Search for new particles at LEP2

M.C. Espirito Santo / LIP-Lisboa

DESY, 8-9 April 2003
12 years of excellent e+e- data

E_{cm} 91-209 GeV, \sim1000 pb$^{-1}$/Exp

<table>
<thead>
<tr>
<th>Year</th>
<th>Lum/Exp (pb$^{-1}$)</th>
<th>E_{cm} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>89-95</td>
<td>175</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130-136</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>161-172</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>189</td>
</tr>
<tr>
<td>1997</td>
<td>55</td>
<td>192-202</td>
</tr>
<tr>
<td>1998</td>
<td>160</td>
<td>204-209</td>
</tr>
<tr>
<td>1999</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

LEP2: E_{cm} 161-209 GeV
Lum \sim2700 pb$^{-1}$
Last data in 2000, analyses being finalised now...

LEP Working Groups:

- Fruitful collaboration between experiments:
- Combined results
LEP Physics

- SM tests to ~0.1%
- m_{top} indirect estimation
- m_{Higgs} indirect limits

$N_\nu = 2.9841 \pm 0.0088$

Summer 2002

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pull $\Delta_{\text{meas}} - \Delta_{\text{fit}}/\sigma_{\text{meas}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta m^{(S)}_{\text{had}}(m_Z)$</td>
<td>0.02761 ± 0.00036</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
</tr>
<tr>
<td>$\sigma_{\text{had}}^{(S)}$ [nb]</td>
<td>41.540 ± 0.037</td>
</tr>
<tr>
<td>R_τ</td>
<td>20.767 ± 0.025</td>
</tr>
<tr>
<td>A_{fb}</td>
<td>0.01714 ± 0.00095</td>
</tr>
<tr>
<td>$A_{l}(P_{\ell})$</td>
<td>0.1465 ± 0.0032</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21644 ± 0.00065</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1718 ± 0.0031</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,b}$</td>
<td>0.0995 ± 0.0017</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,c}$</td>
<td>0.0713 ± 0.0036</td>
</tr>
<tr>
<td>A_{ℓ}</td>
<td>0.922 ± 0.020</td>
</tr>
<tr>
<td>A_{ℓ}</td>
<td>0.670 ± 0.026</td>
</tr>
<tr>
<td>$A_{\ell}(\text{SLD})$</td>
<td>0.1513 ± 0.0021</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\ell}(Q_{\ell})$</td>
<td>0.2324 ± 0.0012</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.449 ± 0.034</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.136 ± 0.069</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>174.3 ± 5.1</td>
</tr>
<tr>
<td>$\sin^2 \theta_W(vN)$</td>
<td>0.2277 ± 0.0016</td>
</tr>
<tr>
<td>$Q_{\ell}(\text{Cs})$</td>
<td>-72.18 ± 0.46</td>
</tr>
</tbody>
</table>
LEP Physics – Indirect limits

Precision measurements at LEP give a hint on what is (or not!) beyond...

Indirect limits on the Higgs mass from fits to EW data (LEP + SLD)

- $M_H > 114.4$ GeV/c2 @ 95% CL

A light Higgs is favoured... and partly excluded by direct searches

Indirect limits on new physics scale Λ from $e^+e^- \rightarrow l^+l^-$ cross-sections

- Dependence on type of coupling

$\Lambda = $ New physics scale in the Contact Interactions effective Lagrangian

Exclusion depends on type of coupling
Searches at LEP – why?

SM: still very successful, but...

• EW symmetry breaking
 => we need the Higgs

• Fine tuning / Mass hierarchy problem
 $M_{Planck} >> M_{EW}, M_H \sim M_{EW}$ but $\delta M^2_H \sim M^2_{Planck}$

• Flavour pattern => 3 families?

• Many free parameters
 • Quantum numbers of particles?
 • Mass values?

• Unification?
• Gravity?

Λ should be:
• Large enough to explain decoupling of new physics
• Close enough to EW scale to address hierarchy problem

Around the corner?
γ, W^±, Z, H

Extended fermion sector

• A fourth family?
• Exotic?
• Composite?

SUSY

{\tilde{\chi}, \tilde{q}, \tilde{\nu}, \tilde{\ell}, h, A, H, H^\pm}

Technicolor
Extra dimensions

Searches at LEP – what?

• SUSY
 - SUGRA
 - GMSB
 - AMSB (RPV)
 - Technicolor
 - Extra dimensions

LQ
L
q^*_L
\nu^*_L
\ell^*_L

\gamma, W^\pm, Z
H
Searches at LEP – how?

Clean e^+e^- environment => excellent conditions for new physics searches

- Increasing E_{cm} → Threshold channels
- Luminosity → Sensitivity
- Phase-space and cross-section…?

Many and exhaustive searches

- Direct / indirect
- New particles / new interactions

... Trying to look everywhere!

Model independent (topologies)

Systematic exploration of model(s)

Some “golden” topologies:
- Acoplanar jets and leptons, 4 jets, photons only
Search at LEP – how?

Clean e+e- environment... Still some background!
- Well understood (ISR, ...)
- well modeled by MC simulation

- “γγ”: affects low visible energy channels
- 4-fermions: sometimes irreducible

Radiative return to the Z

Open triggers => wide coverage of channels
Sensitivity ~ fraction of pb
Mass reach ~ $\sqrt{s}/2$
Outline

Non-SUSY
• Motivation
• 4^{th} family leptons
• Excited/exotic leptons

SUSY
• Motivation
• Exotic – GMSB, AMSB
• SUGRA
• CMSSM
• (RPV)

No signal in any of the channels...

... Many searches not covered:
All Higgs (many extended/exotic scenarios), Technicolor, FCNC, Extra-dims....

Thank you!
To the LEP accelerator team and many many people in the 4 LEP collaborations!!
Complicating the fermionic sector...

- Fermion flavour pattern and Interactions group not justified in the SM
 - Additional families?
 - Fermions with different SU(2)x(U1) quantum numbers?
 - Additional bosons?

 ... May arise in gauge unification theories or extended EW models

- Are we at the fundamental level?
 - Excited states
 - Particles with L and B

 => Composite models

Powerful limits exist: LEP1 (Z total and invisible width, direct searches)
 - Low energy $\mu \rightarrow e\gamma$, g-2, ...
 - ...
4th family leptons

Observable production cross-sections

Decay through mixing with light lepton

$L^0 L^0 \rightarrow W W l l$

Mass limits (GeV/c\(^2\))

<table>
<thead>
<tr>
<th></th>
<th>$L^0 \rightarrow eW$</th>
<th>$L^0 \rightarrow \mu W$</th>
<th>$L^0 \rightarrow \tau W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirac</td>
<td>101.3</td>
<td>101.5</td>
<td>90.3</td>
</tr>
<tr>
<td>Majorana</td>
<td>89.5</td>
<td>90.7</td>
<td>80.5</td>
</tr>
</tbody>
</table>

... Considerably extending LEP1 limits
4th family leptons L± search

L± → W W ν ν

Mass limits (GeV/c²) L3

<table>
<thead>
<tr>
<th>L±→νW</th>
<th>L±→L0W (Δm>15)</th>
<th>L± stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.8</td>
<td>101.5</td>
<td>90.3</td>
</tr>
</tbody>
</table>

Comparable limits for exotic fermions (Vector, Mirror)

Long lived

Chain decays ...

Comparative limits for exotic fermions (Vector, Mirror)
Excited leptons

Substructure in the fermionic sector => Excited states

\[\ell^*, \nu^* \rightleftharpoons \ell, \nu, \gamma, Z, W \]

Effective model

\[\mathcal{L}_{\text{eff}} = \frac{1}{2\Lambda} \cdot \bar{\ell}^* \cdot \sigma^{\mu\nu} \left[g \cdot f \frac{\tau}{2} W_{\mu\nu} + g' \cdot f' \frac{Y}{2} B_{\mu\nu} \right] \ell^* + \text{h.c.} \]

e.g. Boudjema, Djouadi, Kneur Z.Phys.C57 (1993)
Hagiwara, Zeppenfeld, Komamiya Z.Phys.C29 (1985)

\(\Lambda \) compositeness scale
\(f, f' \) weight factors

We assume \(|f| = |f'| \)

Mass and coupling of the excited lepton:

\[\frac{f}{\Lambda} = \sqrt{2} \cdot \lambda / m_{\ell^*} \]
Excited leptons

Single production

\[e^+ \rightarrow Z, \gamma, l^* \]
\[e^- \rightarrow l, e^* \]
\[e \rightarrow e, \gamma \]

1/Λ suppression but sensitive up to E_{cm}

Pair production

\[e^+ \rightarrow Z, \gamma, l^* \]
\[e^- \rightarrow l, e^* \]
\[e \rightarrow e, \gamma \]

Decay:

\[\ell^*, \nu^* \rightarrow \ell, \nu, Z, W \]

Indirect mode

\[e^+ \rightarrow e^*, \gamma \]
\[e^- \rightarrow e^- \]

All BR matter... Many topologies

\[\ell\ell, \gamma, jj\ell, jj, ll, jj\ell\ell, \ldots \]

Graphs:

- Charged L: $f=f$
 - $L^* \rightarrow L\gamma$
 - $L^* \rightarrow LW$
 - $L^* \rightarrow LZ$

- Charged L: $f=-f$

BR vs. M_{L^*} (GeV/c2)
Excited leptons

Pair production

Single production: direct + indirect

Excited electron ($f = f'$)

Mass limits (GeV/c2)

<table>
<thead>
<tr>
<th></th>
<th>e^*</th>
<th>μ^*</th>
<th>τ^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = f'$</td>
<td>103.1</td>
<td>103.2</td>
<td>102.7</td>
</tr>
<tr>
<td>$f = -f'$</td>
<td>102.0</td>
<td>102.0</td>
<td>102.0</td>
</tr>
</tbody>
</table>
Outline

Non-SUSY
• Motivation
• 4th family leptons
• Excited/exotic leptons

SUSY
• Motivation
• Exotic – GMSB, AMSB
• SUGRA
• CMSSM
• (RpV)

No signal in any of the channels...

... Many searches not covered:
All Higgs (many extended/exotic scenarios), Technicolor, FCNC, Extra-dims....
SUSY – why, what, how?

Why ?
Hierarchy problem Grand unification Connection to gravity
Light Higgs Possible dark matter candidate

What ?

Sparticles = SUSY partners of SM particles

\((s\pm 1/2)\)
(MSSM)

fermions
\{ e \mu \tau \\
\nu_e \nu_\mu \nu_\tau \\
u c t \\
d s b \}

leptons
neutrinos

quarks

\(W^\pm, H^\pm, \gamma, Z^0, h^0, H^0, A^0\)

g_i

bosons

\(\chi^0, \chi^\pm\)

sleptons
neutralinos

sneutrinos

\(\tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau\)

squarks

\(\tilde{u}, \tilde{c}, \tilde{t}\)

\(\tilde{d}, \tilde{s}, \tilde{b}\)

bosons

\(\tilde{\chi}^0, \tilde{\chi}^\pm\)

charginos
neutralinos

\(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0\)

fermions

Many parameters...

- \(M_1, M_2, M_3\) Gaugino masses
- \(m_f\) Sfermion masses
- \(\tan \beta, \mu, m_A\) Higgs(ino) mass/mixing
- \(A_\tau, A_b, A_t\)

SM + 105
(+45 RPV)
SUSY – how?

How?

\[R_p = (-1)^{3B-L+2S} \]

SUSY is a broken symmetry => SUSY Mechanism?

R-parity conservation:

Pair production of Sparticles

\[\tilde{p} \rightarrow p \rightarrow e^+ e^- \]

Decay to stable (neutral) LSP

\[\tilde{p} \rightarrow p \rightarrow \text{LSP} \]

\[\Delta M = m_{\tilde{p}} - m_{\text{LSP}} \]

\[\Delta M = 0 \]

Low \(\Delta M \) “\(\gamma\gamma \)” background (high \(\sigma \))

High \(\Delta M \) 4-fermion (irreducible)

E\text{beam}_{\text{low}} \Delta M \]

Decay chains to NLSP: several \(\Delta M \) involved
SUSY – how?

Mechanism of SUSY breaking has deep implications on phenomenology

- **Hidden SUSY**
 - Gravity mediated
 - LSP: frequently $\tilde{\chi}_1^0$

- **SUGRA**
 - Gravity mediated
 - LSP: $\tilde{\chi}_1^0$

- **GMSB**
 - Gauge mediated
 - LSP: \tilde{G} ($m \ll \text{GeV}$)

- **Other**
 - e.g. **AMSB**
 - LSP: $\tilde{\chi}_1^0$, $\tilde{\nu}$, \tilde{G}

Signatures & dominant channels depend on specific scenario considered

Increased predictability, but still large number of free parameters
GMSB: Hiden SUSY \rightarrow \text{Gauge forces} \rightarrow \text{Visible sector}

\[10^3 < \sqrt{F} < 10^{10} \text{ GeV} \Rightarrow \text{Light } \tilde{G} \text{ (LSP) (order 1 KeV/c}^2, \text{ or less)} \]

- No severe FCNC (Gauge forces flavour blind)
- No dark matter candidate

\[\tilde{G} \text{ couples weakly with all particles } \Rightarrow \text{only NLSP decays directly into } \tilde{G} \]

Gravitino mass and Nature of NLSP determine phenomenology

\[\tau_{\text{NLSP}} \propto \frac{m_G^2}{m_{\text{NLSP}}^5} \]

\[\Rightarrow \text{Lifetime signature} \]

\[\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \quad \text{or} \quad \ell \rightarrow \ell \tilde{G} \]

\[\Rightarrow \text{Additional photons/leptons in the final state} \]
GMSB – lifetime signature

\[e^+ e^- \rightarrow \tilde{\ell}^+ \tilde{\ell}^- \rightarrow \ell^- \tilde{G} \rightarrow \ell^+ \tilde{G} \]

\[m_{\tilde{G}} \leq \text{few eV/c}^2 \]

Large impact parameter

\[m_{\tilde{G}} \approx \text{eV/c}^2 - \text{0.1KeV/c}^2 \]

Acoplanar leptons

\[\beta_{\text{yc}} = 0.005m \]

\[\beta_{\text{yc}} = 0.20m \]

\[\beta_{\text{yc}} = 2.0m \]

ADLO Prelim \(\sqrt{s} = 189-209 \text{ GeV} \)

Kinked tracks

\[m_{\tilde{G}} \geq \text{few KeV/c}^2 \]

Stable charged particles
GMSB – Constraints on parameters

Few parameters to define the minimal model:

\(\sqrt{F} \): scale of SUSY breaking
\(M \): messengers mass scale
\(N \): number of messenger generations
\(\tan(\beta) \)
\(\text{sign}(\mu) \)
\(\Lambda \approx F/M \): effective SUSY breaking scale

![Graph showing the relationship between \(N \) and \(\Lambda \)](image)
AMSB:

- Rescaling anomalies in supergravity lagrangian => soft mass parameters in visible sector
- Additional non-anomaly contributions to avoid tachyonic sleptons
- Could solve SUSY FCNC problem

Rather characteristic phenomenology:

LSP: $\tilde{\chi}^0_1, \tilde{\nu}$ or $\tilde{\tau}$

Heavy squarks

Light Higgs

$M_1 : M_2 : M_3 \gg 2.8 : 1 : -8$

$\tilde{\chi}^0_1$ and $\tilde{\chi}^\pm_1$

Nearly mass degenerate and gaugino-like
Small ΔM Chargino search

$\Delta M = m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0}$

Low ΔM => large $\gamma\gamma$ background
- Low visible energy
- Low transverse momentum
- Very high cross-section

\Rightarrow ISR tag!

Signal cross-section still OK

$\bar{\nu}$ mass dependence!
AMSB – Constraints on parameters

Four parameters to define minimal model: $m_{3/2}$, $\tan\beta$, m_0, $\text{sign}(\mu)$

- LEP1 constraints (Z width)
- SM Higgs search
 $M_H > 114.4$ GeV/c2 @ 95% CL
- Invisible Higgs search
- Small ΔM chargino search
- Search for $\tilde{\chi}^\pm \rightarrow \tilde{\nu} \, l^\pm$

AMSB scan with Isajet 7.63

$1 < m_{3/2} < 50$ TeV/c2
$0 < m_0 < 1$ TeV/c2
$1.5 < \tan\beta < 45$

$m(\tilde{\chi}_1) > 68$ GeV/c2

$m(\tilde{\nu}) > 98$ GeV/c2
SUGRA: Hiden SUSY Gravity Visible sector

- LSP dark matter candidate
- Possible FCNC problems

Explored at LEP in an exhaustive way

Searches for
- Charginos - Sleptons
- Neutralinos - Squarks

1) Searches conducted in “model-independent” way:
 - Minimal set of assumptions
 - Interpretations in terms of involved masses/cross-sections

“Baseline” search + “difficult cases/corners”

2) Common interpretations in terms of model parameters
 => Manageable number of free parameters
 => Specific scenarios

⇒⇒ “LEP-CMSSM”
⇒⇒ mSUGRA
MSSM => SUGRA => CMSSM => mSUGRA

- Minimal particle/field content (MSSM)
- Soft SUSY breaking
- R parity conservation $R_p = (-1)^{3B-L+2S}$
- Gravity mediated SUSY breaking
- Neutralino LSP
- Assumptions on BR's
- Gaugino mass unification $m_{1/2}$
- Assumptions on sfermion masses
- Assumptions on trilinear couplings
- Sfermion mass unification m_0
- Scalar mass unification
- Unification of trilinear couplings A_0
- EW breaking scale

e.g. $\text{BR}(\tilde{p} \rightarrow p \text{LSP}) = 1$

$M_1 = \frac{5}{3} \tan^2 \theta_w M_2 \approx 0.5 M_2$

e.g. Heavy sfermions

e.g. No mixing

"LEP-CMSSM"

$m_0, m_{1/2}, A_\tau, A_b, A_t, \tan \beta, \mu$

mSUGRA

$m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(\mu)$
Chargino searches

Main direct SUSY detection channel in large region of parameter space

$\tilde{\chi}^\pm_1 \rightarrow \tilde{\chi}^0_1 W^* \rightarrow \tilde{\chi}^0_1 jj, \tilde{\chi}^0_1 \ell\nu$

- Leptonic BR enhanced if sleptons are light
- cascades $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \gamma$

=> Large cross-sections

Negative interference. Is there a light sneutrino?
Chargino searches
Exclusion nearly up to kinematic limit

Cross-section limits

If sleptons are light
• Cross-sections may be suppressed
• Undetectable final states may arise

M > 103.5 GeV
high ΔM, gaugino region
$m_{\tilde{\nu}} > 300$ GeV/c2

M > 92.4 GeV

ADLO Higgsino
$\tan\beta = 2$ $\mu = -200$ GeV
$\sqrt{s} > 206.5$ GeV
Slepton searches

Smuons
Almost model-independent

Selectrons
t-channel => cross-section very model-dependent

Staus
Mixing: Stau could be charged LSP
affects cross-section => decouple from Z

\[\tilde{\ell} \rightarrow \ell \tilde{\chi}^0_1 \]

=> 2 acoplanar leptons

BR:
\[\begin{align*}
&\text{BR} = 1 \\
&\text{BR @ } \mu=-200, \tan \beta=1.5
\end{align*} \]
If light enough to be observed, seriously affect production and decay of charginos and neutralinos
More constrained models: CMSSM

$m_0, m_{1/2}, \tan\beta, \mu, A_\tau, A_b, A_t$

... Combining negative results of different searches:

Charginos Higgs Sleptons Neutralinos Squarks

Exclusion in (M_2, μ) plane for different $\tan\beta$, m_0 values

Lower limits on smasses (M_{LSP})
LSP mass limit in CMSSM

(A) High m_0 Low $\tan\beta$ Cascades

(B) MSSM Higgs

(C) Low m_0

(D) Mixing 3rd family
(A) LSP mass limit in CMSSM – High m_0

Heavy sfermions \Rightarrow no effect on phenomenology

Chargino exclusion dominates

Cascades:

$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$ \Rightarrow Cover topologies with γ's in chargino/neutralino searches (low M_2 & μ)

$\tilde{\chi}_3^0 \tilde{\chi}_2^0, \tilde{\chi}_4^0 \tilde{\chi}_2^0$ \Rightarrow Allow to go slightly beyond chargino kinematic limit ($M_2<120$)

Neutralino cascades with photons

\[\tan^2 \beta = 1 \]
Low $\tan\beta$ covered by Higgs exclusions if included

0.54 < $\tan\beta$ < 2.36 \quad (M_{\text{top}} = 174.3 \text{ GeV/c}^2)

MSSM Higgs search in maximal M_{h_0} scenario:

$M_A \leq 1000 \text{ GeV/c}^2$, $A_t-\mu/\tan\beta = \sqrt{6} \text{ TeV/c}^2$

$A_t-\mu/\tan\beta \Rightarrow M_{h_0}$ maximal

M_{h_0} maximised by tuning mixing in the stop sector

Dependence on m_{top}

0.6 < $\tan\beta$ < 2.0 \quad (M_{\text{top}} = 179 \text{ GeV/c}^2)
Light Sleptons:

Effect on chargino cross-section

(OK down to $m_0 \sim 200$ GeV/c2)

\Rightarrow Increased neutralino cross-section!

Chargino invisible decays:

$\tilde{\chi}_1^\pm \rightarrow \tilde{\nu} \ell^\pm$ with $m(\tilde{\chi}_1^\pm) \approx m(\tilde{\nu})$

\Rightarrow Charginos cannot exclude

GUT scale unification:

$m_{\tilde{f}} \equiv m_{\tilde{f}}(\tan \beta, m_0, M_2)$

\tilde{e} search $\Rightarrow m_{\tilde{e}}$ limit $\Rightarrow m_{\tilde{\nu}}$ limit $\Rightarrow m_{\tilde{\chi}_1^\pm}$ limit $\Rightarrow m_{\text{LSP}}$ limit

Neutralinos can play a role in low cross-section (chargino or selectron) areas
LSP mass limit in CMSSM – Mixing

$\tilde{\tau}_R, \tilde{\tau}_L \xrightarrow{\text{mixing}} \tilde{\tau}_1, \tilde{\tau}_2$

3rd family L-R mixing can give light $\tilde{\tau}_1, \tilde{b}_1, \tilde{t}_1$

Mass splitting $\propto A_\tau - \mu \tan \beta$

$A_b - \mu \tan \beta$

$A_t - \mu / \tan \beta$

Large $\tan \beta$

More studied cases:
- No mixing
- $A=0$

then study variation with mixing

Example: $(\tan \beta = 35)$
Light squarks

direct squark search...
... down to low ΔM

Obtained limit (set by squarks and stau cascades) robust with mixing

Invisible higgs search can exclude some points but not for any mixing
Stau mixing

A conservative limit on m_{LSP} valid for any $\tilde{\tau}$ mixing

model with mixing only in the stau sector

\Rightarrow maximises (LSP, stau) degeneracy region

$M_{\text{LSP}} > 39 \text{ GeV/c}^2$
LSP mass limit – ADLO combinations

CMSSM

$\mu > 0$

$\mu < 0$

No stau mixing included

$M_{\text{LSP}} > 45 \text{ GeV/c}^2$

$mSUGRA$

$A_0=0, m_0<1 \text{ TeV/c}^2$
RpV

• Explicit RpV breaking trilinear superpotential terms:

\[\lambda_{ijk} L^i_L L^j_L \overline{E}^k_R + \lambda'_{ijk} L^i_L Q^j_L \overline{D}^k_R + \lambda''_{ijk} \overline{U}^i_R \overline{D}^j_R \overline{D}^k_R \]

- 9 couplings \((i \neq j)\)
- 27 couplings

• Sfermions can decay directly into fermions
• SUSY particles can be singly produced
• The LSP is no longer stable

• Only one \(\lambda\)-coupling non-negligible at a time
• Prompt decay of sparticles (\(L < 1\) cm)
Resonant and non-resonant sneutrino production

At production

\[e^+ e^- \rightarrow \tilde{\nu}_{\mu,\tau}, \lambda_{121}, \lambda_{131} \]

\[\tilde{e}^+, \tilde{\chi}_i^0, \tilde{\chi}_j^\pm, e^-, \nu, l^\pm \]

At decay

Direct...

\[\tilde{f} \rightarrow f f \]

\[\chi_1^0 \rightarrow f^* f f \]

Indirect

\[\chi_1^\pm (\tilde{f}) \rightarrow W(f) f f \]

Different channels and couplings => many possible final state topologies !!
Direct Decays

Limits on RpV couplings $\lambda, \lambda', \lambda''$

Indirect decays tend to dominate, when kinematically allowed
SUSY at LEP - Summary

... Many analyses, scenarios, results!

- Cross-section limits: ≈ model-independent
- Mass limits => Assumptions (BR, ΔM, m, ...)
- Exclusion of parameter space regions

More constrained scenarios:
Need to increase predictive power...
Still trying to cover most realistic scenarios

In general:

- Excluded ranges comparable in different scenarios
 » SUSY limits proved to be robust
 » Chargino: close to kinematic limit
 » LSP: ~ 40 GeV/c²
- General exclusions not easy to set

Sparticle mass limits (GeV/c²)

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass (GeV/c²)</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\chi}^\pm)</td>
<td>103.5</td>
<td>SUGRA, large m₀, ΔM>3</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>CMSSM</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>RpV “CMSSM”</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>AMSB</td>
</tr>
<tr>
<td>(\tilde{\chi}^0)</td>
<td>45</td>
<td>CMSSM</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>RpV “CMSSM”</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>GMSB</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>AMSB</td>
</tr>
<tr>
<td>(\tilde{\nu})</td>
<td>85</td>
<td>RpV</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>GMSB, slepton NSLP</td>
</tr>
<tr>
<td>(\tilde{b}, \tilde{t})</td>
<td>76</td>
<td>SUGRA, ΔM>7</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>RpV (LLE), ΔM>5</td>
</tr>
</tbody>
</table>

» SUSY limits proved to be robust
» Chargino: close to kinematic limit
» LSP: ~ 40 GeV/c²
» General exclusions not easy to set
Searches at LEP - Perspective

No signal in any of the channels...

Final results are currently being prepared

70% of Beyond the SM session ICHEP 2002 contributed papers

What matters now? What did Searches at LEP leave to us?

Many constraints
• Complete interpretations in the frame of models
• Complete model-independent results in case of new ideas

Important to keep LEP data accessible

Analysis experience
• Methods for sensitivity improvement
• Statistical treatment
• Generators

Important to keep LEP data accessible
Searches at LEP - Perspective

LEP did a great job for the last 12 years!
...Great opportunities for searches at next colliders

<table>
<thead>
<tr>
<th>Tevatron</th>
<th>LHC</th>
<th>Linear collider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron: the next step - the future is already here!</td>
<td>LHC: Acessing yet unexplored regions... First observations of SUSY?</td>
<td>LC: detailed map of SUSY</td>
</tr>
<tr>
<td>High precision measurement (masses, cross-section, couplings, mixings)</td>
<td></td>
<td>Extrapolation to GUT, Planck => origin of SUSY breaking</td>
</tr>
</tbody>
</table>

Most scenarios involve rich new physics at $E \sim 1$ TeV

In the next decade, we hope to find a key... ... At least the one leading us to the next puzzle!