H1 Status and Prospects, May 2004

57th Meeting of the DESY PRC, 27 May 2004

HERA-II Data Taking: Backgrounds

Steady improvement after last vacuum leak (November 2003) ... pumping takes time H1 able to run with recent high currents (\sim design) ... acceptable limits for trackers adjusted Still suffer from 'spikes' in backgrounds

Background conditions remain "harsh" and cause radiation damage ... FST now inoperational

HERA-II Data Taking: Luminosity

[ntegrated luminosity [pb⁻¹]

Big improvement on 2003!

 $>15~pb^{-1}$ taken with each lepton polarisation state Polarisation typically 30-40%

Small data acquisition deadtimes (H1 active) Significant HV inefficiencies due to backgrounds / spikes Only recently reached 2000 level of 85% HV-on efficiency

Recent H1 Papers

8 papers released since October 2003 PRC ...

- DESY-03-159 (11/03): Muon Pair Production in ep Collisions
- DESY-03-206 (01/04): Measurement of Dijet Production at Low Q^2
- DESY-04-025 (03/04): Search for Squark Production in R-Parity Violating Supersymmetry
- DESY-04-032 (03/04): Measurement of Anti-Deuteron Production
- DESY-04-038 (03/04): Evidence for a Narrow Anti-Charmed Baryon State
- DESY-04-051 (04/04): Forward π^0 Production and Associated Transverse Energy Flow
- DESY-04-083 (05/04): Measurement of F_2 at low Q^2 in QED Compton Scattering
- DESY-04-084 (05/04): Search for bosonic stop decays in R-parity violating supersymmetry

Recent and Forthcoming Conferences

At **DIS04** there were 30 talks by H1 members

summarising work in last year, including newly released data on ...

- Polarised $\sigma(CC)$ from HERA-II
- High $p_{\scriptscriptstyle T}$ Particle Production at HERA-II
- F_2 at low Q^2 , high x from ISR events
- τ production

(Almost) all on completely original and new topics!

- Forward Jet Production
- $\bullet \ b \to \mu X \text{ in low } Q^2 \text{ DIS}$
- $\bullet \ F_2^b$ and F_2^c at Large Q^2

Preparations for ICHEP04 summer conference are well underway

54 abstracts submitted, summarising work of past two years

Systematic Searches For Anomalies in High $p_{_T}$ Data

Investigation of all final states with isolated j, e, μ , γ , ν ($p_T > 20 \text{ GeV}$, $10^\circ < \theta < 140^\circ$) Overall highly impressive agreement with Standard Model predictions ... but $\mu j \nu$, $e j \nu$?

HERA-I Events

Dedicated Studies of Isolated Leptons with Missing $p_{_T}$

Study events with isolated high $p_T \mu$, e or τ , missing p_T and large hadronic p_T^X in e^+p data Events observed and expected in Standard Model ...

	HERA-I ($110{ m pb}^{-1}$)			HERA-II ($17{ m pb}^{-1}$)	
	${oldsymbol{\mu}}$	e	au (prel)	μ (prel)	e (prel)
$p_{_T}^{ m X}>25{ m GeV}$	6 / 1.44	4 / 1.48	0 / 0.53	0 / 0.29	2 / 0.34

$$e^+p \to \mu^+ X$$

HERA-II
$$e^+p \rightarrow e \not p_T X$$

 $p_T^e = 37 \text{ GeV}, p_T^{miss} = 44 \text{ GeV}, p_T^X = 29 \text{ GeV}$

Possible Interpretations?

This anomaly can only be clarified with large increases in e^+p luminosity If current event rate persists, 5σ "discovery" possible with 500 pb^{-1}

See also anomalously high H1 yields of multi-electron events in e^+p scattering

Search programme with HERA-I data nearing completion e.g. Recent searches for \mathcal{R}_p SUSY \tilde{q} production Search for e.g $e^+d \rightarrow \tilde{t}$ via λ'_{131} , $e^-u \rightarrow \tilde{b}$ via λ'_{113} Consider R_p and \mathcal{R}_p decays covering most of BR for all $m(\tilde{q})$ Also consider for first time $\tilde{t} \rightarrow \tilde{b}W$ Limits: e.g. $m(\tilde{t}) > 275 \text{ GeV}$ for λ'_{131} of em strength

Search Prospects at HERA-II

Improvements on current sensitivity require large increases in \mathcal{L} ...top priority to optimise overall search programme e^+p and e^-p complementary in some areas, both interesting

 $F_2^{
m em}(x,Q^2)$ and u at high x

 $\tilde{\sigma}_{\rm NC}^{\pm} = F_2 \mp \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y_+} F_L$ $F_2^{\rm em}(x, Q^2) = x \sum_q e_q^2 (q + \bar{q})$

... dominates in most of phase space Measured over huge kinematic range well matched to LHC predictions via DGLAP 2-3% precision in bulk of phase space

Highest x region requires much more luminosity (e^+ or e^-) and / or reduced $E_p \to {\rm high} \, x,$ moderate Q^2

Beautifully described by QCD fits \rightarrow strongest constraint on u, \bar{u} Constrains gluon and α_s via $\frac{\partial F_2}{\partial \ln Q^2} \sim \alpha_s x g(x)$ (LO QCD)

e^+p Charged Current Cross Section and d at "high" x

Х

Assumption-free access to valence distributions at largest Q^2 ($\tilde{\sigma}_{\rm NC}^- \gg \tilde{\sigma}_{\rm NC}^+$)

y factors suppress highest *x*, kinematics suppress lowest *x*, potentially competitive for $x \sim 0.1$ First "exploratory" HERA-I extractions agree well with predictions Errors rather insensitive to exact e^+/e^- sharing within reasonable limits Total e^+ and e^- luminosity most important for significant progress

F_L and the Gluon at Low x

Gluon only indirectly determined in DGLAP fits Important to test with jets, charm, $F_L \dots \sim \alpha_s x g(x)$ (LO QCD)

$$ilde{\sigma} = F_2 - (y^2/Y_+) \, F_L$$

Sensitivity at highest $y
ightarrow 0.9 ~(E_e^\prime
ightarrow 3~{
m GeV})$

 F_L determination spans 3 orders of magnitude in Q^2

 $^{f x}$ Distinguishes between DGLAP and other approaches at low Q^2

Better measurements from reduced E_p running \rightarrow relax F_2 assumptions and see x dependence

Simulation with $\mathcal{L} = 200 \text{ pb}^{-1}$, $P_e = \pm 0.5$

Polarisation and HERA-II

CC cross section has linear dependence on polarisation in Standard Model First measurement of influence of lepton helicity on CC interactions in ep scattering Polarisation $\sim 30\%$, Luminosity $\sim 15 \ \mathrm{pb}^{-1}$ Effect established at $\sim 2.3\sigma$ level Similar luminosity collected with opposite helicity and $\sim 40\%$ polarisation

With larger luminosities, sensitivity to PDFs P^{I} and electroweak couplings

Hadronic Final State Studies and QCD

Bulk of H1 physics programme concerned with understanding QCD through hadronic final state measurments (89/130 physics papers so far)

- Jet production and properties
- Open charm production
- Open beauty production
- Forward physics & QCD cascade dynamics
- Fragmentation

- Energy flow and particle spectra
- Diffractive cross sections / final states
- Tagged leading protons and neutrons
- Inclusive and exclusive vector mesons, DVCS
- Hadron spectroscopy

Many of these measurements are statistically limited thus far

Theoretical progress \rightarrow most observables can be compared with NLO calculations

Improvements require highest possible \mathcal{L} , independently of beam charge or polarisation

Evidence for a Narrow Anti-charmed Baryon State

Following recent observation of θ^+ pentaquark in $K^0_s p$ and $K^+ n$, search for charmed analogue

Use 'golden' charm decay channel $D^{*-} \to \overline{D^0}\pi_s^- \to K^+\pi^-\pi_s^-$ & c.c. Combine with proton candidates from dE/dx to form $M(D^*p)$

Clear signal with mass $3099 \pm 3 \; ({\rm stat.}) \; \pm 5 \; ({\rm syst.}) \; {\rm MeV} \dots$ observed in γp and DIS

Background well modelled by wrong charge $K^{\pm}\pi^{\pm}$ combinations and D^* Monte Carlo 51 ± 11 events (75 pb⁻¹) Compatible yields in $D^{*-}p$ and $D^{*+}\bar{p}$

As in strange case, width compatible with experimental resolution ($\sim 7~MeV$)

Minimal constituent quark composition of such a state is $uudd\bar{c}$... charmed pentaquark?

Fast Track Trigger Status

Required for continued triggering of interesting low $p_{_T}$ final states with track based signatures at high $\mathcal L$

Hit finding with 95% efficiency Track segment finding operational Coarse segment linking to form tracks First L1 trigger implemented for exclusive vector mesons in events with no tagged electron

Level 2/3

Later stages of trigger being finalised Aiming for full commissioning before shutdown

Recent Progress in Beauty Cross Sections

 10^{-1}

 10^{-2}

0.04

0.03

0.02

0.01

0

 10^{-3}

 10^{-2}

Х

 10^{-1}

Х

$\sigma(ep ightarrow eb \overline{b} X ightarrow e\mu j X)$ in DIS

Use sample with muons associated with jets Evaluate beauty contribution using @D fit tomuon impact parameter (silicon detector) $\dots p_T^{rel}$ of muon relative to jet

Results consistent with NLO QCD

Inclusive
$$F_2^b$$
 (and F_2^c) in high Q^2 DIS

Inclusive secondary vertex sample from silicon b, c contributions from fits to signed impact parameter distribution For $Q^2 \gtrsim 100 \text{ GeV}^2$, minimal extrapolation to inclusive b cross section New technique!...First F_2^b measurement

Diffractive final states and NLO QCD

Overlaps between different final state signatures give new sensitivities e.g. test semi-inclusive QCD factorisation by predicting diffractive dijet and charm rates at NLO using diffractive parton densities from F_2^D

 $g \dot{q}(z)$

(1-z)

р

Consistent description, but large experimental and theoretical errors Further progress needs high statistics data at fixed x_{IP} and better systematics Also improved theoretical errors ... Relax "Regge" factorisation assumption, go to higher scales

Status of Very Forward Proton Spectrometer

2 Roman pot stations near z = 220 m... Efficient triggering and measurement of leading protons in interesting region $|t| < 1 \text{ GeV}^2, x_{IP} \sim 0.01$ Track reconstruction working ... clear forward peak First level 1 trigger implemented Clear ρ peak (untagged γp) from short test run

- Ongoing analysis of HERA-I data
 - ... Many new measurements and techniques
- Detector in good shape and taking high quality HERA-II data
 - ... First physics results obtained with polarised leptons
- Top future priority is highest possible luminosity as soon as possible
 - ... New level of precision in broadest range of physics topics
 - Can be realised with e^+ running, also necessary to clarify high p_T anomalies
 - e^- data of interest for some searches and electroweak physics

Reduced E_p running required for F_L , high x, moderate Q^2 and W dependences

• H1 Collaboration remains firmly commited to full HERA-II programme