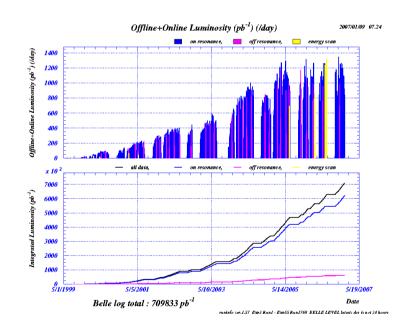


Evidence for Mixing of Neutral D Mesons

Marko Starič representing Belle collaboration

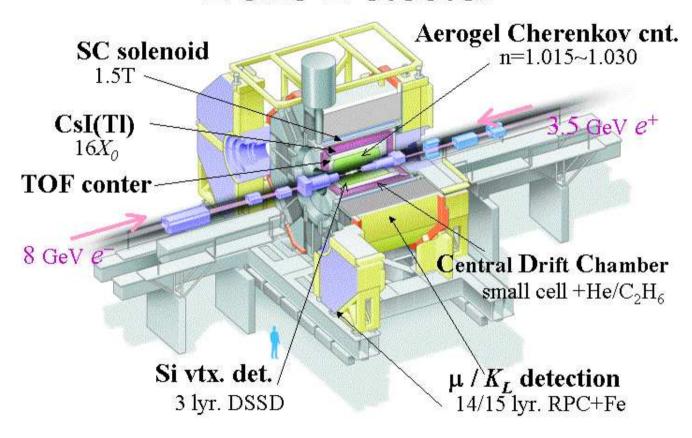
April 2007 DESY seminar

- Belle experiment
- D-mixing formalism/experimental
- 4 measurements

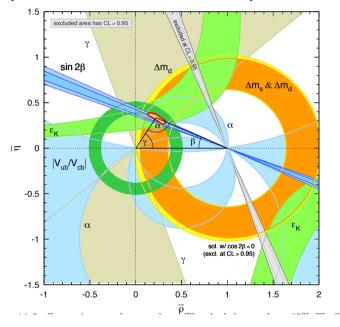


Belle experiment ____

- ♦ KEK, Tsukuba, Japan
- ♦ KEKB: asymmetric e^+e^- collider at $\Upsilon(4s)$ (B-factory) $e^+(3.5GeV) \rightarrow \leftarrow e^-(8GeV)$
- Continuous injection
- Peak luminosity: $\mathcal{L} = 1.7 \cdot 10^{34} / cm^2 / s$
- ♦ Integrated luminosity: $\int \mathcal{L}dt = 710fb^{-1}$



Belle Detector


- Tracking: $\sigma(p_T)/p_T = 0.2\% \sqrt{p_T^2 + 2.5}$

Physics at Belle ____

 Main goal: study of CPV in B-meson decays observed in 2001 since then many precise measurements performed

- lacktriangle Various results in charm physics (production: $\sigma(c\bar{c}) \approx \sigma(B\bar{B})$) among others search for D-mixing
- lacktriangle Mixing observed in K^0 , B_d^0 and B_s^0 (2006)
- D-mixing has not been observed since many years

Phenomena of Mixing

- Mixing: transition of particles to anti-particles (and vice versa)
- Possible for neutral particles when flavour eigenstates not the same as mass eigenstates (masses m_1, m_2 , widths Γ_1, Γ_2)

$$|D_{1,2}^0\rangle = p|D^0\rangle \pm q|\bar{D^0}\rangle$$

- $p/q \neq 1$ sign for CP violation
- ♦ Time evolution governed by mass and lifetime differences

$$x = \frac{\Delta m}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma}$$

Time evolution given by

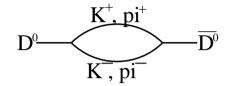
$$i\frac{\partial}{\partial t} \binom{|D^0\rangle}{|\bar{D}^0\rangle} = (\hat{M} - i\frac{\hat{\Gamma}}{2}) \binom{|D^0\rangle}{|\bar{D}^0\rangle}$$

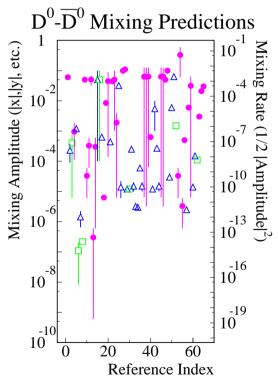
♦ Solution:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh\left(\frac{y + ix}{2}\Gamma t\right)|D^{0}\rangle + \frac{p}{q}\sinh\left(\frac{y + ix}{2}\Gamma t\right)|\bar{D^{0}}\rangle\right]$$

$$|\bar{D}^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\frac{p}{q} \sinh(\frac{y + ix}{2} \Gamma t) |D^{0}\rangle + \cosh(\frac{y + ix}{2} \Gamma t) |\bar{D}^{0}\rangle\right]$$

D-mixing in Standard Model .


- Mixing in the SM governed by box diagrams
- Mixing in D^0 system is rare process:


D mixing	B mixing
intermediate down-type	intermediate up-type
quarks	quarks
SM: b quark contribution	SM: t quark contribution
is negligible due to V_{ub}	is dominant
$\Delta M pprox m_s^2 - m_d^2$	$\Delta M pprox m_t^2$
(small)	(sizable)
sensitive to long	described by local
distance QCD	Lagrangian

(from P. Ball's talk at Moriond EW 2007)

- ◆ D prefers to decay rather than mix
 - > off-shell intermediate states very relevant
- Long distance effects difficult to predict
- ***** Largest predictions: $|x|, |y| \sim \mathcal{O}(10^{-2})$

H.Nelson, hep-ex/9909

Experimental method ___

• Since D mixing is small ($|x|, |y| \ll 1$) expand to the lowest order in x, y

$$|D^{0}(t)\rangle = e^{-(\Gamma/2+im)t}[|D^{0}\rangle + \frac{p}{q}(\frac{y+ix}{2}\Gamma t)|\bar{D^{0}}\rangle]$$

◆ Determine the rates of wrong-sign decays, compare to right-sign

Right-Sign (RS)Wrong-Sign (WS)
$$D^0 \rightarrow |f\rangle$$
 $D^0 \rightarrow \bar{D^0} \rightarrow |\bar{f}\rangle$ $(D^0 \rightarrow K^-\pi^+)$ $(D^0 \rightarrow K^+\pi^-)$

♦ WS decay rate

$$\frac{dN_{WS}}{dt} \propto |\langle \bar{f}|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t}|\langle \bar{f}|\mathcal{H}|D^0\rangle + \frac{p}{q}(\frac{y+ix}{2}\Gamma t)\langle \bar{f}|\mathcal{H}|\bar{D^0}\rangle|^2$$

- Measurement:
 - b tag the flavour at production

 - > measure proper decay time distribution

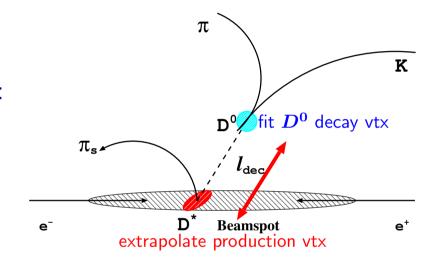
Some measurement strategies

$$\frac{dN_{WS}}{dt} \propto e^{-\Gamma t} |\langle \bar{f} | \mathcal{H} | D^0 \rangle + \frac{p}{q} (\frac{y + ix}{2} \Gamma t) \langle \bar{f} | \mathcal{H} | \bar{D}^0 \rangle|^2$$

lacktriangle Wrong-sign semileptonic decays $(D^0 \to K^+ \ell^- \nu)$ WS only via mixing: $\langle \bar{f} | \mathcal{H} | D^0 \rangle = 0$ measures time integrated mixing rate

$$R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{RS}}$$

- Wrong-sign hadronic decays $(D^0 \to K^+\pi^-)$ WS via doubly Cabibbo suppressed (DCS) decays or mixing interference between DCS and mixing (strong phase δ) measures $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta - x \sin \delta$
- lacktriangle Decays to CP eigenstates ($D^0 o K^+K^-, \pi^+\pi^-$) $\langle \bar{f}|\mathcal{H}|D^0 \rangle = \langle \bar{f}|\mathcal{H}|\bar{D^0} \rangle$ measures y
- ♦ Dalitz plot time dependent analysis $(D^0 \to K^0 \pi^+ \pi^-)$ measures x and y


Measurement technics

- $\bullet D^{*+} \to \pi^+ D^0$
 - \triangleright tag the flavor of $D^0/\bar{D^0}$ at production
 - ▷ background suppression

• D^0 proper decay time t measurement:

$$t = \frac{l_{dec}}{c\beta\gamma} \; , \qquad \beta\gamma = \frac{p_{D^0}}{M_{D^0}}$$

- Measurements performed at $\Upsilon(4s)$
 - \triangleright to reject D^{*+} from B decays:

$$p_{D^{*+}}^{CMS} > 2.5 \; GeV/c$$

Measurements to be presented in this talk

- $D^0 \to K^+ e^- \nu$ (published)
- $D^0 \to K^+\pi^-$ (published)
- $lacktriangledow D^0 o K_s^0 \ \pi^+\pi^-$ Dalitz (preliminary)
- $lacktriangledown D^0 o K^+K^-, \ \pi^+\pi^-$ (preliminary)

PRD (RC) 72, 071101 (2005)

WS charge combination only via mixing

$$D^{*+} \rightarrow \pi^+ D^0$$

$$D^{*+} \to \pi^+ D^0$$

ing
$$D^{*+}
ightarrow \pi^+ D^0$$
 $D^0
ightarrow ar{D}^0
ightarrow K^- e^+
u$ RS $D^{*+}
ightarrow \pi^+ D^0$ $D^0
ightarrow ar{D}^0
ightarrow K^+ e^-
u$ WS

$$\bar{D^0} \rightarrow K^+e^-\nu$$
 WS

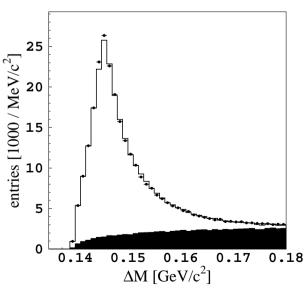
Mixing parameter R_M measured directly

$$R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{RS}} \frac{\epsilon_{RS}}{\epsilon_{WS}} \approx \frac{N_{WS}}{N_{RS}}$$

- Observable: $\Delta M = M(\pi K e \nu) M(K e \nu)$
- Neutrino reconstruction:
 - > Four-momentum conservation:

$$P_{\nu} = P_{CMS} - P_{\pi Ke} - P_{rest}$$

▶ Kinematic constrains:

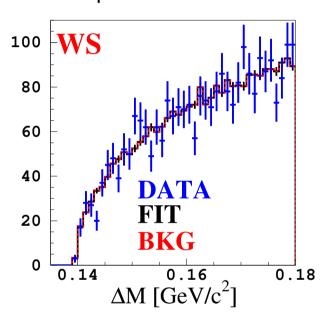

$$m_{D^{*+}}^2$$
, $|P_{\nu}|^2 = 0$

(resolution impr.: 55 MeV → 7 MeV)

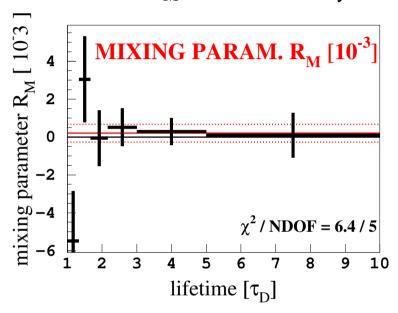
- ΔM shape:

 - background from data (evt. mixing)

RS events



${m L} \, D^0 o K^+ e^- u \,$ (253 fb $^{-1}$) ${m L}$

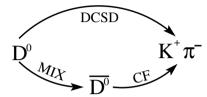


♦ Fit of WS data performed in bins of proper decay time to increase sensitivity (since RS and WS signals differ in proper decay time distributions)

example of a fit in one bin

measured R_M in bins of decay time

$$R_M < 1.2 \times 10^{-3} \quad @ 95\% \ C.L.$$



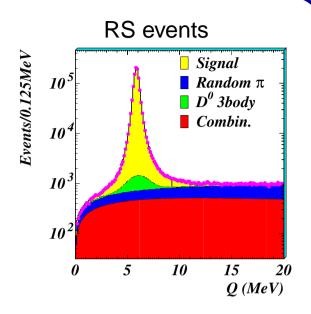
$$D^0 o K^+ \pi^-$$
 (400 fb $^{-1}$) ___

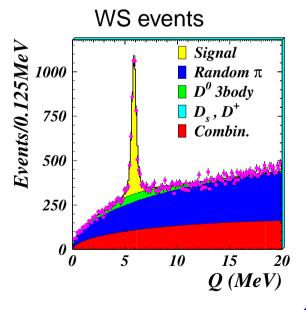
PRL 96, 151801 (2006)

WS final state: via DCS decay or mixing

 Proper decay time distribution of WS events (assuming negligible CPV)

$$\frac{dN}{dt} \propto \left[\frac{R_D}{t} + y' \sqrt{R_D} (\Gamma t) + \frac{x'^2 + y'^2}{4} (\Gamma t)^2 \right] e^{-\Gamma t}$$

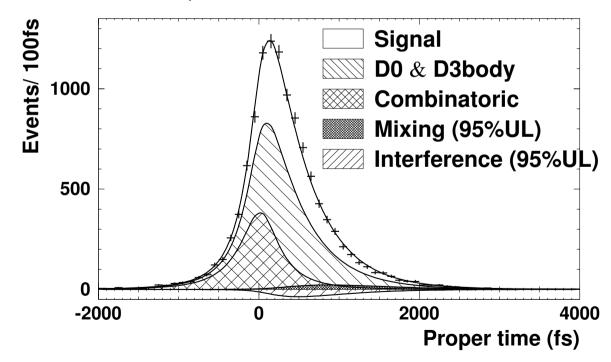

 R_D ratio of DCS/CF decay rates $x' = x \cos \delta + y \sin \delta$ $y' = y \cos \delta - x \sin \delta$


 δ strong phase between DCS and CF

Observables:

$$M = M(K\pi)$$

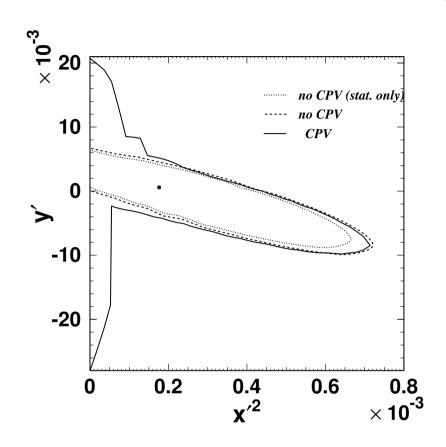
$$Q = M(K\pi\pi_s) - M(K\pi) - m_{\pi}$$



$m{L} D^0 o K^+ \pi^-$ (400 fb $^{-1}$) $m{L}$

- ◆ 2D M-Q fit first to obtain:
 - $\triangleright R_{WS} = \frac{N_{WS}}{N_{RS}} = (0.375 \pm 0.008)\%$
 - \triangleright signal and background fractions (M, Q and σ_t dependent)
 - → used in the proper decay time fit of WS events
- Proper decay time fit of WS events:
 - \triangleright unbinned max. likelihood fit in 4σ (M,Q) window
 - > resolution function parameters determined from RS data

Results


Assuming CP conservation

$$R_D = (0.364 \pm 0.017)\%$$

$$x'^2 = (0.18^{+0.21}_{-0.23}) \times 10^{-3}$$

$$y' = (0.6^{+4.0}_{-3.9}) \times 10^{-3}$$

◆ CP asymmetries consistent with 0 → no evidence for CPV

$$R_M < 0.40 \times 10^{-3} \quad @ 95\% \ C.L.$$

_ $D^0 o K_s^0 \; \pi^+ \pi^-$ Dalitz (540 fb $^{-1}$) _

hep-ex/0704.1000

- * 3-body decay modes: amplitudes $A(D^0 \to f)$ and $\bar{A}(\bar{D^0} \to \bar{f})$ depend on Dalitz variables.
- Dalitz space dependent matrix element is for negligible CPV

$$M(m_{-}^{2}, m_{+}^{2}, t) = A(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + A(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

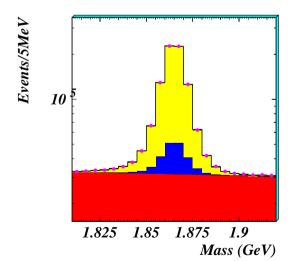
where m_{\pm} is defined with the D^* tag

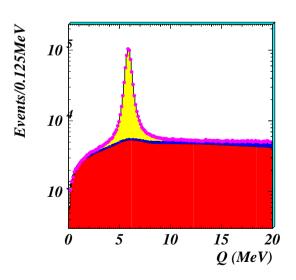
$$m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \bar{D}^0 \pi^- \end{cases}$$

and time dependent functions with

$$e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$$

- $lacktriangleq |M(m_-^2,m_+^2,t)|^2$ thus includes x and y
- ♦ The only measurement sensitive directly to x

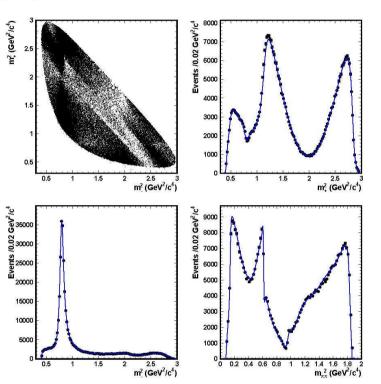

_ $D^0 o K_s^0 \; \pi^+ \pi^-$ Dalitz (540 fb $^{-1}$) _____



Event Selection

- Reconstruction
 - $\triangleright K_s^0$ reconstruction and π selection
 - $\triangleright D^0$ decay vertex from π^+,π^-
 - $\triangleright D^0$ mass kinematic constraint for $m(K_s, \pi^+, \pi^-)$
 - $p^*(D^{*+}) > 2.5 \text{ GeV/c}$
- Signal yields and purity

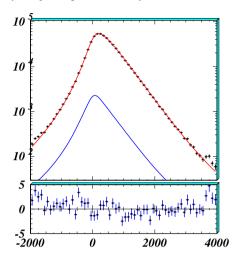
signal	purity	
534000	95%	



$m{L} D^0 o K_s^0 \ \pi^+ \pi^- \ extbf{Dalitz} \ extbf{(540 fb}^{-1)} \ m{L}$

Dalitz fit

		_	
Resonance	Amplitude	Phase (deg)	Fit fraction
$K^*(892)^-$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002
$K^*(892)^+$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615


- ◆ Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- Results with this refined model consistent with the analysis performed for the Belle ϕ_3 measurement, PRD73, 112009 (2006)
- lacktriangle To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

$m{_}\ D^0 ightarrow K_s^0 \ \pi^+\pi^-$ Dalitz (540 fb $^{-1}$) $m{_}$

Time fit (in projection)

Results (preliminary)

$$x = 0.80 \pm 0.29 \pm 0.17$$
 %

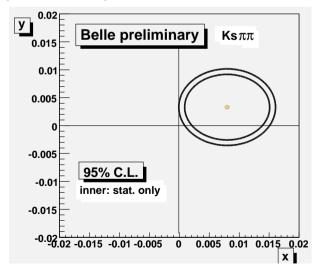
$$y = 0.33 \pm 0.24 \pm 0.15$$
 %

most stringent limits on x up to now Cleo, PRD 72, 012001 (2005):

$$x = 1.8 \pm 3.4 \pm 0.6\%$$

 $y = -1.4 \pm 2.5 \pm 0.9\%$

Systematics


Largest contributions ($\times 10^{-4}$)

$$^{+14.6}_{-13.6}$$
 $^{+7.8}_{-8.8}$ Model dependence

Time fit

Total (
$$\times 10^{-4}$$
)

$$+16.9 +10.2 \\ -15.2 -14.6$$

$_D^0 o K^+ K^-, \; \pi^+ \pi^- \;$ (540 fb $^{-1}$) $_$

hep-ex/0704036

- Measurement of lifetime difference between $D^0 \to K^-\pi^+$ and $K^+K^-, \pi^+\pi^-$

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

 \triangleright in CP conservation limit: $y_{CP} = y = \Delta\Gamma/\Gamma$

$$y_{CP} = y = \Delta \Gamma / \Gamma$$

• If CP not conserved, difference in lifetimes of $D^0/\bar{D^0} \to K^+K^-, \pi^+\pi^-$

$$ho$$
 CP violating parameter: $A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to KK) - \hat{\Gamma}(\bar{D}^0 \to KK)}{\hat{\Gamma}(D^0 \to KK) + \hat{\Gamma}(\bar{D}^0 \to KK)}$

Existing measurements:

E.M.Aitala et al., PRL 83, 32 (1999); E791

J.M.Link et al., PLB 485, 62 (2000); Focus

S.E.Csorna et al., PRD 65, 092001 (2002); Cleo

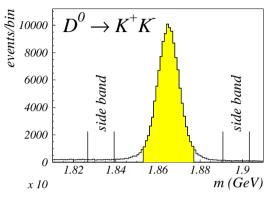
K.Abe et al., hep-ex/0308034 (2003); Belle (preprint)

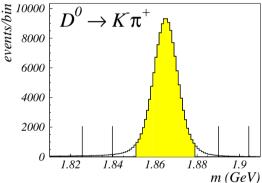
B.Aubert et al., PRL 91, 121801 (2003); (BaBar)

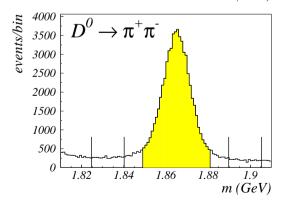
average

$$y_{CP} = (1.09 \pm 0.46)\%$$

$D^0 o K^+ K^-, \; \pi^+ \pi^-$ (540 fb⁻¹) ___


Event Selection

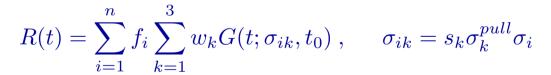

- Reconstruction
 - $\triangleright K$ and π selection
 - > vertex fits
 - $p^*(D^{*+}) > 2.5 \text{ GeV/c}$
- Analysis cuts
 - $\triangleright \Delta m, \Delta q, \sigma_t$
 - > optimized on tuned Monte Carlo
 - \triangleright figure of merit: statistical error on y_{CP}

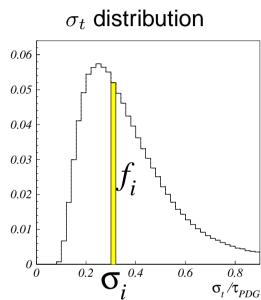

σ_t/ au_{PDG}	$\Delta m/\sigma_m$	Δq (MeV)
0.90	2.30	0.80

- lacktriangle Background estimated from sidebands in m
 - side band position optimized
- ♦ Signal yields (purities) entering the measurement

channel	KK	$K\pi$	$\pi\pi$
signal	110K	1.2M	50K
purity	98%	99%	92%

$-D^0 o K^+K^-, \; \pi^+\pi^-$ (540 fb⁻¹) -



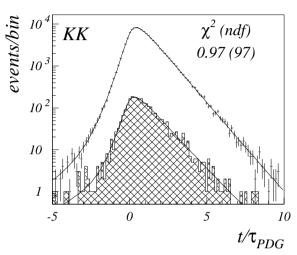

Lifetime fit

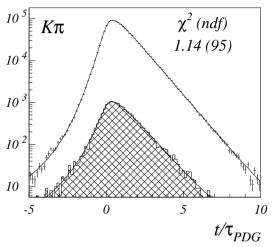
Parameterization of proper decay time distribution

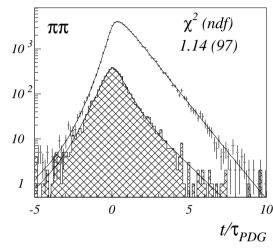
$$\frac{dN}{dt} = \frac{N}{\tau}e^{-t/\tau} * R(t) + B(t)$$

- Resolution function
 - \triangleright constructed from normalized distribution of event proper time uncertainty σ_t
 - \triangleright ideally, σ_t of event represents uncertainty with Gaussian p.d.f

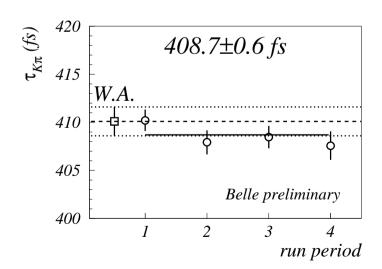
• R(t) studied in details with $D^0 \to K\pi$ and special MC samples - also in changing running conditions (two different SVD, small misalignments)

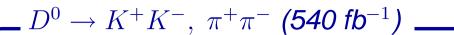



_ $D^0 o K^+ K^-, \; \pi^+ \pi^-$ (540 fb $^{-1}$) _

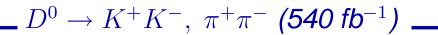


Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit


quality of fit: $\chi^2 = 1.084$ (289)



 $D^0 \to K\pi$ lifetime very stable in slightly different running periods


Cross-checks

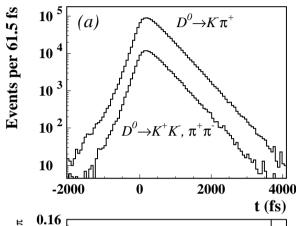
- ***** MC: $y_{CP}(\text{out})$ $y_{CP}(\text{input}) < 0.04\%$ for large range of input values
- y_{CP} independent of resolution function parameterization: $R(t) = \text{single Gaussian: } \Delta \tau = 3.5\%, \, \Delta y_{CP} = 0.01\%$
- ***** Exchanging data side band with signal window background from tuned MC: $\Delta y_{CP} = -0.04\%$

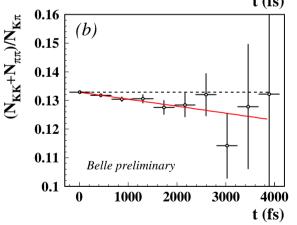
Systematics

source	y_{CP}	A_{Γ}
acceptance	0.12%	0.07%
equal t_0 assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw. background and side bands	0.09%	0.06%
difference btw. final states in opening angle	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
total	0.25%	0.15%

Results (preliminary)

y _{CP} (%)		A_{Γ} (%)	
KK	$1.25 \pm 0.39 \pm 0.28$	$0.15 {\pm} 0.34 {\pm} 0.16$	
$\pi\pi$	$1.44\pm0.57\pm0.42$	$-0.28\pm0.52\pm0.30$	
$KK + \pi\pi$	$1.31 \pm 0.32 \pm 0.25$	$0.01\pm0.30\pm0.15$	


Belle preliminary (540 fb⁻¹)

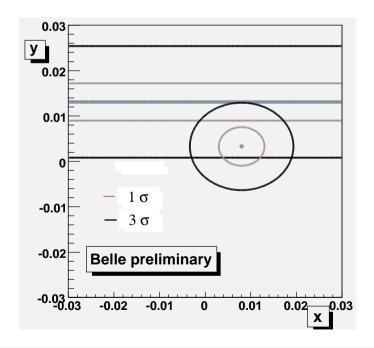

$$y_{CP} = 1.31 \pm 0.32 \pm 0.25 \%$$

 $>3\sigma$ above zero first evidence for $D^0-\bar{D^0}$ mixing

$$A_{\Gamma} = 0.01 \pm 0.30 \pm 0.15 \%$$

no evidence for CP violation

Conclusions

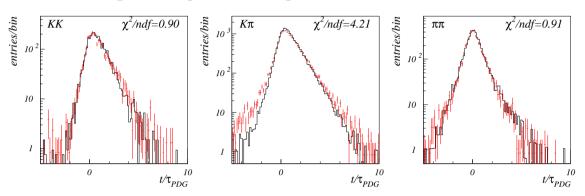


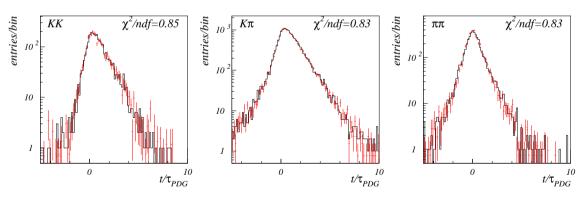
- lacktriangle Several measurements of D^0 mixing parameters presented
- ♦ Best sensitivity on x from t-dependent Dalitz analysis:

$$x = 0.80 \pm 0.29 \pm 0.17 \%$$
 (2.4 σ)

♦ First evidence of non-zero y_{CP}:

$$y_{CP} = 1.31 \pm 0.32 \pm 0.25 \% (3.2\sigma)$$




Background

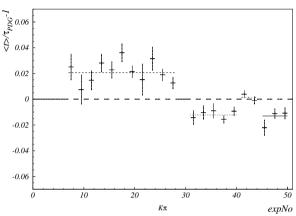
♦ A comparison of timing distributions

MC signal region background - MC side bands

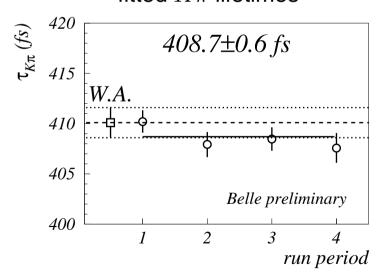
DATA side bands - MC side bands

◆ Difference to result, if using background from tuned MC

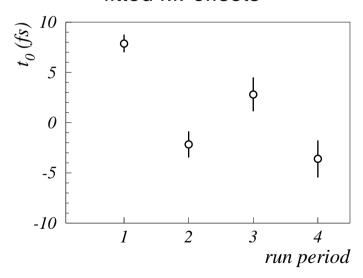
$$KK = \pi\pi = KK + \pi\pi$$
 $\Delta y_{CP} = -0.10\% = +0.09\% = -0.04\%$



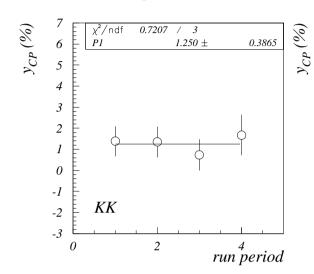
Run periods

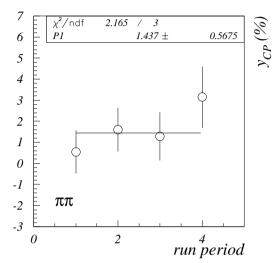

$$P(t) = \frac{1}{\tau}e^{-t/\tau} * R(t) \qquad \Rightarrow \qquad \langle t \rangle = \tau + t_0$$

- lacktriangledown By inspecting < t > of $K\pi$, four different running conditions clearly visible
- Attributed to small SVD misalignments

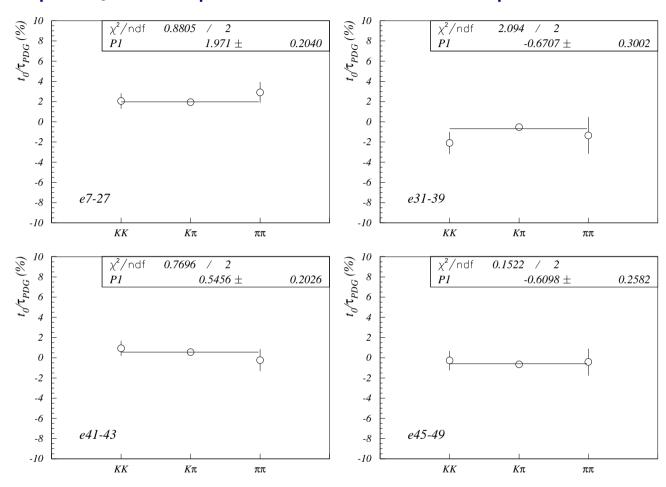

"mean" of $K\pi$ timing distr.

fitted $K\pi$ lifetimes


fitted r.f. offsets

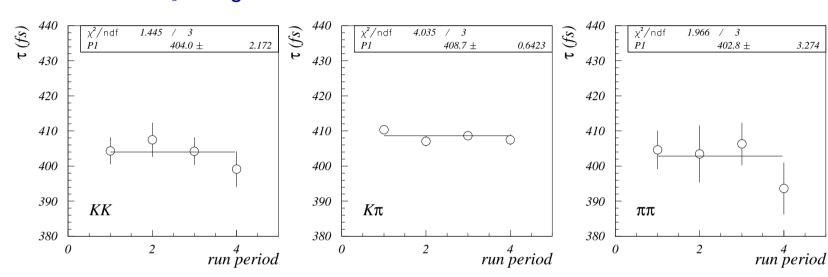


Measured y_{CP} versus run periods



 $\Rightarrow y_{CP}$ consistent between run periods

Test for equal t_0 assumption for each of the run periods


 $\Rightarrow t_0$ is final state independent

Fitted lifetimes of KK, $K\pi$, $\pi\pi$

lacktriangle Results for t_0 being free for each of the final states

⇒ lifetimes consistent between different run periods

	KK	$K\pi$	$\pi\pi$
	404.0±2.2	408.7 ± 0.6	402.8±3.3
χ^2/ndf	0.48	1.35	0.66

 \Rightarrow lifetimes of KK and $\pi\pi$ consistent (and smaller than $K\pi$)

$$y_{CP} = 1.25 \pm 0.48 \ \%$$
 (central value similar, error 50% larger)

Statistical method

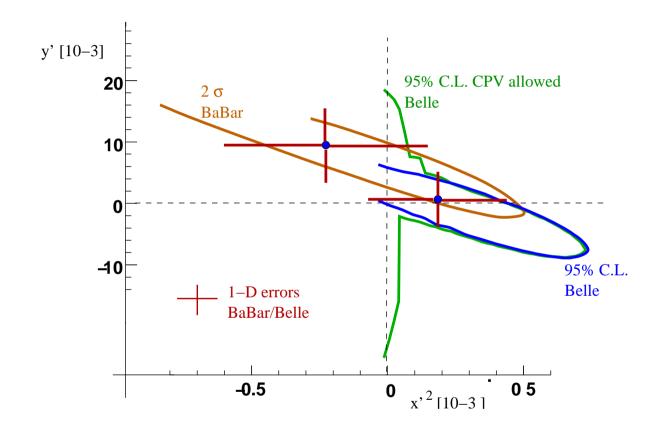
- y_{CP} and A_{Γ} can be determined from mean of the timing distributions (e.g. without fitting the data), and the error from r.m.s
- Assumptions:
 - timing distribution is a convolution of exponential with some resolution function + some background
 - > resolution function offsets of final states are the same and small

$$P(t) = p\frac{1}{\tau}e^{-t/\tau} * R_s(t) + (1-p)B(t) \quad \Rightarrow \quad < t > = p(\tau + t_0) + (1-p) < t >_b$$
$$\tau + t_0 = \frac{< t > -(1-p) < t >_b}{p} = < t >_s$$

lacktriangle In lifetime difference t_0 cancels, thus if $t_0 \ll au$

$$y_{CP} = \frac{\langle t \rangle_{K\pi} - \langle t \rangle_{KK}}{\langle t \rangle_{KK}}$$

Result with this method


$$y_{CP} = 1.35 \pm 0.33_{stat} \%$$

Backup slide: Belle - BaBar ___

Comparison of Belle and BaBar measurements in $D^0 \to K^+\pi^-$

