 10: The red line shows the position of the edge determined by the
processor. The black line shows the position of the edge determined using
the iterated fit procedure.
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5 Conclusion and Outlook

The Conclusion is that it is possible to automate the calorimeter calibra-
tion using the energy conservation law. A basic makability study has been
sucessfully performed. However, lots of improvements and testing as listed
below are still missing and have to be done.� Fist of all, the processor has to be improoved. See section 3.1.� Performace and stability studies have to be done to understand clearly

the precision of the calculated calibration coefficients.� Recalibration of existing Data samples has to be done.
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A Steering file

<!--This is a comment and will not be executed-->

<!--Save this file as steerfile.xml-->

<!--Run Marlin using the command:

$ ./bin/Marlin steerfile.xml-->

<marlin>

<execute>

<processor name="MyAIDAProcessor"/>

<processor name="MyCalibProcessor"/>

</execute>

<global>

...

</global>

<processor name="MyAIDAProcessor" type="AIDAProcessor">

<!--Processor that handles AIDA files. Creates on directory per processor.

Processors only need to create and fill the histograms, clouds

and tuples. Needs to be the first ActiveProcessor-->

<!-- compression of output file 0: false >0: true (default) -->

<parameter name="Compress" type="int">1 </parameter>

<!-- filename without extension-->

<parameter name="FileName" type="string"> Output </parameter>

<!-- type of output file xml (default) or root ( only OpenScientist)-->

<parameter name="FileType" type="string">root </parameter>

</processor>

<processor name="MyCalibProcessor" type="CalibProcessor">

<!--calculates new calibration coefficients-->

<!--Name of the ECAL hit collection-->

<parameter name="colNameECALHits" type="string">ECAL </parameter>

<!--Name of the HCAL hit collection-->

<parameter name="colNameHCALHits" type="string">HCAL </parameter>

<!-- LDC01Sc -->

<parameter name="CalibrECAL" type="FloatVec"> c_1 c_2 </parameter>

<parameter name="CalibrHCAL" type="FloatVec"> c_3 </parameter>

</processor>

</marlin>
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Figure 6: The H versus E representation for a performed recalibration of tt
to six jet events.
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Figure 7: Example for a recalibration of a not perfectly calibrated data set of
tt to six jets events. The H+E vs. H-E coordinates show the rotated cloud.
These plots correspond to the ones in Figure 6as they show the recalibration
of the same data set.
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Figure 8: Example for a not well calibrated sample used in 2006 for detector
optimisation and PFA studies. tt to six jets events are shown in a H versus
E plot.
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Figure 9: tt to six jets events are shown in a H+E versus H-E plot. This is
an example for a not well calibrated sample used in 2006 for detector opti-
misation and PFA studies.These plots correspond to the ones in Figure ??as
they show the recalibration of the same data set.
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