Neutron and ³He GDH at low Q² at Jefferson Lab HallA

F. Garibaldi

(for He-3 collaboration - Hall A Jefferson Lab)

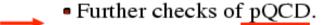
Why

How

- Polarized beam and target
- Forward Angle -> Septum magnets
- Kinematics
- Neutron and ³He

Conclusions

Late 70's, polarized beams and targets.



Spin structure of the nucleons.

SLAC, CERN, DESY

remaining problem

Jefferson Lab:

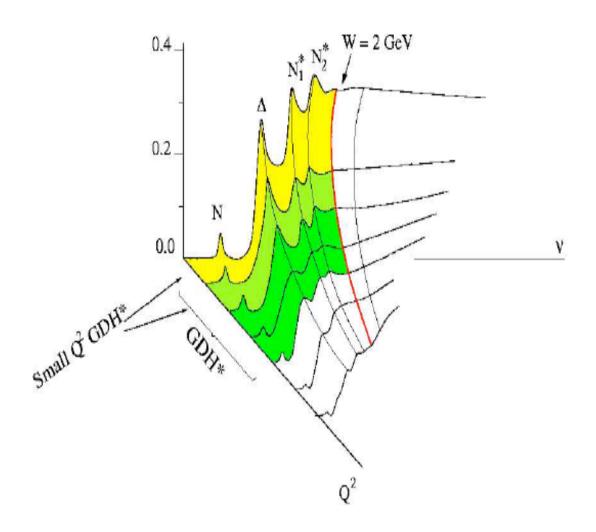
- Continuous polarized electron beam.
- Low to intermediate Q² range.
- Precise study of the pQCD-npQCD transition.

 (not understood)

 precise study of the pQCD-npQCD quarks & nucleons & nucleons & gluons mesons

A unique tool to study this transition: The extended GDH sum rule.

(connection with Bjorken SR)



SITE PLAN

CEBAF CEBAF

The Continuous Electron Beam Accelerator Facility

SCIENTIFIC MISSION

Investigate strongly interacting matter at the quark-gluon level.

- Nature of quark and gluon confinement
- Quark-gluon picture of the nucleus

MACHINE CHARACTERISTICS

Energy: .5-6GeV Current: 200 uA

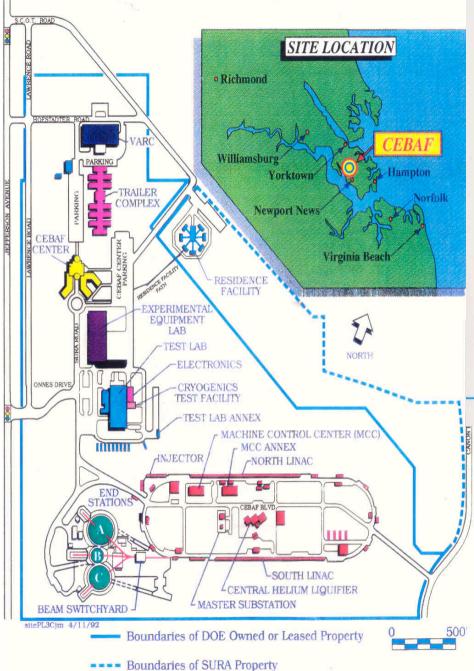
Duty Factor: cw Emittance: ε-2 x 10⁻⁹ m·rad

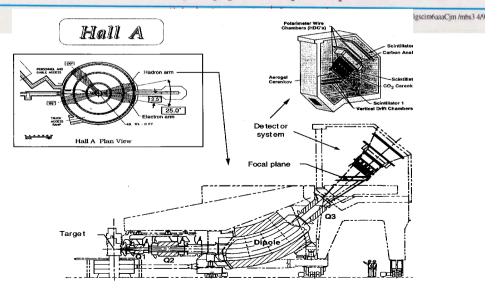
Energy Spread: $\frac{\text{GE}}{\text{E}} = 2.5 \times 10^{-5}$

PHYSICS START FALL 94

Three simultaneous beams into three experimental areas

- Independent energy and intensity
- Major equipment components procured in all halls





GDH Sum Rule: Q²=0

- Take classical Kramer–Kroenig dispersion relation (causality)
- •Apply unitarity (optical theorem)
- Apply Relativity + gauge invariance (low energy theorem)

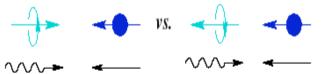
we get GDH:

$$\int_{V_0}^{\infty} (\sigma_{1/2} - \sigma_{3/2}) \frac{dv}{v} = -2\pi\alpha \frac{\kappa^2}{M^2}$$

K: anomalous magnetic moment

 $\sigma_{_{1/2}} \& \sigma_{_{3/2}}$:Photoproduction cross–sections

photon spin target spin photon spin target spin



⇒Based on solid assumptions (same as Bjorken SR)

Only assumption open to question: Validity of "**non subtraction hypothesis**" (Cauchy integration)

GDH: Fundamental quantity, never checked

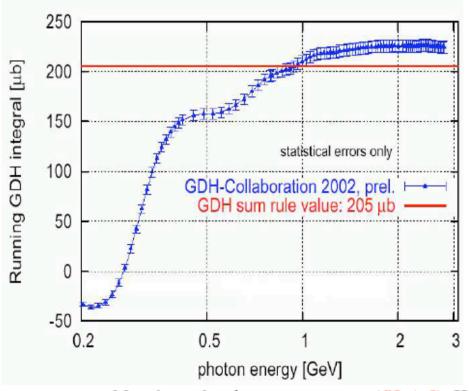
- Need to check convergence
- Single π γ–production estimates violate GDH

Check on Proton at:

MAMI: 0.2 < v < 0.8 MeV Aniens & prl 87, 2

ELSA: 0.7 < v < 3 MeV

Ahrens *et al* prl 87, 22003 (2001)



Need to check convergence (SLAC, JLAB)
Neutron: No data yet.

GDH Sum Rule: Q²=0

- •Take classical Kramer–Kroenig dispersion relation (causality)
- •Apply unitarity (optical theorem)
- Apply Relativity + gauge invariance (low energy theorem)

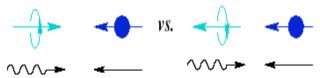
we get GDH:

$$\int_{V_0}^{\infty} (\sigma_{1/2} - \sigma_{3/2}) \frac{dv}{v} = -2\pi\alpha \frac{\kappa^2}{M^2}$$

K: anomalous magnetic moment

 $\sigma_{1/2} \& \sigma_{3/2}$: Photoproduction cross–sections

photon spin target spin photon spin target spin



⇒Based on solid assumptions (same as Bjorken SR)

Only assumption open to question:

Validity of "non subtraction hypothesis" (Cauchy integration)

Generalized GDH sum rule (GDH*)

"Generalized": From photoproduction to electroproduction $Q^{2}=0 Q^{2}>0$

Several ways to define the GDH* integral so that GDH*(Q²) GDH

D. Drechsel et al. Phys. Rev D63 (2001 114010)

One definition of GDH* stands out:

X. Ji & J. Osborn. J.Phys G27 (2001) 127

- Extends the sum rule.
- Connects to the Bjorken sum rule.

$$\int_{v_1}^{\infty} G_{1(2)} \frac{dv'}{v'} = \overline{S}_{1(2)}$$

 $\overline{S}_{1(2)}$: forward Compton amplitudes.

Calculable on the full QCD spectrum (χ_{pT} , lattice, Higher Twist Expansion).

Experiments: JLab Hall A; neutron (³He)

JLab Hall B: proton, deuteron
HERMES: peutron (3He), proton

Connection between the sum rules

Why the GDH sum rule important?

It is a quantity as <u>fundamental</u> as, for ex., the <u>Bjorken</u> sum rule. It tests our understanding of OCD and of the <u>Nucleon structure</u>.

Why the extended GDH* sum rule important?

The transition between the quark/gluon QCD degrees of freedom and the Nucleon/Meson degrees of freedom is still not understood.

The extended Gerasimov–Drell–Hearn (GDH*) sum rule, with its connection to the Bjorken sum rule, is ideal for studying such a transition.

$$Q^{2}=0$$

$$\int_{v_{0}}^{\infty} \sigma^{1/2}(v) - \sigma^{3/2}(v) \frac{dv}{v} = -2 \pi^{2} \alpha \frac{\kappa^{2}}{M^{2}} \longrightarrow \text{GDH sum rule}$$
Photoproduction
$$\frac{M^{2}}{8\pi^{2} \alpha} \int_{v_{0}}^{\infty} \sigma^{1/2}(v, Q^{2}) - \sigma^{3/2}(v, Q^{2}) \frac{dv}{v} \longrightarrow \text{GDH* integral}$$

$$= \frac{2M^{2}}{4\pi^{2} \alpha} \int_{v_{0}}^{\infty} \sigma^{\tau\tau} \frac{dv}{v}$$

$$= \frac{2M^{2}}{Q^{2}} \int_{0}^{\infty} g_{1}(x, Q^{2}) - 4M^{2} \frac{x^{2}}{Q^{2}} g_{2}(x, Q^{2}) dx \longrightarrow \text{Ji sum rules}$$

$$\frac{1}{Q^{2}} g_{2}(v, Q^{2}) \frac{1}{Q^{2} \to \infty} 0$$

$$\int_{0}^{\infty} g_{1}^{p}(x) dx - \int_{0}^{\infty} g_{1}^{n}(x) dx = \frac{1}{6} a_{1} \longrightarrow \text{Bjorken sum rule}$$

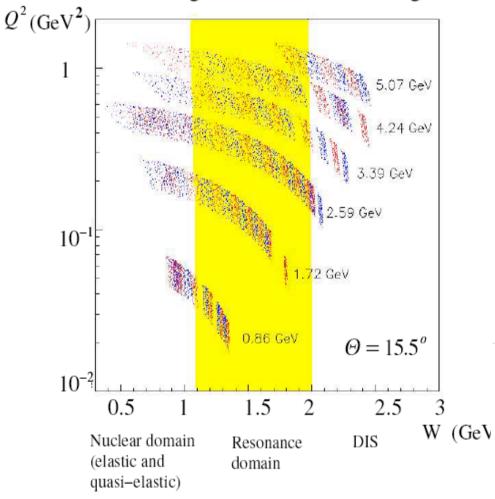
Experiment E94010 Z.-E. Meziani, G. Cates,

Inclusive ${}^{3}\overline{He}(\overrightarrow{e} \rightarrow e')X$

We measured: $\sigma^{\uparrow\uparrow}$, $\sigma^{\uparrow\downarrow}$, $\sigma^{\Rightarrow\uparrow}$, $\sigma^{\Rightarrow\downarrow}$

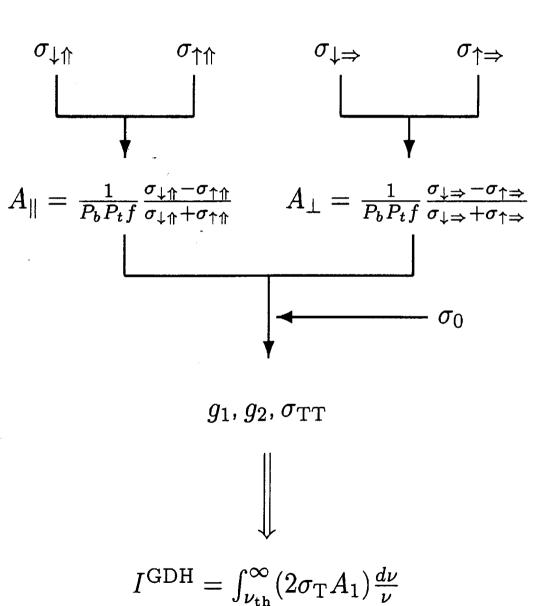
↑:Target spin ↑ :electron spin

Linear combination gives extended GDH integrant.

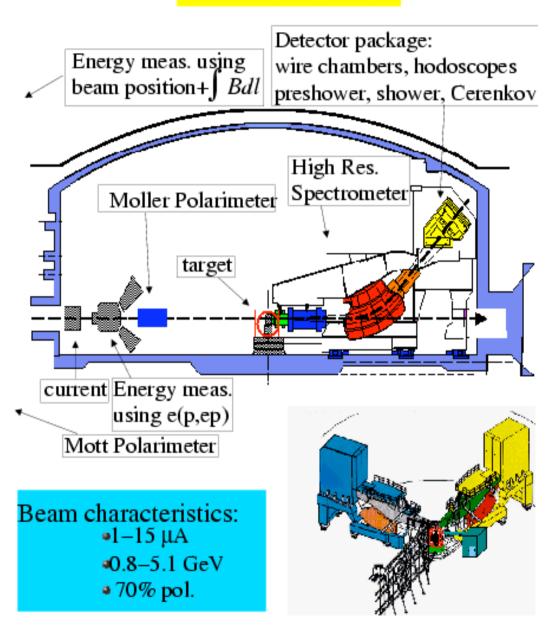


Hall A standard equipment + ³He polarized target

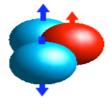
$$\vec{e} + ^3\vec{H}e \rightarrow e' + X$$



Jefferson Lab Hall A.



³He at first order: n diluted by 2 p.



JLab target design: Similar to SLAC E142/E154. Improvement: Optical pumping in any (in-plane) direction.

Successfully used in 4 experiments (GDH*, G_m^n , A_1^n , g_2^n).

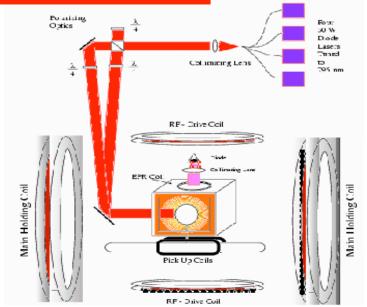
Polarization=35–40% (in running conditions). Length=25 to 40 cm.

 \rightarrow Luminosity 10^{36} cm⁻².s⁻¹ (for 15 μ A, 40 cm).

Polarimetry: NMR,EPR (and elastic). $\Delta P/P = 4\%$ (GDH*)

³He Target Setup

Basic principles: Optical pumping of Rb, then spin exchange by Rb-3He collisions.



Collaboration: CalTech, Clermont-Ferrand, JLab, Univ. of Kentucky, MIT, Princeton, Temple, Univ. of Virginia, Col. of William & Mary.

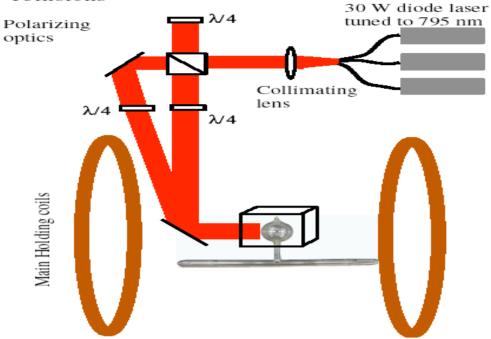
³He target heart: Two chamber glass cell

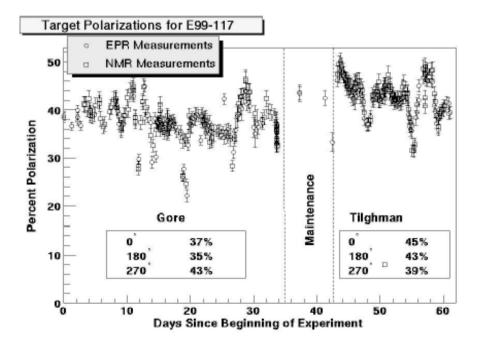
Cell filled with a mixture of Rb and ³He

Oven: Vaporizes Rb

⇒ Top Chamber: Rb–³He Mixture Bottom Chamber: Pure ³He gas

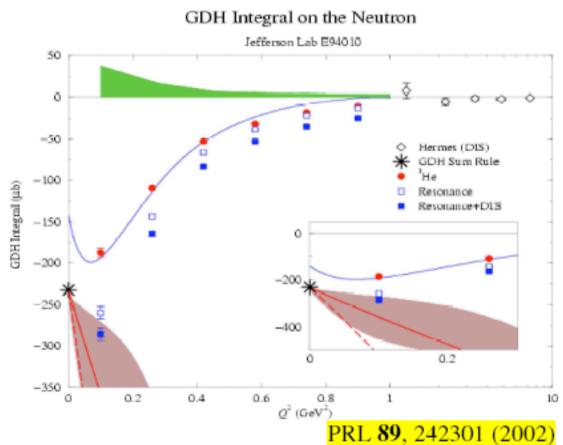
Optical pumping of Rb.
Polarization of ³He by Rb–He spin exchange collisions





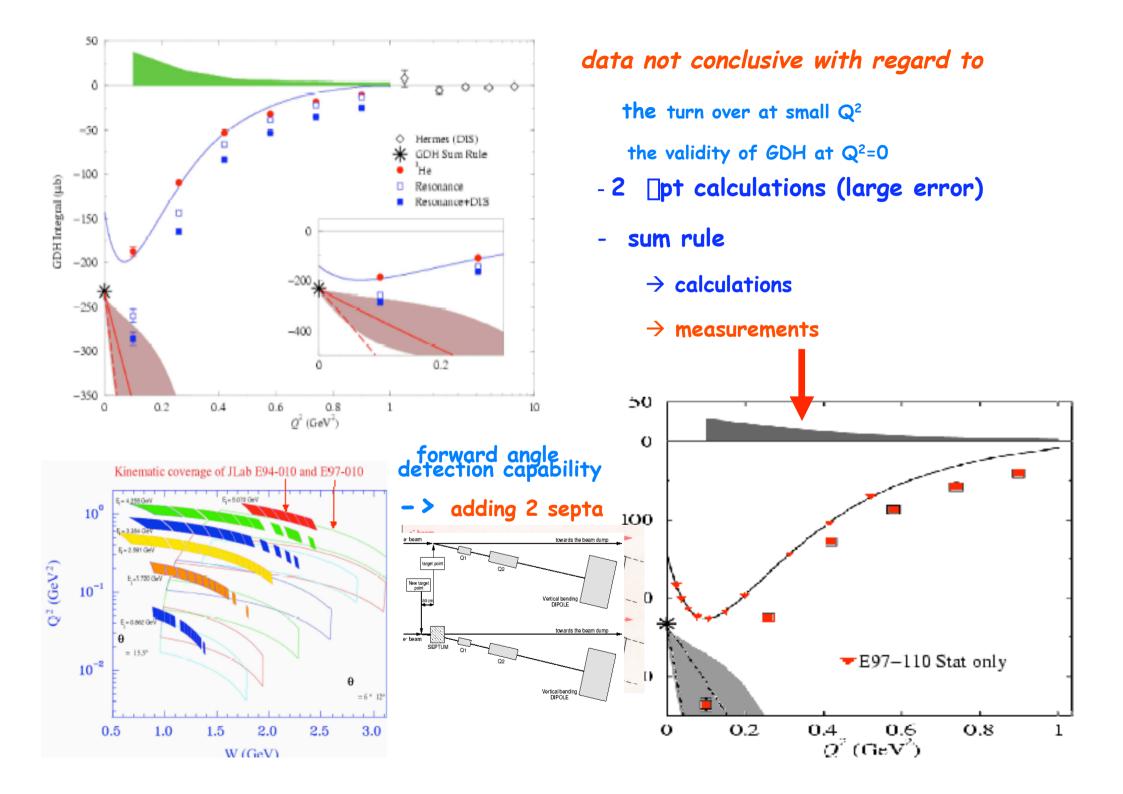
The GDH* integrant: $(\sigma_{1/2} - \sigma_{3/2})/2$ 0 $\sigma_{rr}'(\mu b)$ $Q^2 = 0.90 \text{ GeV}^2$ -250 -25 $Q^2 = 0.74 \text{ GeV}^2$ 0 $Q^2 = 0.58 \text{ GeV}^2$ -500 -50 $Q^2 = 0.42 \text{ GeV}^2$ 0 -100 $Q^2 = 0.26 \text{ GeV}^2$ 0 -100 $Q^2 = 0.10 \text{ GeV}^2$ -2001000 2000 0 v = E - E' (MeV)PRL **89**, 242301

Evolution of the $GDH^*(Q^2)$ Integral (neutron)



Nuclear corrections: degli Atti et al, Phy Rev C48 968 (1993) Phys Let B404 223 (1997)

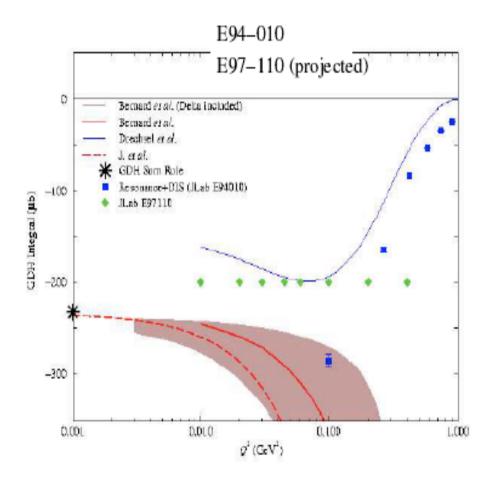
DIS contribution: N. Bianchi & E. Thomas, Phys. Lett B 450 439 (1999)



Experiment E97110, Hall A J.-P. Chen, A. Deur, F. Garibaldi

Septum magnet: scattering angles: 6° and 9°

$$Lower < Q^2 >= 0.02 \text{ GeV}^2$$



Target challenges with forward angle detection

With the former ³He target hardware:

Large radiative tails: Forbids detection at E_{beam} < 2 GeV

o"2 step process": Forbid detection at Q²<0.3 GeV² and for Q²>0.3, forbid detection at v > 2 GeV

Septum gradient magnetic field: Forbid the use of high performance cells

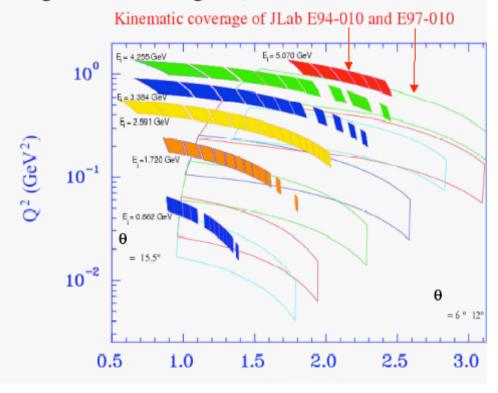
The GDH Sum Rule and the Spin Structure of ³He and *n* using Nearly Real Photons

Spokespersons: JP Chen, A. Deur, F. Garibaldi

Goals of the experiment

- measure GDH sum at Q^2 near 0 for 3 He and n
- $Q^2 = 0.02 5 (GeV/c)^2$
 - below "turn around" point
 - slope at $Q^2 = 0$
 - extrapolate to the real photon point
- Virtual photon energy: thr. 4.5 Gev
 - test convergence
- -Comparison 3 He and n sum
 - study nuclear physics effects

*New septum magnets: data as low as <Q²>=0.02 GeV²(scattering angles: 6 and 9 degrees).



SEPTIM MAIN OTTER

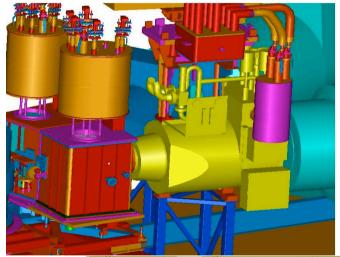
Table 3: HRS + Septum performances

Solid angle	4.5	(msrd)
Angular range	6 - 12.5	(deg)
Momentum range	0.4-4	(GeV/c)
Momentum acceptance	9.9	(%)
Momentum resolution	$1 \cdot 10^{-4}$	*
Angular horizontal resolution	0.96	* (mr)
Angular vertical resolution	1.26	* (mr)
* FWHM		

*	FY	N	H	M	

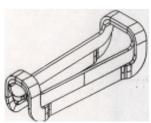
Magnetic lenght

84 cm.



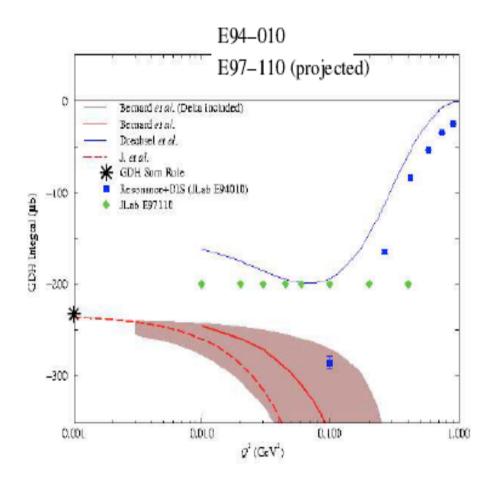
	p (GeVc)	(degrees)	(degrees)	R (cm)	[B. dl (Tesla .m)	B0 (Tesl)
	2	6	6.5	740.8	0.76	0.9
	2	12.5	11.9	404.6	1.39	1.65
	4	6	6.5	740.8	1.51	1.8
•	4	12.5	11.9	4046	2.77	3.3

Septum Training Curve I= 420 A



Septum magnet: scattering angles: 6° and 9°

$$Lower < Q^2 >= 0.02 \text{ GeV}^2$$



Target challenges with forward angle detection

With the former ³He target hardware:

Large radiative tails: Forbids detection at E_{beam} < 2 GeV

"2 step process": Forbid detection at Q²<0.3 GeV² and for Q²>0.3, forbid detection at v > 2 GeV

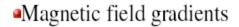
Septum gradient magnetic field: Forbid the use of high performance cells

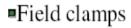
What do small angles imply?

- Septum magnets X
- ●High rates ✓
- Large elastic radiative tails
 - → Cell design change X •Minimize matter in the beam path ✓
- ◆Target design changes ✓
- Collimation of the target windows

Experimental issues & solutions:

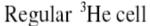
New Septum Magnets





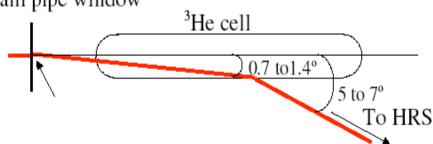
■2 sets of tilted

Helmholtz coils:



Double scattering

Beam pipe window



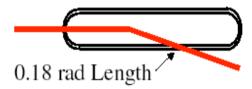
- "Ice cream cone cell"
- Thin beam line windows

Large radiative tails

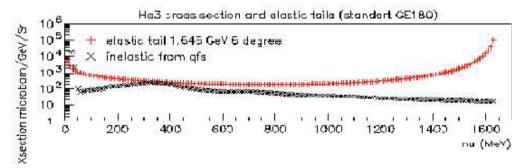
Low beam energy: Start at 1.1 GeV

Small scattering angle 6° and 9°

Large radiation length



⇒Large radiative tails



Solutions:

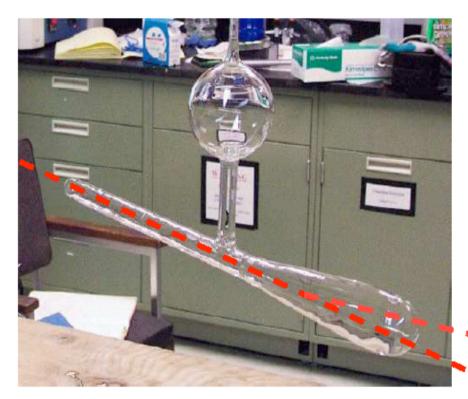
Less dense aluminosilicate glass:

Before GE180. RL=7.03 cm Now C1720. RL=10.6 cm (also studied: Coated Pyrex. RL:12.7 cm)

- Less matter on beam path
- New cell geometry

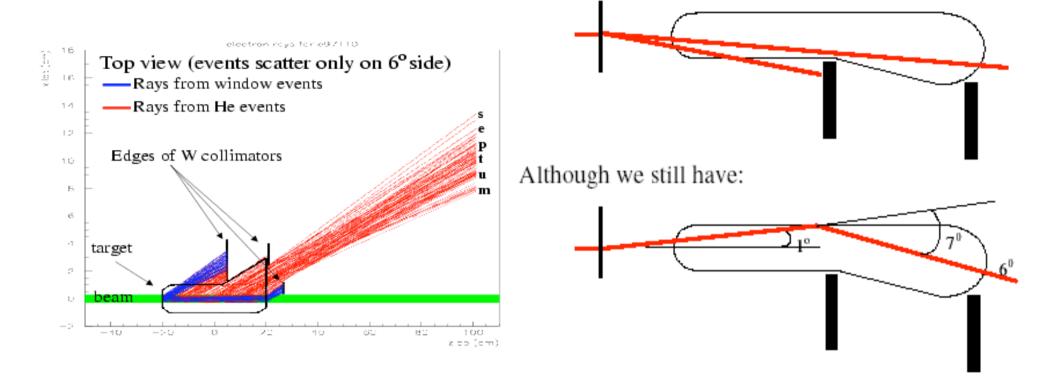
New cell geometry

Design to allow exit through thin window:



Challenges:

Complicated geometry with aluminosilicate glass Need thin (250 µ) but large radius exit window Good glass surface quality to allow polarization The new cell improves the situation:



This background may still be a limitation for the experiment but it is not an issue anymore

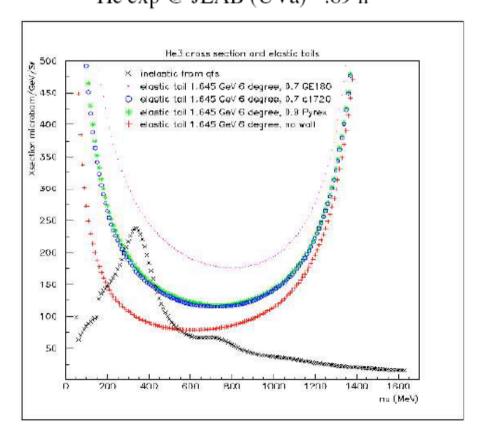
New cell geometry

Gradient issue

After a year of struggle:

Steady production of new cells

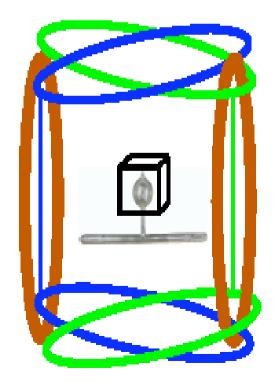
Longest lifetime cells ever made: 72 h SLAC E142 (Princeton) :63 h SLAC E154 (Princeton) :68 h ³He exp @ JLAB (UVa) :69 h



Reduce the maximal polarization Increase the polarization loss during polarimetry

Solution: Specially designed correction coils.

Allow a remote control of a compensating gradient



Radiative tails are significantly reduced

Nuclear Study on ³He

From ³He to Neutron degli Atti et al Phy Rev C48 968 (1993) Phys Let B404 223 (1997)

³He: not in a pure S wave. → The proton spins contribute to the nucleus spin.

$$g^{3He} = 2P_p g^p + P_n g^n$$
 with: $P_p = -0.028$
 $P_n = 0.86$

Further nuclear effects (Fermi motion and binding) are taken into account with a convolution model.

This method has proven reliable for:

- the DIS domain.
- •the resonance and DIS domains (integrated quantities).

Our experiments: integrated quantities or DIS
 The neutron extraction should be fine.

However, it is highly desirable to have an extraction procedure working everywhere for any quantities (open challenge for theorists!).

 $GDH(^{3}He) \sim -496 \mu b$

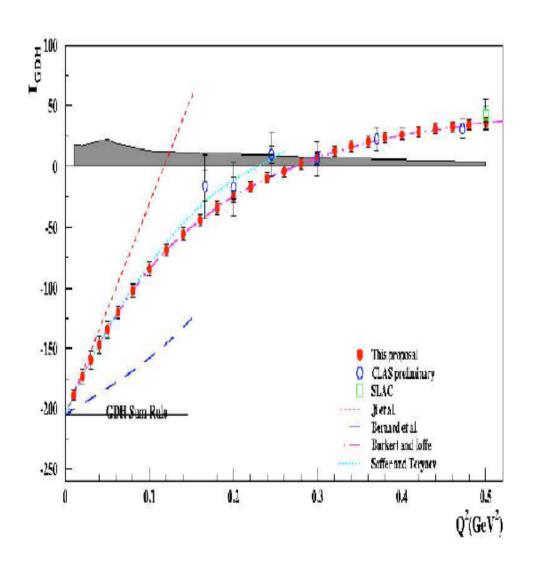
If ${}^{3}\overline{\text{He}} \sim \overline{\text{n}}$

Then GDH(3 He) ~ GDH(n) + quasi-elastic contribution (-233 μ b) (-263 μ b)

The measurement of the quasi-elastic part can be used as a check of our understanding of the ³He nuclear description.

New generalized GDH experiment

GDH at low Q² for proton. In Hall B. Approved by PAC23 (A) M. Battaglieri A. Deur, R. DeVita, M. Ripani



Conclusions

- Very good characteristics of the <u>Jlab</u> polarized <u>beam</u>

and Hall A

- ³He polarized target
- septum magnets
- → measure of GDH sum rule for ³He and neutron
 - $Q^2 = 0.02 0.5 (GeV/c)^2$
 - below "tun around" point
 - slope at Q2 = 0
 - extrapolate to real photon point
- virtual photon energy, from threshold up to 4.5 GeV/c

- •High precision data on the transition region.
- Benchmark measurement for Chiral perturbation theory and future lattice calculations.
- •Check and refinement of models describing the transition from QCD to pQCD and the neutron structure.
- Test of Nuclear 3He wave functions.
- low Q² sequel of the experiment.

- comparison of ³He and neutron GDH sum rule

Formalism

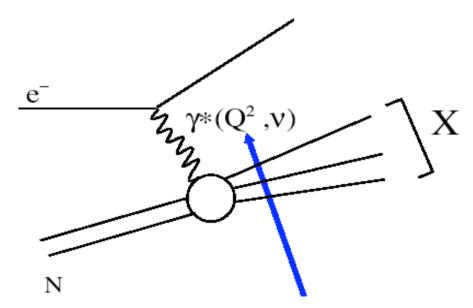
Inclusive electron scattering

v: virtual photon energy

 $Q^2=-q^2$: 4-momentum transfer

 $W^2 = M^2 + 2p.q - Q^2$: Invariant mass

 $x = Q^2/(2p.q)$: Scaling variable



The probe depends upon 2 variables Question: How the nucleon structure changes with them?

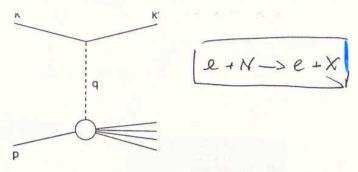


Figure 1 The lowest order Feynman diagram for deep inelastic lepton scattering.

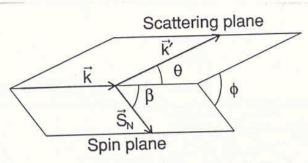


Figure 2 Scattering of longitudinally polarized leptons in the laboratory frame.

$$\frac{\mathrm{d}^3\sigma(\beta)}{\mathrm{d}Q^2\,\mathrm{d}x\,\mathrm{d}\phi} = \frac{\mathrm{d}^3\sigma_0}{\mathrm{d}Q^2\,\mathrm{d}x\,\mathrm{d}\phi} - \frac{\mathrm{d}^3\Delta\sigma(\beta)}{\mathrm{d}Q^2\,\mathrm{d}x\,\mathrm{d}\phi}$$

$$\frac{d^2\sigma}{dQ^2dx} = \frac{4\pi\alpha^2}{Q^4} \frac{1}{x} \left[xy^2 F_1(x, Q^2) + \left(1 - y - \frac{Mxy}{2E} \right) F_2(x, Q^2) \right] \frac{d^3\Delta\sigma(\beta)}{dQ^2 dx d\phi} = \frac{4\alpha^2}{Q^4} y \left\{ \cos\beta \left[\left(1 - \frac{y}{2} - \frac{\gamma^2 y^2}{4} \right) g_1(x, Q^2) - \frac{\gamma^2 y}{4} g_2(x, Q^2) \right] \right\} - \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \sin\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{4} \right)^{\frac{1}{2}} + \cos\phi \cos\beta \frac{\sqrt{Q^2}}{v} \left(1 - y - \frac{\gamma^2 y^2}{v$$

$$A_{\parallel} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \qquad A_{\parallel} = D[A_1 + \eta A_2] \qquad \text{Osymmetric}$$

$$A_{\perp} = \frac{\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\downarrow} + \sigma^{\uparrow\uparrow}} \qquad A_{\perp} = \frac{\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\downarrow\downarrow} + \sigma^{\uparrow\downarrow}}$$

$$A_{\perp} = \frac{\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\downarrow\downarrow} + \sigma^{\uparrow\downarrow}} \qquad A_{\perp}(x) = \frac{g_1(x)}{F_1(x)}, \qquad A_{\perp}(x) = \frac{g_1(x)}{F_1(x)}, \qquad A_{\perp}(x) = \frac{f_1 P_1 P_2 A_1}{F_1(x)}$$

where A represents either A_{\parallel} or A_{\perp} . In this expression, P_b is the beam polarization, P_t the polarization of the target nucleons, and f_t the target dilution factor, i.e. the fraction of polarized nucleons in the target material.