2001 - 2004 R&D on CMOS sensors for Charged Particle Tracking at a Future Linear Collider Vertex Detector

07.05.2003

M. Winter on behalf of the collaboration of

DAPNIA - DESY - Dubna - Univ.Geneva - IReS&LEPSI - Univ.Hamburg - NIKHEF/Amsterdam

- Reminder: principle of operation of CMOS sensors
- Summary of sensor prototypes fabricated since 1999
- New results on tracking performances of small sensors
- Test results of first real scale prototype
- Test results of low doping substrate sensor
- Radiation tolerance
- Next major R&D steps: Sensor & System Developments
- Summary

Advantages of Monolithic Active Pixel Sensors:

* MAPS combine advantages of CCDs and of Hybrid Pixels:

- they provide as good spatial resolution as CCDs & can be thinned down to the same level
- they are much more resistent to neutron radiation and are potentialy much faster than CCDs

Principle of Operation:

- * p-type low-resistivity Si
- \diamond signal generated in epitaxial layer (low doping) \rightarrow $\mathbf{Q}_{mip} \sim$ 80 e⁻-h pairs / μm
- signal charge collected by n-well
- excess carriers diffuse thermally to nwells with help of reflection on boundaries with p-well and substrate (high doping)
- ⋄ no external depletion voltage
- ⇒ watch feature size, epitaxial layer thickness, nb of metal layers, yield, ...

Figure 1: Schematic view of the charge collection in a CMOS sensor pixel designed for charged particle tracking.

Summary of prototypes fabricated

▶ 6 prototypes fabricated since 1999 (5 tested with 120 GeV/c π^- CERN-SPS)

sensor generation	year	process	epitax.	pitch	metal	peculiarity
MIMOSA-1	1999	$egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$	$14\mu m$	20 μm	3M	thick epitaxy
MIMOSA-2	2000	MIETEC $0.35 \mu m$	4.2 μm	20 μm	5M	thin epitaxy
MIMOSA-3	2001	IBM 0.25 μm	$2\mu m$	8 µm	3M	$\begin{array}{c} \textbf{deep} \\ \textbf{sub-}\mu\dot{m} \end{array}$
MIMOSA-4	2001	$0.35 \mu m$	0!	20 μm	3M	low doping substrate
MIMOSA-5	2001	$egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$	$14\mu m$	17 μm	3M	real scale (10 ⁶ pixels)
MIMOSA-6	2002	ΜΙΕΤΕ C 0.35 μm	4.2 μm	28 μm	5M	column // r.o. integ. sparsif.

Spatial resolution

 $ightharpoonup \sigma_{sp} \sim$ 1.5 (2.2) μm with 14 (4) μm epitaxial layer

▶ single point resolution as a function of ADC-bit encoding:

 $\sigma_{sp}\sim$ 2-2.5 μm for 3 bits (\sim 3-4 μm for 1 bit ...)

▶ double track resolution: excellent down to 30 µm distance

MIMOSA-5: 1st real scale prototype

- ▶ chip of 4 matrices of 512x512 (17x17 μm^2) pixels read-out in parallel, etched to 120 μm \hookrightarrow exposed to 120 GeV/c π^- beam at CERN-SPS
- comparison with MIMOSA-1 (same 0.6 μm AMS process, but 64x64 pixels)

▶ prelim. result: detection efficiency $\sim 99.3 \%$, $\sigma_{sp} \sim 1.7 \ \mu m$, $\sigma_{\overline{gain}} \sim 0.2 \%$ (twice noise of M1 due to different <u>serial</u> r.o. architecture)

Test results with MIMOSA-4 (1/2)

 \triangleright 0.35 μm AMS process without epitaxial layer but with low doping (resistivity) substrate

- ▶ Observed performances with 120 GeV/c π^- at CERN-SPS (T_{Room}):
 - \clubsuit detection efficiency $\sim 99.7 \%$ \clubsuit single point resolution $\sim 4 \ \mu m \ (20 \ \mu m \ pitch)$
- ► Low temperature still improve sensor performances (studies under way)
 - ⇒ Technology without epitaxial layer seems worth investigating & optimising

Radiation tolerance

► Neutron irradiations up to $10^{13} n_{eq}/cm^2$

 \hookrightarrow fluences of $\lesssim 10^{12} n_{eq}/cm^2$ are still acceptable (T effect ?)

- ▶ Ionising radiation: few 100 kRad acceptable (better if T << 0 $^{\circ}$ C?)
 - \hookrightarrow exact source(s) of performance loss under investigation
- ▶ Ccl: radiation tolerance at a FLC should not be an issue (yearly: $\sim 10^9 n_{eq}/cm^2$ and 50 kRad) X Safety Factor of 10 & 5?

Plans for 2003 - 2004

- ► Sensor development towards fast signal processing & data compression:
 - ullet MIMOSA-6: col. // r.o. & integ. signal proc. o tests at CERN-SPS in June
 - MIMOSA-7: alternative signal collection & processing architecture (photoFET)
 - \hookrightarrow design in 0.25 μm AMS (8 μm epitaxy) \to submission in June \to tests in Autumn
 - MIMOSA-8/9: best out of MIMOSA-6/7 → fast medium size sensor < Summer 2004
- ► System integration studies have started:
 - ⋄ DAS card being designed
 - \diamond detailed effect of detector material, pixel size, etc. on \gtrsim 500 GeV physics
 - ♦ GEANT-4 description of CMOS Vertex Detector started
 - ⋄ pulsed powering studies with MIMOSA-5 in preparation
 - \diamond estimation of limit in $\overline{P_{diss}}$ compatible with modest active cooling
 - \diamond achieve \lesssim 50 μm thinning on real scale chip (MIMOSA-5)
 - ⇒ preliminary ladder prototype in 2005 (?)
- ► Find optimum of granularity*signal proc. speed*mat. budget with physics simulations

Signal processing

► Governed by $N(e_{BS}^{\pm})$ in 1st Vertex Detector layer:

$$N_{\pm}^{sim}(90^{\circ}) \gtrsim 5~e^{\pm}$$
 / cm² / BX at 500 GeV (R=15 mm)
 \hookrightarrow occupancy \gtrsim 3-5 % in 100 μs (m_{clust} \sim 5)

- ► Safety factors (simulation accuracy, uncertainty on B, higher \sqrt{s} , shorter Δt_{BX}) \rightsquigarrow occ. \gtrsim 15-25 % in 100 μs
- ► Goal: $\mathbf{t}_{L1}\sim$ 25-50 μs (R&D needed) $\mathbf{t}_{lect}^{L2-5}\sim$ 100 \longrightarrow 200 μs (no major difficulty)
- ► major obstacle: data flux (L1)
 - \hookrightarrow 15 bits/pixel, $\mathbf{t}_{L1}\sim$ 25 $\mu s\longrightarrow\sim$ 500 Gbits/s/10⁶ pixels (\mathbf{e}_{BS}^{\pm} : 5 Gbits/s)
 - ⇒ Next CMOS sensor prototypes address Signal Processing Speed AND Data Compression

MIMOSA-6: 1st sensor with col.// r.o. & integ.sparsif.

▶ 1st sensor with sparsification integrated / substrate & column // r.o.:

- > amplification (x5.5) and noise suppression (CDS) on pixel
- > discriminator integrated on chip periphery (1 per column)
- \clubsuit 0.35 μm MIETEC technology (same as MIMOSA-2)
- ♣ 30 columns read-out in ↓↓ (128 pixels per column)
 - ⇒ 30 MHz r.o. frequency but 6 clock cycles per pixel
 ⇒ 5 MHz effective r.o. frequency
- \clubsuit pixels of 28 μm pitch (29 transistors, 3 capacitors)
- < $P_{diss} \sim$ 500 μW per column and frame r.o. cycle

A tests under way in Strasbourg and Saclay

Fast Data Processing: Effect of Increased Noise

- \blacktriangleright on-chip data proc. to reduce data flux (\emptyset) due to fast r.o. of very granular sensors
- → pre-amplif., noise supp., ADC, discri., ... shared between pixel and chip periphery
 - \Rightarrow noise may increase substantially \rightarrow csq on ϵ_{det} & σ_{sp} ?

- ► Study based on M-1,-2,-5 data:
 - $\epsilon_{det} \gtrsim$ 96 % if S/N \gtrsim 14
 - ullet $\sigma_{sp}\lesssim$ 3 μm even if S/N \sim 10 and only 3-bit encoding

View of the VXD in MOKKA

- 50 μm thick carbon fibre mecanical support
- → 50 μm thick CMOS sensor

$$*X/X_0 \approx 0.08 \%$$

- tracking algorithm implementation
- impact parameter resolution

• Caution! This is just a starting point, the final geometry may be totally different.

Distribution of Tasks

R&D Topic	Univ. Geneva	Univ. Hamburg	IReS- LEPSI	DESY	NIKHEF Amster.	DAPNIA
Intrinsic Perfo.			X		X	X
R.O.Circuits			X			X
Chip Tests		\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}
Rad. Tolerance		X	X	X	X	
DAS circuits	X					
Thinning			X	X	X	
Mech. & Cool.		X		X	X	

Summary

- ⋄ Several requirements for this application are already fulfiled: detection efficiency, spatial resolution (3-bits), double hit resolution, radiation tolerance (~), real scale sensors, low doping substrate technology, etc.
- \diamond Until 2004, substantial progress expected on fast signal processing (goal \sim 25 μs) and system integration \rightarrow prototype ladder in 2005 (?)