Simulation of Fast Beam-Ion Instability in ILC Damping Rings

Javier Cerrillo Moreno Supervisor: Guoxing Xia FLC Group 18/09/2006

Introduction (I)

 The next electron positron linear collider needs electron beams of an extremely low vertical emittance to achieve high luminosity

$$L \propto \frac{1}{\sigma_x \sigma_y} \qquad \sigma_{x,y} \propto \sqrt{\varepsilon_{x,y}} \qquad \varepsilon_y \approx 20nm$$

Introduction (II)

- The damping ring assures these values
- Any effect leading to instabilities in the damping ring must therefore be thoroughly studied

Which instabilities?

- The residual gas in the vacuum chambers can be ionized by the passage of an electron bunch
- These ions can disturb the motion of the successive bunches by means of the Coulomb interaction and appear under the form of undesired oscillations

Trapped Ion and FBII

- Ions can be trapped by the bunch itself or can be cleared out immediately after the passage of the beam bunch
- A gap between bunch trains can clear up trapped ions. Fast Beam-Ion Instability (FBII), though, still has a role within a single beam.
- In low emittance and high intensity rings, such as ILC damping ring, the growth rate of the instability is potentially high.

Simulation model (I)

- Strong-strong or weak strong?
- Weak-strong model (rigid Gaussian-like bunches and ion macroparticles)
- No longitudinal structure
- Only barycentre transverse motion is considered
- o 6 Ionization points

Simulation model (II)

- o Horizontal emittance is much larger than vertical emittance
 → Only vertical instability is studied
- o 4000 turns have to be tracked
- First bunch slightly displaced from ideal orbit

Circumference [m]	6695.057
Energy [GeV]	5.0
Harmonic number	14516
Arc cell type	TME
Transverse damping time [ms]	25.7
Natural emittance [nm]	0.515
Norm. natural emittance [µm]	5.04
Horizontal initial emittance [nm]	4.599
Vertical initial emittance [nm]	4.599
Horizontal equilibrium emittance [nm]	0.8176
Vertical equilibrium emittance [pm]	2.044
Natural bunch length [mm]	6.00
Natural energy spread [10 ⁻³]	1.28
Average current [mA]	402
Mean horizontal beta function [m]	13.1
Mean vertical beta function [m]	12.5
Bunches per train	2820
Particles per bunch	2 x 10 ¹⁰
Bunch spacing [m]	1.8

Equations

o Kick:

$$\Delta v_{y,i} + i\Delta v_{x,i} = -2N_b r_e c \frac{m_e}{M_i} f(x_{ie}, y_{ie})$$

$$\Delta y' + i\Delta x' = \frac{2r_e}{\gamma} \sum_i N_i f(x_{ie}, y_{ie})$$

$$f(x,y) = -\sqrt{\frac{\pi}{2(\sigma_x^2 - \sigma_y^2)}} \left[w \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) - \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) w \left(\frac{x \frac{\sigma_y}{\sigma_x} + iy \frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) \right]$$

 $w(z) = \exp(-z^2)[1 - \operatorname{erf}(-iz)]$

Beam optics

 Translation of the electron bunch between adjacent ionization points

Table name = TWISS

 $\begin{pmatrix} z_2 \\ z'_2 \end{pmatrix} = \begin{bmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos\psi + \alpha_1 \sin\psi) & \sqrt{\beta_2 \beta_1} \sin\psi \\ \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_2 \beta_1}} \cos\psi - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_2 \beta_1}} \sin\psi & \sqrt{\frac{\beta_1}{\beta_2}} (\cos\psi + \alpha_2 \sin\psi) \end{bmatrix} \begin{pmatrix} z_1 \\ z'_1 \end{pmatrix}$

Simulation Results: Vertical Displacement

Simulation Results: Oscillation Amplitude

 $J_{y} = \frac{1+\alpha^{2}}{\beta} y^{2} + 2\alpha y y' + \beta (y')^{2}$

Simulation Results: Vertical Action

Conclusions and Summary

- FBII: potential limitation for ILC DR performance
- Instability decreases at 0.1 nTorr
- Not serious FBII in any of the studied cases
- Other results predict high FBII at 1nTorr
- Further discussion