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Abstract

My work here at DESY consists of the study of the inner structure of a proton. Because of
the lack of previous knowledge in quantum field theory like QED, the first part was to get
to know basic concepts in relativistic quantum mechanics to be able to calculate transition
rates and cross sections of electromagnetic reactions. So this report gives a road map of my
study I did here, and it proves that I’m really familiar with these methods now. I didn’t
mention everything I learnt like higher order correction and radition corrections, because it
wasn’t needed for the last part of my work.

At the beginning I explain the transition matrix, necessary to calculate cross sections.
Then I present the calculation for the simplest of the scattering process. The Mott cross
section describes an electron scattering off a Coulomb potential, that can also be interpreted
as a spin 0 particle with infinite mass. The next step is to take the mass and the spin of a
proton into account, so it is treated as a Dirac particle. The major fault of this model is that
the proton has no structure.

Then I introduce the structure functions for electromagnetic and weak interactions, which
describe the inner structure of a proton. This is needed in deep inelastic scattering. The
next step is the quark parton model that leads to the Bjorken scaling, Callan-Gross relation
and quark distribution functions. At the end I explain the experimental results from HERA
considering the structure function F2.



1 Transition Matrix [3]

Let a particle be described by a wave function ψi that comes from minus infinity and is

disturbed by a potential at a certain time and coordinate (or in a finite space-time-range)

then is ψscat the spherical wave that is produced at the scattering point and ψf is the wave

function of the scattered particle much later after the perturbation. So one can define the

transition matrix S by the relation

ψscat = S ψi. (1)

Then the transition matrix element is given by

Sfi =
∫

d3xψ†f (x)S ψi(x) = 2Ei δfi + S
(1)
fi + S

(2)
fi + ... (2)

According to the fact that QED is a pertubative theory, Sfi can be expanded in a sum which

is the iterative solution of the propagator. Here are the first and second order matrix elements

S
(1)
fi = −i e

∫
d4x ψ̄f (x)��A(x)ψi(x), (3)

S
(2)
fi = i e2

∫
d4x

∫
d4x′ ψ̄f (x′)��A(x′)G(x′ − x)��A(x)ψi(x). (4)

2 Cross Sections of Scattering Processes

2.1 Coulomb Scattering of Electrons [1]

With this knowledge one can calculate the first order transition matrix element and the cross

section of an electron that is scattered by a Coulomb potential. Then the incoming and

outgoing electron is described by the plane wave solution of the Dirac equation

ψi(x) =
√

m

Ei V
u(pi, si) exp (−i pi · x), ψf (x) =

√
m

Ef V
ū(pf , sf ) exp (i pf · x) (5)

and the four-potential is given by

A0(x) =
−Z e
4π |x|

, A(x) = 0. (6)

Inserting this into equation (3) the transition matrix becomes

Sfi =
−Z e
4π V

√
m2

Ef Ei
ū(pf , sf ) γ0 u(pi, si)

∫
d4x

exp (i (pf − pi) · x)
|x|

=
−Z e
4π V

√
m2

Ef Ei

ū(pf , sf ) γ0 u(pi, si)
|q|2

2π δ (Ef − Ei) ,

(7)
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where the time-integration delivers the delta-function, the space-integration is the Fourier-

transform of the Coulomb potential and q is the momentum transfer. The process can be

interpreted as the interaction of an electron and a virtual photon, so q is the momentum of

the virtual photon. Then the transition probability per particle is given by

|Sfi|2
V d3pf

(2π)3
=
Z2 (4π α)2

Ei V

∣∣ū(pf , sf ) γ0 u(pi, si)
∣∣2

|q|4
d3pf

(2π)3 Ef

(2π δ (Ef − Ei))
2 . (8)

The square of the δ-function can be calculated with the relation

(2π δ (Ef − Ei))
2 = 2π δ (0) 2π δ (Ef − Ei) . (9)

Ome can assume that the interaction has taken place in a finite time intervall, then the

δ-function is approximately described by

2π δ (Ef − Ei) =
∫ T

2

−T
2

dt exp (i (Ef − Ei)) ⇒ 2π δ (0) =
∫ T

2

−T
2

dt = T. (10)

That means that the energy is not conservered exactly, but it satisfies the uncertainty prin-

ciple.

One can compute the differential cross section. To that end, one writes the integral in

spherical coordinates and divides by the differential solid angle. So with equation (7) dividing

by the incident flux the cross section becomes

dσ

dΩ
=
∫

4 (Z αm)2

|vi| Ei

∣∣ū(pf , sf ) γ0 u(pi, si)
∣∣2

|q|4
δ (Ef − Ei)

p2
f dpf

Ef

=
4 (Z αm)2

|q|4
∣∣ū(pf , sf ) γ0 u(pi, si)

∣∣2 . (11)

For the calculation we used

p =
√
E2 −m2 ⇒ p dp = E dE (12)

From the energy-momentum-conservation it follows that Ef = Ei and pf = pi, therefore the

sign of the current cancels out. Many experiments are done with unpolarized electrons and

the polarization of the final particles aren’t measured so it is reasonable to average over the
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spins

dσ̄

dΩ
=

4 (Z αm)2

2 |q|4
∑
±sf ,si

∣∣ū(pf , sf ) γ0 u(pi, si)
∣∣2

=
4 (Z αm)2

2 |q|4
∑
±sf ,si

ū(pf , sf ) γ0 u(pi, si) ū(pi, si) γ0 u(pf , sf )

=
4 (Z αm)2

2 |q|4
∑
±sf

ū(pf , sf ) γ0 (�pi +m) γ0 u(pf , sf )

=
4 (Z αm)2

2 |q|4
4∑

j,k=1

∑
±sf

(
γ0 (�pi +m) γ0

)
jk
u(pf , sf )k ū(pf , sf )j

=
4 (Z αm)2

2 |q|4
Tr
(
γ0 (�pi +m) γ0 (�pf +m)

)
.

(13)

One can make use of trace theorems to evaluate this expression

dσ̄

dΩ
=
Z2 α2

2 |q|4
(
Tr γ0

�pi γ
2

�pf +m2 Tr
(
γ0
)2) =

Z2 α2

2 |q|4
(
8EiEf − 4 pi · pf + 4m2

)
. (14)

This can be expressed by the energy and scattering angle θ, namely

q2 = p2
i + p2

f − 2 pi · pf = 2m2 − 2E2 + 2p2 cos(θ) = −4p2 sin2

(
θ

2

)
(15)

and

pi · pf = E2 − p2

(
1− 2 sin2

(
θ

2

))
= m2 + 2p2 sin2

(
θ

2

)
. (16)

Finally with p2 = β2E2 the cross section becomes

dσ̄

dΩ
=

Z2 α2

4p2 β2 sin4
(

θ
2

) (1− β2 sin2

(
θ

2

))
. (17)

This is the so-called Mott cross section. The coulomb-potential can be interpreted as a

pointlike particle with infinity mass and spin 0.

2.2 Electron Scattering from a Dirac Proton [1]

The difference to the previous calculation is that the proton is a free particle with spin but

without a structure, it’s just treated as a pointlike particle like an electron. The structure

of the proton is considered later on. Hence the calculations become more difficult and the

Mott cross section gets a correction term. First one has to compute the four-potential one

gets from the Maxwell-equation

�Aµ(x) = Jµ(x) (18)
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where the four-current is known from the Dirac-theory as

Jµ(x) = e ψ̄f (x) γµ ψi(x). (19)

It doesn’t matter if the electron or the proton causes the four-potential the result is the same

as the two particles are included completely symmetrically in the formulas. So one assumes

that the four-potential is generated by the proton, and in what follows the proton properties

are described by capital letters or are marked by an index p.

One way to solve this equation is the Green function or propagator method. The Green

function is the solution if the inhomogenity is the δ-function. The advantage of this method

is that once one has the Green function one can calculate the solution of the differential

equation by integrating over the product of the Green function and the inhomogenity. To get

the Green function it is useful to put in the Fourier representation in the differential equation

for the Green function.

�
∫

d4q

(2π)4
exp (−i q · (x− y))G(q) =

∫
d4q

(2π)4
exp (−i q · (x− y)) (20)

⇒ G(x− y) =
∫

d4q

(2π)4
exp (−i q · (x− y))

−1
q2 + iε

(21)

The differential operator can be applied under the integral, because it doesn’t act on the

integral-variable and the equation is true if the integrands of the integrals are equal. So

one easily gets the inverse transform of the Green function. Let’s go for the four-potential

solution. First some short cuts for a better overview in the formulas.

ke :=

√
m2

Ef Ei

1
V

kp :=

√
M2

Ep
f E

p
i

1
V

(22)

Mfi := ū(pf , pf ) γµ u(pi, si)
e2

(pf − pi)2 + iε
ū(Pf , Sf ) γµ u(Pi, Si) (23)

One of the two integrals for the four-potential can be performed:

Aµ(x) =
∫

d4y G(x− y) Jµ(y)

= −
∫

d4y

∫
d4q

(2π)4
−1

q2 + iε
kp exp (i y · (q + Pf − Pi)− i q · x) ū(Pf , Sf ) γµ u(Pi, Si)

= −kp

∫
d4q exp (−i q · x) δ4(q + Pf − Pi)

−1
q2 + iε

ū(Pf , Sf ) γµ u(Pi, Si)

(24)

Now the transition matrix element can be calculated and the calculations are analogous to

the one in the previous chapter but requiring a little bit more effort. From equation (3) and
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further calculations give

Sfi = −i
∫

d4x e ψ̄f (x) γµ ψi(x)Aµ(x)

= −i
∫

d4x

∫
d4q ke kp exp (−i x · (pf − pi − q)) δ4(q + Pf − Pi)Mfi

= −i (2π)4 ke kp

∫
d4q δ4(q + Pf − Pi) δ4(pf − pi − q)Mfi

= −i (2π)4 ke kp δ
4(Pf − Pi + pf − pi)Mfi.

(25)

Using trace theorems one can calculate the spin average lorentz-invariant transition amplitude∣∣M̄fi

∣∣2 =
1
4

∑
sf ,si,Sf ,Si

| ū(pf , sf ) γµ u(pi, si) ū(Pf , Sf ) γµ u(Pi, Si)|2

=
e2

4q4
Tr �pf +m

2m
γµ �pi +m

2m
γν Tr ��P f +m

2M
γµ

��P i +m

2M
γν

=
e2

64m2M2 q4
Tr
(
�pf γ

µ
�pi γ

ν +m2 γµ γν
)

Tr
(
��P f γµ��P i γν +M2 γµ γν

)
=

e2

4m2M2 q4

(
pµ

f p
ν
i + pµ

i p
ν
f − gµν

(
pf · pi −m2

)) (
Pfµ Piν + Piµ Pfν − gµν

(
Pf · Pi −m2

))
=

e2

2m2M2 q4
(
Pf · pf Pi · pi + Pf · pi Pi · pf −m2 Pf · Pi −M2 pf · pi + 2M2m2

)
.

(26)

With this results you can write down the spin-averaged differential cross section

dσ̄ =
∫

V 2 d3pf

(2π)3
d3Pf

(2π)3
V

|Jinc|

∣∣S̄fi

∣∣
V T

=
∫

d3pf

(2π)3
d3Pf

(2π)3
mM

Ef E
p
f

mM

EiE
p
i

(2π)4 δ4 (Pf − Pi + pf − pi)
|vi −Vi|

∣∣M̄fi

∣∣
=
∫

d3pf

(2π)3
mM

Ef E
p
f

mM (2π)4 δ4 (Pf − Pi + pf − pi)√
(pi · Pi)

2 −m2M2

∣∣M̄fi

∣∣ .
(27)

Note, that the square of the δ-function delivers an additional factor V as it is four dimensional

. To compute the cross section one can go in the frame of reference in which the initial proton

is at rest, so the four-momenta become

pf = (E′,p′), pi = (E,p), Pi = (M, 0) (28)

and it is useful to take advantage of the identity

d3p

2E
=
∫ ∞

0
dp0 δ

(
pµ p

µ −m2
)
d3p =

∫ ∞

−∞
d4p δ

(
pµ p

µ −m2
)
θ(P 0

f ) (29)

and use the spherical coordinates again. One can proceed with equation (27) to derive

dσ̄

dΩ′ =
2
|p|

∫
m2M p′ dE′

(2π)2
∣∣M̄fi

∣∣2 δ (P 2
f −M2

)
θ(P 0

f ) δ4
(
Pf − p′ − Pi − p

)
=
m2M

4π2

p′

p

∣∣M̄fi

∣∣2
M + E − p E′

p′ cos θ
.

(30)
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Now one evaluates the transition amplitude in this frame of reference in the relativistic case.

Because of the energy-momentum conservation one can eliminate Pf , from which it follows

∣∣M̄fi

∣∣2 =
8π2 α2

m2M2 q4
(
2Pi · pf Pi · pi + pi · pf

(
Pi · pi − Pi · pf −M2

))
=

π2 α2

2m2E E′ sin4
(

θ
2

) (2M2E E′ + E E′ − E E′ cos (θ)
(
M
(
E − E′

)
−M2

))
=

π2 α2

2m2E E′ sin4
(

θ
2

) (2− 2 sin2

(
θ

2

)(
q2

2M2
+ 1
))

=
π2 α2

m2E E′ sin4
(

θ
2

) (cos2
(
θ

2

)
− q2

2M2
sin2

(
θ

2

))
.

(31)

In this calculation it was used

q2 = −4E E′ sin2

(
θ

2

)
, E E′ sin2

(
θ

2

)
= M(E − E′). (32)

From equations (30) and (31) one gets the cross section for relativistic electrons (E ≈ p)

dσ̄

dΩ′ =
α2

4E2

cos2
(

θ
2

)
− q2

2 M2 sin2
(

θ
2

)
sin4

(
θ
2

) (
1 + 2 E

M cos2
(

θ
2

)) . (33)

Let us compare this result with the Mott cross section for relativistic electrons

dσ̄

dΩ′ =
(
dσ̄

dΩ′

)
Mott

1− q2

2 M2 tan2
(

θ
2

)
1 + 2 E

M sin2
(

θ
2

) (34)

In comparison with the Mott cross section there is a correction term that is due to the

spin-spin interaction and the finite mass of the proton.

3 Structure Functions

3.1 Deep inelastic Scattering

If one wants to know something about the inner structure of a proton, one needs to go to

high energy electrons that scatter off protons. Deep inelastic scattering (DIS) means that

there is no particle conservation. Due to the scattering event, annihiliation and creation of

particles taken place, so the reaction is described by (e+p→ e+X), where X is an unknown

hadron system with an overall quantum numbers of a proton that depends on the energy of

the system. In DIS, one encounters structure functions instead of of the form factors, which

describe the charge and magnetic moment distribution.
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3.2 Electromagnetic Interaction [2]

Equation (26) can be expressed as

∣∣M̄fi

∣∣2 =
e2

16m2M2
Lµν Pµν , (35)

where

Lµν =
1
2

Tr(�pf +m) γµ (�pi +m) γν (36)

is the lepton tensor and Pµν is the proton tensor which is similar to the lepton tensor.

A hadronic tensor depends on the momenta q, p and has the form

Wµν = −W1 g
µν +W2

pµ pν

M2
+W3

qµ qν

M2
+W4

pµ qν + pν qµ

M2
. (37)

As the electromagnetic current is conserved, it follows

qµW
µν = −W1 q

ν +W2
q · p pν

M2
+W3

q2 qν

M2
+W4

q · p qν + q2 pν

M2
= 0, (38)

and similarly qν Wµν = 0. With these and noting that q · p = − q2

2 it becomes

W3 =
M2

q2
W1 +

1
4
W2, W4 =

1
2
W2, (39)

yielding

Wµν = W1

(
−gµν +

qµ qν

q2

)
+
W2

M2

(
pµ +

qµ

2

)(
pν +

qν

2

)
. (40)

The W1 and W2 are the struture functions, so the cross section is

d2σ

dQ2dW 2
=

2π α2M

(s−M2)2Q2

(
2W1(W 2, Q2) +W2(W 2, Q2)

((
s−M2

) (
s−W 2 −Q2

)
M2Q2

− 1

))
,

(41)

or in terms of the variables x = Q2

2 M ν and y = 2 M ν
s−M2

d2σ

dxdy
=

2π α2M

(s−M2)2 x

(
2W1(x, y) +W2(x, y)

((
s−M2

)
(1− y)

M2 x y
− 1

))
. (42)

The cross section can be evaluated in the lab frame and expressed by the electron energies

E,E′ and the scattering angle θ and the proton energy Ep

d2σ

dΩdE′
=

α2M

8E2Ep sin4
(

θ
2

) (2W1 sin2

(
θ

2

)
+W2

4E2
p

M2
cos2

(
θ

2

))
. (43)
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3.3 Weak charged current Interaction [2]

Now let us consider a reaction where a neutrino is involved and a W± is exchanged. As

the weak interaction is only coupled to left-handed particles and the weak current is not

conserved, so qµWµν 6= 0 and qµ Lµν 6= 0 the tensors have to be modified

Lµν = ū(k) γµ(1− γ5)u(k′) ū(k′) γν (1− γ5)u(k)

= 8
(
kµ k′ν + kν k′µ − gµν k · k′ + i εµνρσ kρ kσ

) (44)

Wµν = W1

(
−gµν +

qµ qν

q2

)
+
W2

M2

(
pµ +

qµ

2

)(
pν +

qν

2

)
− i

M
W3 ε

µνρσ pρ qσ (45)

where εµνρσ is the Levi-Civita symbol. The cross section becomes

d2σ±

dxdy
=

G2
F (s−M2)

2π
(
1 + Q2

M2
W

)2

(
x y2MW1(x, y) +

(
1− y − x yM2

s−M2

)
ν W2(x, y)± x y

(
1− y

2

)
ν W3(x, y)

)
(46)

where the ± refers to W± for the charged current, GF is the Fermi coupling constant and

MW is the mass of the W-boson. In the proton rest frame the cross section is

d2σ±

dΩdE′
=

G2
F E

′2

2π2
(
1 + Q2

M2
W

)2

(
2W1 sin2

(
θ

2

)
+W2 cos2

(
θ

2

)
∓ E + E′

M
W3 sin2

(
θ

2

))
(47)

4 Quark Parton Model

The parton model due to Feynman says that the proton is made up of more fundamental

constituents called partons. At deep inelastic scattering there is a big energy transfer ν

leading to high q2. As a result the virtual photon is able to resolve the inner structure of

the nucleon. In the simplified version, the virtual photon (in electromagnetic interactions)

scatters off a single parton and the other partons in the nucleon are still unaffected. In the

frame where the proton has a large momentum, one can neglect the mass of the proton and

can interpret the proton as a current of parallel moving partons. In the HERA lab frame this

condition is nearly fullfilled. A parton carries the fraction of the momentum

pi = x p. (48)
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4.1 Bjorken Scaling [3]

Bjorken predicted that in deep inelastic electron proton scattering (for large Q2 and ν) the

structure functions just depend on one variable x. Mathematicly it means

W1(Q2, ν) → F1(x), for Q2, ν →∞ (49)

ν

M
W2(Q2, ν) → F2(x), but x =

Q2

2M ν
finite (50)

Partons are spin 1/2 particles with charge Qj in units of e so oine can use equation (33) in

terms of x, y and summed over all partons, yielding

d2σ

dx dy
=

4π α2

Q4
s x

(
1− y +

y2

2

) ∑
j

Q2
j fj(x), (51)

where fj(x) is a density function. fj(x) dx describes the probability to find parton j with

relative momentum between x and x+ dx.

From equation (42) and using Bjorken scaling the cross section becomes

d2σ

dx dy
=

4π α2

Q4
s
(
x y2 F1(x) + (1− y)F2(x)

)
. (52)

Comparing equations (51) and (52) one gets the Callan-Gross relation

F2(x) = x
∑

j

Q2
j fj(x), F2(x) = 2xF1(x). (53)

4.2 Quark Distributions [3]

It is convenient to rename the density function fj(x) to the quark flavours, then u(x) is the

density distribution of the up-quarks and similarly for the other quarks. The nucleon consists

of valence and sea quarks. Thus, proton has two up-quarks and one down-quark. In addition,

it has sea quarks and gluons. The sea is a dynamical process that happens in the proton

due to the gluons that can create quark and anti-quark pairs. Taking into account only up,

down, strange and charm quarks from equation (53) follows that

F ep
2 (x) =

4
9
x (u(x) + ū(x) + c(x) + c̄(x)) +

1
9
x
(
d(x) + d̄(x) + s(x) + s̄(x)

)
. (54)

By replacing u↔ d and ū↔ d̄ one gets the structure function for the neutron because of the

isospin invariance.

The density functions are related to the properties of a proton so that∫
uv(x) dx = 2,

∫
dv(x) dx = 1. (55)
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The energy-momentum sum rule implies∫
x
(
u(x) + ū(x) + c(x) + c̄(x) + d(x) + d̄(x) + s(x) + s̄(x)

)
dx = 1− ε. (56)

If there are just quarks (and anti-quarks) in a proton then ε has to be 0. Experiments

have shown that ε is about 0.5 that means that the quarks carry only half the amount of

momentum of a nucleon. Therefore, there must be other particles, these are identified with

gluons. There are some other sum rules that are not further mentioned here.

5 HERA Physics

At the elecrton-proton collider HERA, experiments measured precisely, the structure func-

tions of protons. To determine the variables Q2, x, y one can measure the energies of the

incident and final electron E,E′ and scattering angle θ and the proton energy EP , then one

gets the relations

Q2 = 4E E′

x =
E′ sin2

(
θ
2

)
EP

(
1− E′

E sin2
(

θ
2

))
y = 1− E′

E
sin2

(
θ

2

)
.

(57)

In the case that the final lepton is a neutrino, one needs to reformulate the equations to the

Jet energy EJ and angle θJ

Q2 =
E2

J sin2
(

θJ
2

)
1− EJ

E sin2
(

θJ
2

)
x =

EJ cos2
(

θJ
2

)
EP

(
1− EJ

E sin2
(

θJ
2

))
y =

EJ

E
sin2

(
θJ

2

)
(58)

because of the very difficult measurement of neutrinos. [2]

At HERA the structure function F2 has been measured overs the range 0.00005 < x < 1

and 0.5GeV 2 < Q2 < 30000GeV 2 [4]. Figure (1) shows the measurement of the Bjorken

scaling where at large and small x the scaling is violated but in between the structure function

shows nearly no dependence on Q2. The behaviour of the Bjorken scaling can be explained

by incoherent scattering at single partons while the violation is due to the QCD. In QCD

quarks steadily radiate and absorb gluons which can create a quark and anti-quark pair. The
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Figure 1: Measurements of F2(x,Q2) [4]

Figure 2: Low-x behaviour of F2(x,Q2) at dif-
ferent values of Q2 [4]

influence of these sea quarks depends on the resolution which is related to the wavelength of

the virtual photon λν ∝ 1
Q . The better the resolution is, the more probable it is to observe a

quark that is surrounded by a gluon and quark anti-quark cloud. The virtual photon detects

a sea quark which carries a much smaller momentum then the valence quarks. That is exactly

what the figure shows.

The dependence of the structure function F2 on x is shown in figure (2). The structure

function gives the momentum distribution in the proton. There is not just one particle that

carries the entire momentum but there are several particles that carry fractional amounts of

momentum. The more quarks and anti-quark pairs and gluons are there in the proton the

bigger is the rise of the structure function for small momentum fraction, x.
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[3] P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer-

Verlag, 1995

[4] D. H. Saxon, Eur. Phys. J. A 31, 566 (2007).

12


