
Searches for New Phenomena

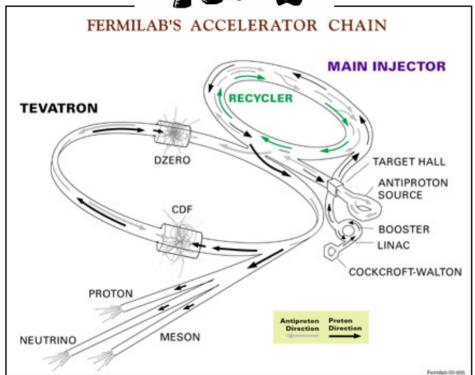
at **S**

Intensive search for New Phenomena is a reflection of the general consensus that Standard Model is incomplete. For the moment and for the near future the Tevatron is the highest energy machine and hence a natural place to look for deviations from SM

- •evidence of new particles: SUSY, leptoquarks
 - identification of new gauge interactions (technicolor) and complexities beyond the SM (compositeness)
- evidence of the X-tra dimensions

Hunting for the New Phenomena

... does nature hide any surprises?


- **❖SUGRA Search:** Jets + mE_T
- **❖Limits on New Physics in eµ Search**
- Chargino/Neutralino Search: Trilepton mode
- **GMSB SUSY Search**: $2\gamma + mE_T$
- Search for LQ: (2 e + 2 jets) and $(2 \mu + 2 jets)$
- **❖**Extra Dimensions : di-EM and di-µ channel

Search for New Phenomena, in other words, means the detailed understanding of the Standard Model background

The Fermilab Tevatron Collider and

TEVATRON

- -Increase in CM energy 1.8 TeV -> 1.96 TeV
- -Increase in Luminosity

 $2x10^{31}$ -> $(4-8)x10^{31}$ cm⁻² s⁻¹ $4x10^{32}$ cm⁻² s⁻¹ (future)

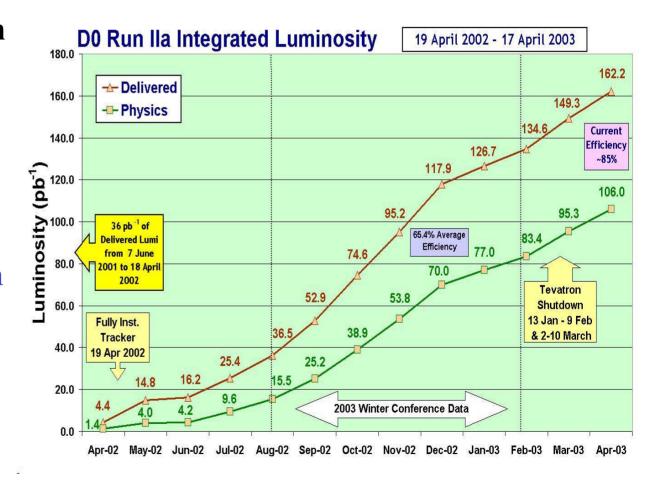
-Bunch spacing

 $3.5 \, \mu s -> 396 \, ns$

Dzero

- -Silicon & fiber trackers, preshowers
- Upgraded μ detectors
- Upgraded trigger, DAQ..
- New inner tracking in 2T

Typical Delivered, Recorded Luminosity and Operating Efficiency/week: Del ~6 pb⁻¹ Rec ~ 5 pb⁻¹ Eff. ~82-85%


We record about 10 million Physics Quality Events per week

Reasonably smooth data taking

~5% front-end busy at ~1.1kHz Level 1 accept rate

~5-7% hard/soft are failures during beam time

~5% necessary overhead: begin/end store, change prescales, etc. DIS 2003 April 23-27

Searches for Supersymmetry

at

SUSY production

$$p\overline{p} \to \tilde{\chi}_{i}^{\pm} \tilde{\chi}_{j}^{\mp}, \ \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{\pm}, \ \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}, \ \tilde{q} \tilde{\overline{q}}, \ \tilde{q} \tilde{\overline{g}}, \ \tilde{g} \tilde{\overline{g}}, \ \tilde{l} \tilde{\overline{l}}$$

Neutralinos/charginos

- dilepton channel

- trilepton channel
$$p\overline{p} \to \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \implies \ell^{1,2,3} + \mathbb{E}_T + X$$

- dilepton channel $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\pm} \implies \ell^{1,2} + \mathbb{E}_T + X$

squarks/gluinos

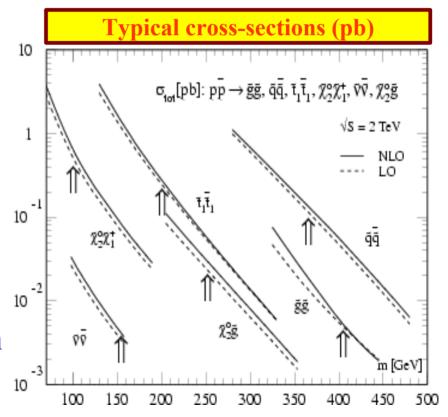
$$-$$
 jets $+$ mE_T

$$p\overline{p} \rightarrow \widetilde{q} \overline{\widetilde{q}}, \widetilde{q} \widetilde{g}, \widetilde{g} \widetilde{g} \Rightarrow jj E_T + X$$

stop and sbottom

$$\widetilde{t_1} \to b + \widetilde{\chi}_1^{\pm} \to Wb + \widetilde{\chi}_1^{0}
\widetilde{t_1} \to b + \widetilde{\chi}_1^{\pm} \to b\ell + \widetilde{v}
\widetilde{t_1} \to \widetilde{\chi}_1^{0} + c
\widetilde{t_1} \to t + \widetilde{\chi}_1^{0}$$

$$[\widetilde{b_1} \to b\widetilde{\chi}_1^0]$$

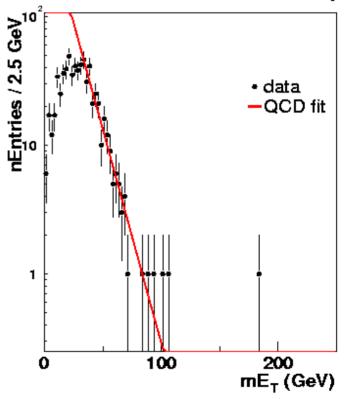

$$b_1 \rightarrow b \overset{\sim}{\chi_2^0}$$
 $b_1 \rightarrow \overset{\sim}{\chi_1^0} e^+ e^-$

SUGRA search: Jets + mE_T

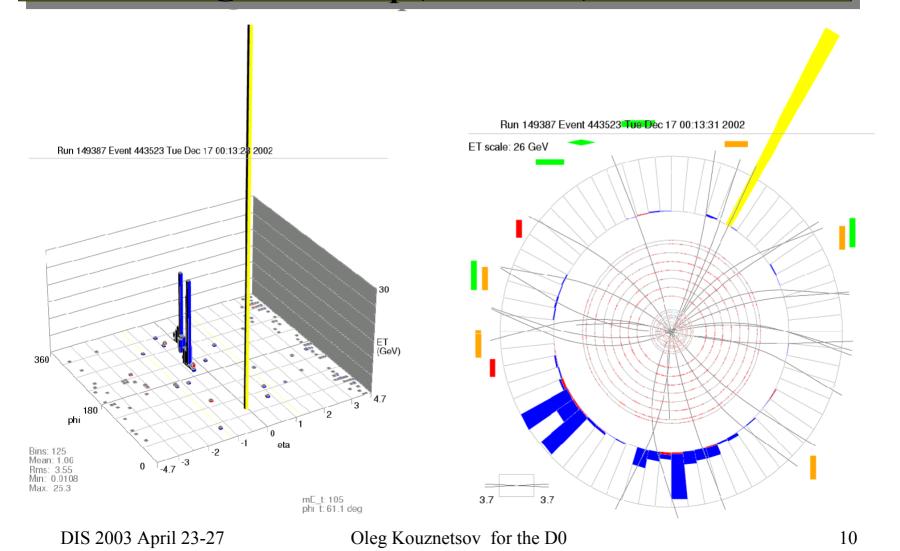
Favoured channel to look for squarks and gluinos ...their decay chains produce jets (quarks & gluons), leptons and missing energy because LSP - neutralino – escapes the detection

$$\mathcal{L} = 4.1 pb^{-1}$$
 2-3 jets/event
P_T leading jet > 100 GeV

- •Quality cuts : reduce instrumental Bkg
- •Topological cuts: increase Sig/Bkg ratio $\widetilde{b_1} \to b\widetilde{\chi}_1^0$
- Physics Bkg from simulation
- QCD background from data

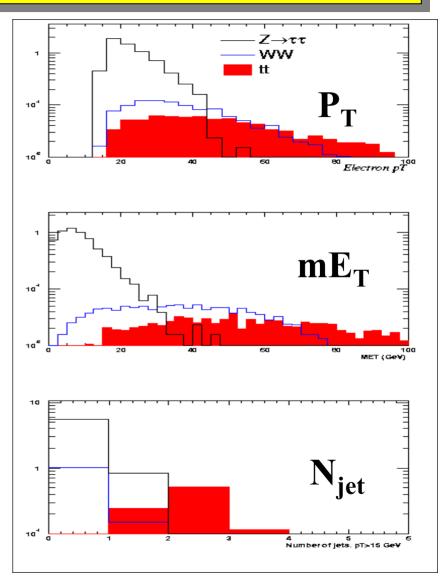

SUGRA search: Jets + mE_T

QCD background is dominant: 95% (mE_T>70 GeV) and 76% (mE_T>100 GeV) of the Total Background

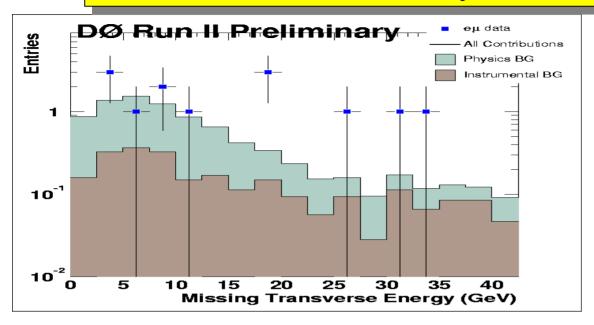

Fit	the	interval	40-65	GeV
f(mE _T)=a*exp	(-b*m	E _T)

DØ Run II Preliminary

mE _T	Total Bkg	Data	95% CL
			εσ (pb)
> 70 GeV	18.4 ± 8.4	7	4.2
> 80 GeV	9.5 ± 5.3	6	3.8
> 90 GeV	5.1 ± 3.2	4	3.1
> 100 GeV	2.7 ± 1.8	3	2.7



SUGRA search: Jets + mE_T --- highest mE_T (184 GeV) event---



Limits on New Physics in an eµ Search

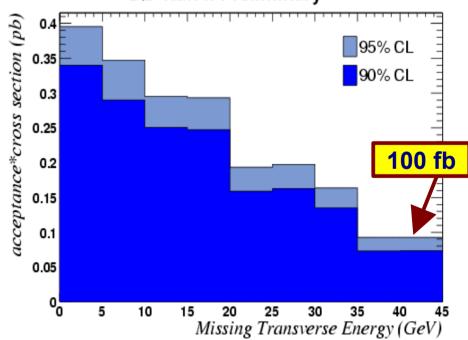
- Channel with low SM background
- has high discovery potential
- provides modelindependent limit on NP cross section
- require $p_T > 15 \text{ GeV } (e/\mu)$
- no jets with $p_T > 15 \text{ GeV}$
- estimate fake rates from data
- physics background from Monte Carlo

Limits on New Physics in the eµ Search

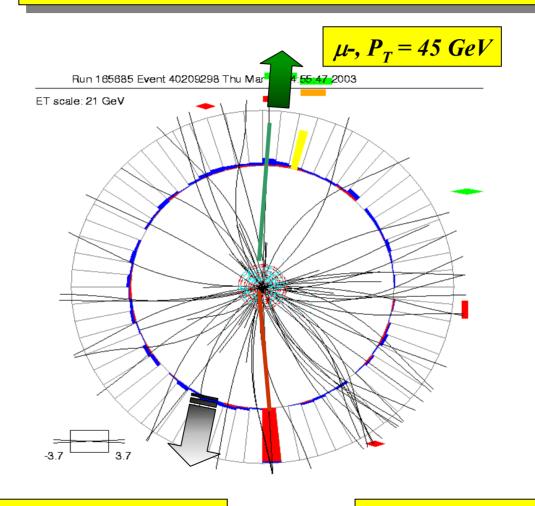
$$\mathcal{L} = 33.0 \ pb^{-1}$$

Process	Size
$Z \rightarrow \tau \tau \rightarrow e \mu$	5.6 ± 0.4
$WW \rightarrow e\mu$	1.0 ± 0.1
tt→eµjj	0.02 ± 0.01
QCD + W+jets	3.01 ± 2.7
All	9.6 ± 2.7
Data	13

Limits on New Physics in an eµ Search



at low mE_T physics background dominates at high mE_T the instrumental one dominates


mE _T	DATA	TOT BKG
> 0	13	9.6 ± 2.7
> 5	10	7.4 ± 2.2
> 10	7	4.6 ± 1.6
> 15	6	3.0 ± 1.3
> 20	3	2.3 ± 1.1
> 25	3	1.9 ± 1.0
> 30	2 /	1.6 ± 0.8
> 40	0	1.4 ± 0.7
> 45	0	1.1 ± 0.5

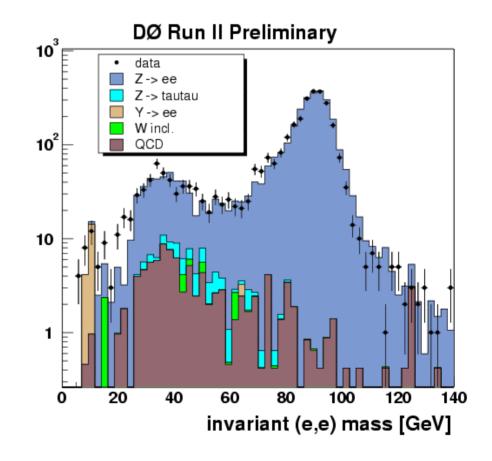
$A^*\sigma_{new\ physics}$ (f.e acceptance for WWightarrowe μ -> 17%)

Highest mE_T eµ event

Missing $E_T = 33.5 \text{ GeV}$

 $e+, P_T = 21 GeV$

Chargino/Neutralino Search: Trilepton mode


$$\mathcal{L} = 42.0 \text{ pb}^{-1} \quad p\overline{p} \longrightarrow \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \longrightarrow lee v \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0}$$

Selection:

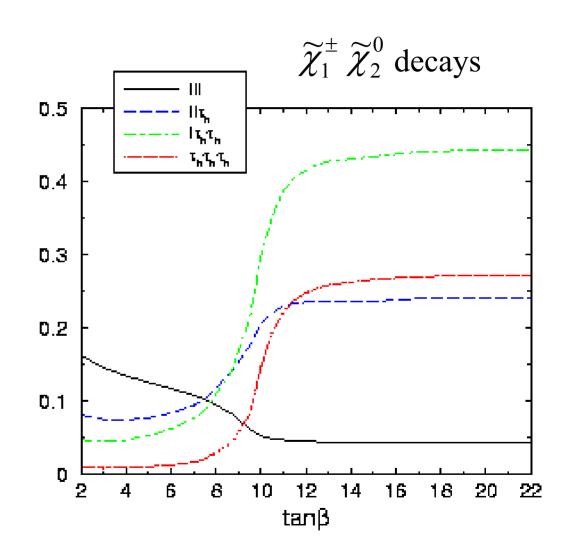
$$E_T(e_1) > 15 \text{ GeV},$$

 $E_T(e_2) > 10 \text{ GeV}$

Background:

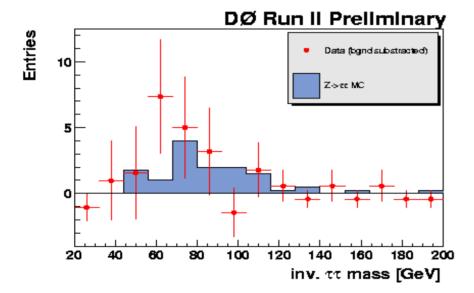
SM processes $Z \rightarrow ee$, $Z \rightarrow \tau^+\tau^-$ and $W \rightarrow ev$ are the dominant Bkg; - QCD background estimated from data with inverted ID cuts

Chargino/Neutralino Search: Trilepton mode


Cuts	Sum Bkg	Data
ID + kinem + trk	3216 ± 43	3132
$10 < M_{ee} < 70 \text{ GeV}$	660 ± 19	721
M _T > 15 GeV	96 ± 8	123
3rd trk	3.2 ± 2.3	3
mE _T > 15 GeV	$\boldsymbol{0.0\pm1.4}$	0

 σ x BR(3lepton) < 3.5 pb (95% CL)typical selection efficiency for SUGRA 2-4%sensitivity still about factor of 7 away from extending excluded area in the parameter space \rightarrow working on improving efficiency, adding channels

Chargino/Neutralino Search: τ channels


Branching fraction of the chargino/neutralino pairs into the final states with e, μ or hadronic τ

Also....Higgs searches, third generation leptoquarks

A New Capability for D0 in Run II : $Z \rightarrow \tau^+\tau^-$ decays

Distribution in invariant

ττ mass, calculated using collinear approximation, (opp sign - like sign)

Data: 14 ± 9 evt

Signal MC norm

to 50 pb-1: 13 ± 4 evt

$$\mathcal{L} = 50 \ pb^{-1}$$

 $Z \rightarrow \tau^+\tau^- \rightarrow \mu h X$ decays were also observed

GMSB SUSY search

An alternative to gravity mediated SUSY: introduce new gauge fields ("messengers") which propagate SUSY-breaking interactions and couple to ordinary and SUSY particles

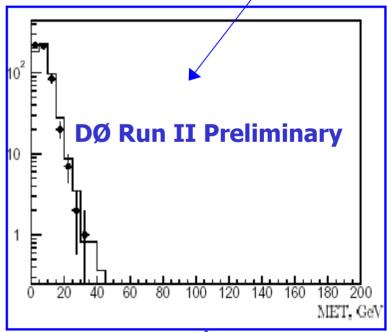
Phenomenology:

- Gravitino is very light (<<MeV) and is LSP</p>
- **❖NLSP** can be a neutralino or a slepton
- **❖** In case of the neutralino NLSP: final state always has two photons

$$\widetilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}$$

$$p\overline{p} \rightarrow gauginos \rightarrow W, Z, \gamma + \chi_1^0 \chi_1^0 \rightarrow$$

 $\rightarrow \gamma \gamma + \widetilde{G}\widetilde{G} + X$

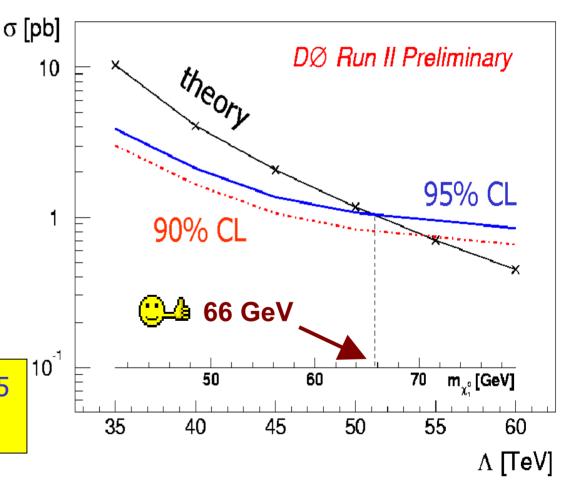

GMSB SUSY search

Require two photons with $p_T > 20$ GeV, apply quality and topological cuts, determine QCD background from data

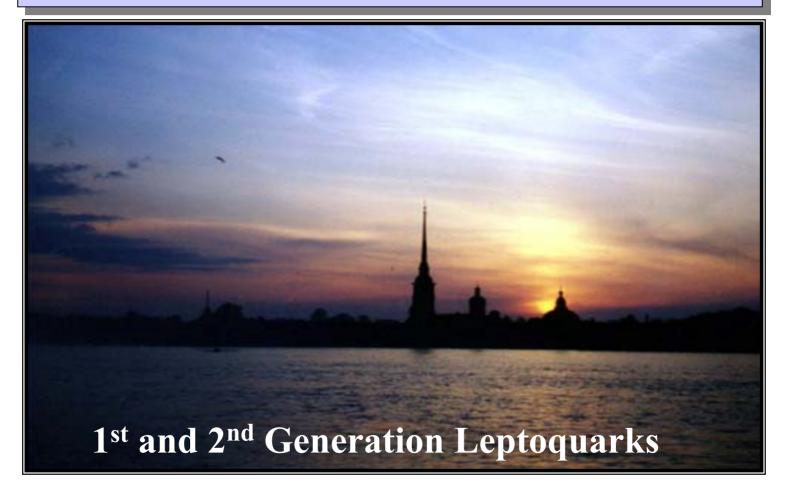
Sample MET bin	QCD - dominated Data Sample	2 γ data	QCD Data Sample Normalized
< 20 GeV	5841	535	Normalized to be equal
> 25 GeV	65	3	6.0 ± 0.8
> 30 GeV	27	1	2.5 ± 0.5
> 35 GeV	18	0	1.6 ± 0.4

QCD background sample obtained by inverting EM quality cuts

Missing E_T distribution of 2 γ data (points) compared with normalized QCD background (hist)



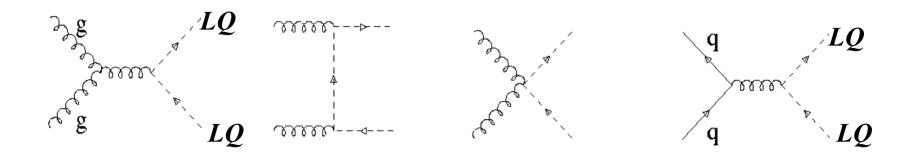
GMSB SUSY search


$$\mathcal{L} = 40.0 \ pb^{-1}$$

Theory =
"Snowmass"
slope: $M = 2\Lambda$, $N_5 = 1$, $\tan \beta = 15$, $\mu > 0$

Run I result: $M(\chi^0) > 75$ GeV ($\mathcal{L} = 120 \ pb^{-1}$)

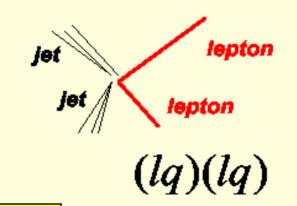
Searches for Exotics at


Search for Leptoquarks

*****Leptoquarks (LQ) appear in extended gauge sectors and composite models

- directly couple to Leptons and Quarks
- ·carry color, fractional electric charge, lepton and baryon number
- •scalar (spin 0) or vector (spin 1)

*LQ would be pair produced at the Tevatron


·Gluon fusion (dominant), quark anti-quark annihilation

Search for Leptoquarks

Leptoquark Decay

- $LQ \rightarrow l^{\pm}q \text{ or } vq$
- $\cdot \beta \equiv \text{Branching Ratio } (LQ \to l^{\pm}q)$
- •LQ could have 3 generations, but no cross-generational decay

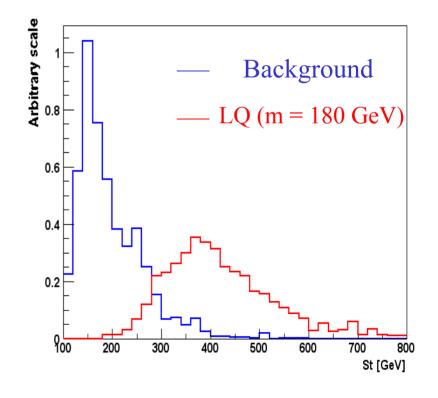
LQ search was performed in 2e + 2jets and $2\mu + 2jets$ channels assuming $\beta \equiv 1$

Background

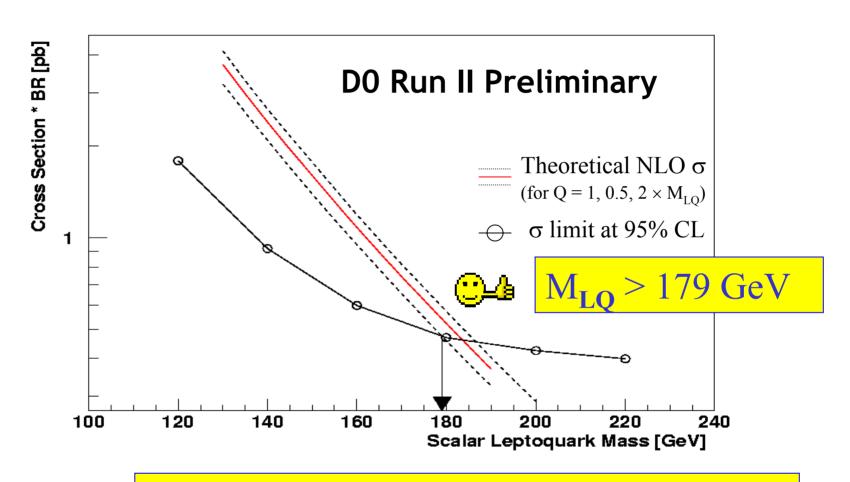
- --Drell-Yan/Z ... $Z/\gamma^* + jets \rightarrow l^+l^- + jets$ (dominant)
- -- Top and W pair production
- -- Multi-jet QCD, 2 jets fake EM objects

Search for 1st Gen LQ: 2 e + 2 jets

$$\mathcal{L} = 43.0 \ pb^{-1}$$


Event selection

- 2 electrons with $p_T > 25 \text{ GeV}$
- 2 jets or more with $p_T > 20 \text{ GeV}$
- $M_{ee} < 75 \text{ GeV or } M_{ee} > 105 \text{ GeV}$


	no S _T cut	S _T cut
Data	6	0
Total BKG	5.1 ± 1.1	$\textbf{0.34} \pm \textbf{0.06}$
Drell-Yan	3.1 ± 0.9	$\boldsymbol{0.17 \pm 0.05}$
QCD	1.6 ± 0.6	$\boldsymbol{0.09 \pm 0.03}$
Тор	$\boldsymbol{0.37 \pm 0.10}$	$\boldsymbol{0.08 \pm 0.02}$
LQ 200 GeV	2.09 ± 0.24	$\boldsymbol{1.98 \pm 0.22}$

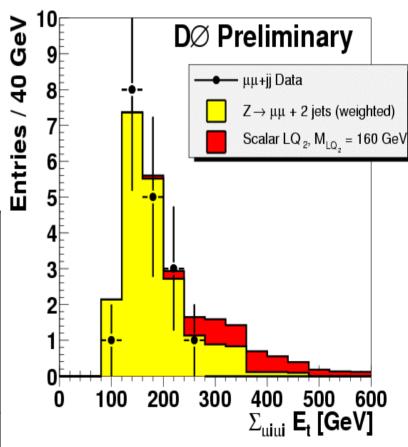
$$S_{T} CUT : S_{T} \equiv \sum E_{T} (of 2e2j)$$

$$S_{T} > 300 GeV$$

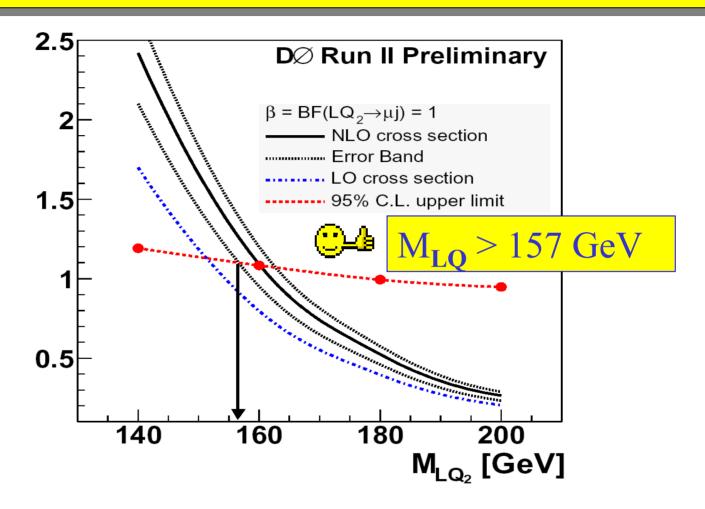
Search for 1st Gen LQ: 2 e + 2 jets

Run I result: $M_{LQ} > 225 \text{ GeV } (L = 115 \text{ pb}^{-1})$

Search for 2nd Gen LQ: $2 \mu + 2$ jets


$$\mathcal{L} = 30.0 \ pb^{-1}$$

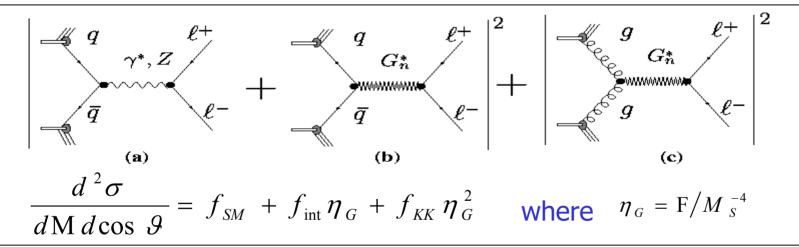
$S_T \equiv \sum E_T(\text{of } 2\mu 2j)$


Event selection

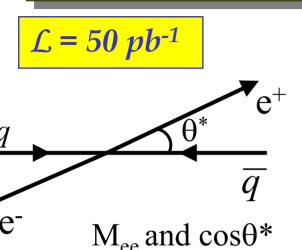
- 2 opposite sign muons with $p_T > 15 \text{ GeV}$
- 2 jets with $p_T > 20 \text{ GeV}$
- $M_{\mu\mu} > 110 \text{ GeV}$

	no M _{μμ} cut	$M_{\mu\mu} > 110 \text{ GeV}$
Data	18	0
Drell-Yan	21.5 ± 1.4	4.0 ± 0.6
WW	0.002 ± 0.001	0.001 ± 0.001
Top	0.193 ± 0.004	0.081 ± 0.003
LQ 160 GeV	4.8 ± 0.1	3.5 ± 0.1

Search for 2nd Gen LQ: $2 \mu + 2$ jets

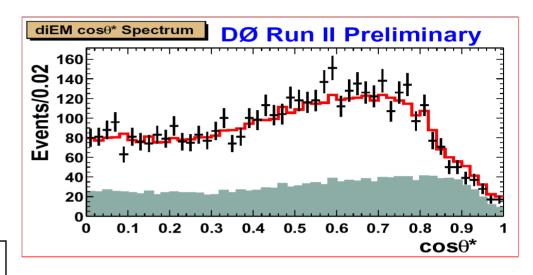

Run I result: $M_{LQ} > 200 \text{ GeV } (L = 120 \text{ pb}^{-1})$

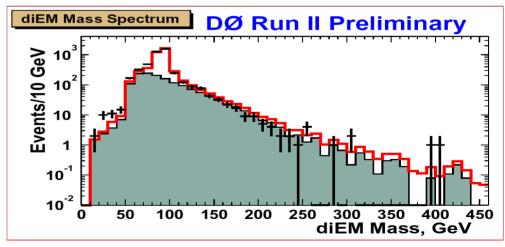
Searches for Large Extra Dimensions at


Large Extra Dimensions Search

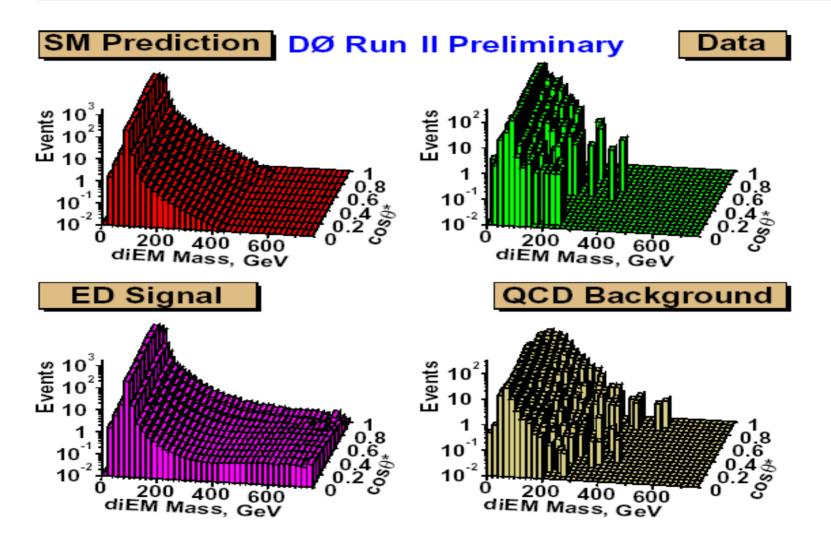
String theory attempting to unify gravity to other interactions require extra dimensions, which can be probed by fermion or boson pair production via virtual gravitons. Signature-> high-mass dileptons and diphotons

M_s is the fundamental Planck scale. To solve the hierarchy problem, one can have M_s in the TeV scale for "n" of extra dimensions at least equal to 3. n=1 is ruled-out and n=2 is tightly constrained.


LED Search: Di-EM channel

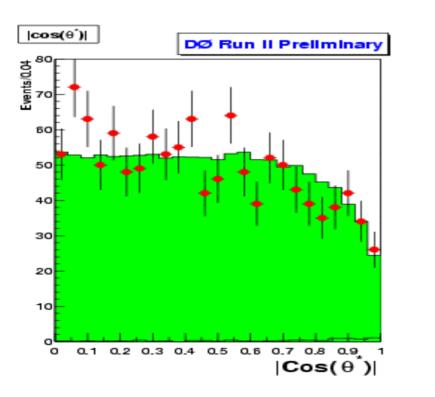


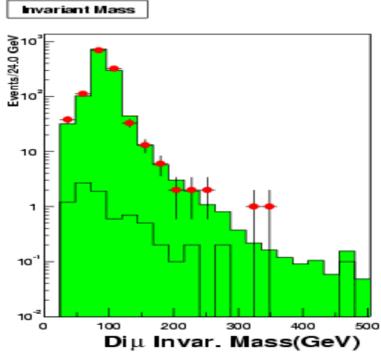
Require 2 electromagnetic objects with $p_T > 25$ GeV, missing $E_T < 25$ GeV


Background

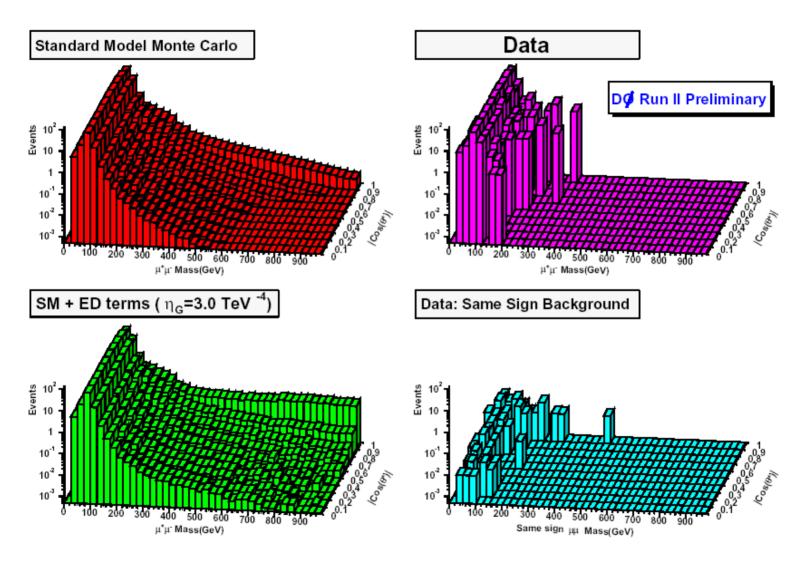
Drell-Yan/Z, direct di-photon, QCD fake EM

LED Search: Di-EM channel




LED Search: Di-Muon channel

$$\mathcal{L} = 30 \ pb^{-1}$$


Require two muons with $p_T > 15$ GeV, impose Mµµ> 40 GeV

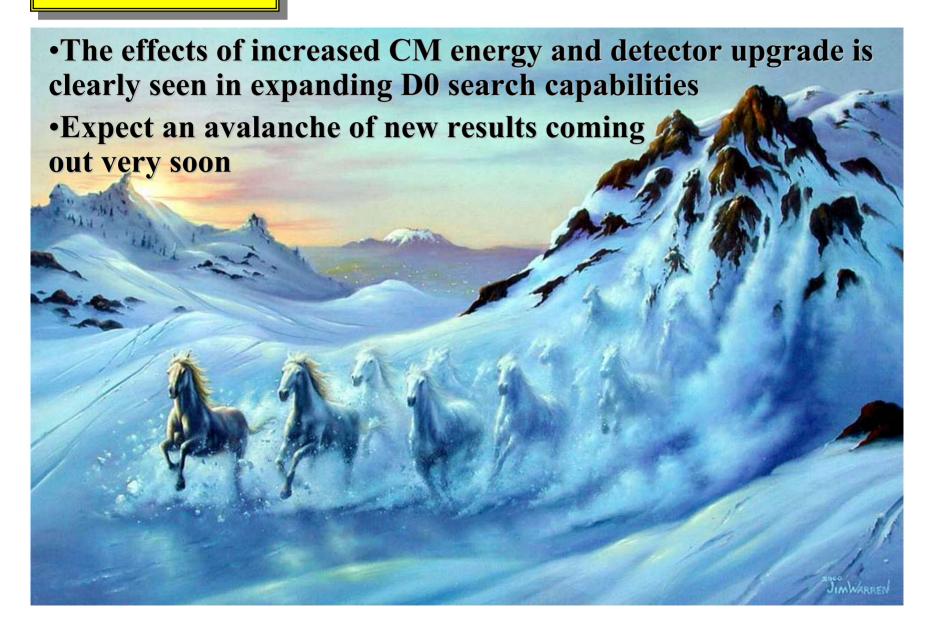
Bkg: DY/Z, heavy quark decays, charge mis-measurement

LED Search: Di-Muon channel

Large Extra Dimensions Search: Results

• Fit the distributions in the M_{ll} - $cos\theta^*$ plane to determine the value of η_G ($\eta_G = 0$ in SM)

Di-EM analysis: $\eta_G = 0.0 \pm 0.27 \text{ TeV}^{-4}$

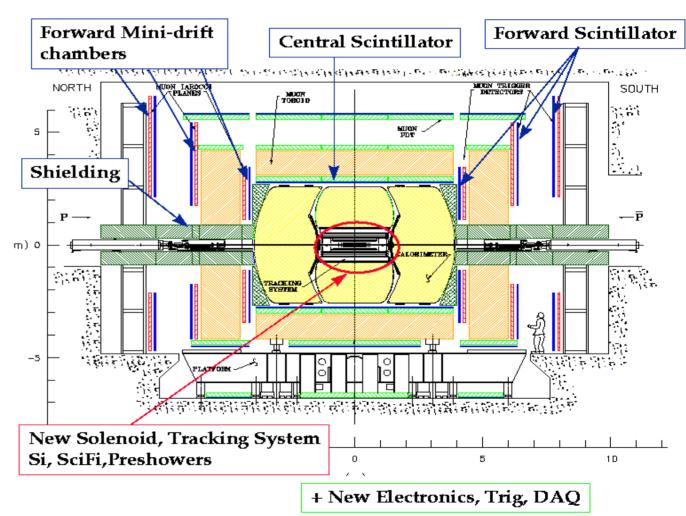

Di-Muon analysis: $\eta_G = 0.02 \pm 1.35 \text{ TeV}^{-4}$

- Extract 95% CL upper limits on η_G
- Translate to 95% CL $\it lower$ limits on Planck scale M_S , in TeV, using different formalisms for $\,F$

Formalism	GRW	HLZ for n=: 7	Hewett λ = 1
di-EM (~50 pb ⁻¹)	1.12	1.16 0.89	1.00
di-MU (~30 pb ⁻¹)	0.79	0.68 0.63	0.71

Di-EM limit close to Run I — 4
Di-Muon (new)

Conclusion



DØ upgrade/status

D0 upgrade

- tracking
 Silicon vertex
 Fiber tracker
- solenoid2 T magnetic field
- Preshower
- Muons detector
- Electronics
- Trigger system

DO still commissioning central track and displaced vertex trigger

SUSY Particle Zoo

$$p\overline{p} \to \tilde{\chi}_{i}^{\pm} \tilde{\chi}_{j}^{\mp}, \ \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{\pm}, \ \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}, \ \tilde{q} \tilde{\overline{q}}, \ \tilde{q} \tilde{\overline{g}}, \ \tilde{g} \tilde{\overline{g}}, \ \tilde{l} \tilde{\overline{l}}$$

SM Particles		SUSY Particles				
		interaction eigenstates		mass eigenstates		
Name	Spin	Name	Spin	Symbol	Name	Symbol
q = u, d, s, c	1/2	squark	0	$\widetilde{q}_L,\widetilde{q}_R$	squark	$\widetilde{q}_L,\widetilde{q}_R$
q = b, t	1/2	squark	0	$\widetilde{q}_L,\widetilde{q}_R$	squark	$\widetilde{q}_1,\widetilde{q}_2$
$l=e,\mu,\tau$	1/2	$_{ m slepton}$	0	$\widetilde{l}_L,\widetilde{l}_R$	slepton	$\widetilde{l}_1,\widetilde{l}_2$
$ u = \nu_e, \nu_\mu, \nu_\tau $	1/2	sneutrino	0	$\widetilde{ u}$	$\operatorname{sneutrino}$	$\widetilde{ u}$
gluons g	1	gluino	1/2	\widetilde{g}	gluino	\widetilde{g}
W^{\pm}	1	wino	1/2	\widetilde{W}^{\pm}	2 charginos	
H^{\pm}	1	higgsino	1/2	H^{\pm}	of each sign	$\widetilde{\chi}_{1,2}^{\pm}$
photon γ	1	photino	1/2	$\widetilde{\gamma}$		
Z^0	1	zino	1/2	\widetilde{Z}^0	4 neutralinos	$\widetilde{\chi}^0_{1,2,3,4}$
h,H,A	1	higgsino	1/2	$H_{1,2}^{0}$		
graviton G	2	gravitino	3/2	\widetilde{G}	gravitino	\widetilde{G}

Where we are standing: Run I vs Run II

SUSY search	Run I (120 pb-1)	Run II
Jets +mE _T (new)		$\varepsilon \times \sigma < 4.2 \text{ pb } (4.1 pb^{-1})$ $mE_T > 70 \text{ GeV}$
eμ +mE _T	?	$A \times \sigma < 0.1 \text{ pb } (33 \text{ pb}^{-1})$ mE _T >45 GeV
lll+mE _T (Run I) eel+mE _T (Run II)	$σ$ x BR < 0.3 pb $M(χ^0)≈60 GeV$ $mE_T>10-15 GeV$	σ x BR < 2.2 pb (42 pb-1) $M(χ0)=62 GeV$ $mET>15 GeV$

Where we are standing: Run I vs Run II

Analysis	Run I (120 pb-1)	Run II
SUSY $2\gamma + mE_T$	$M(\chi^0) > 75 \text{ GeV}$	$\mathbf{M}(\chi^0) > 66 \ (40 \ pb^{-1})$
1st LQ 2 e + 2 jets	M _{LQ} > 225 GeV	$M_{LQ} > 179 (43 pb^{-1})$
2^{nd} LQ $2 \mu + 2$ jets	M _{LQ} > 200 GeV	$M_{LQ} > 157 (30 pb^{-1})$
LED 2em	M _S > 1.1 TeV	$M_S > 1.0 (50 pb^{-1})$
LED 2 μ (new)		$M_{\rm S} > 0.71 \ (30 \ pb^{-1})$

A lot of another analyses are going on: gauge interactions search, SUGRA particles search with the different jets & leptons & mE_T signatures ... etc