DIS 2003 23.-27.April 2003, St. Petersburg, Russia

Search for single-top production with the ZEUS detector at HERA

Dominik Dannheim

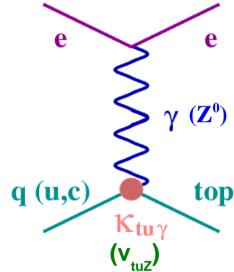
DESY / University of Hamburg

for the ZEUS collaboration

Outline:

- Single-top production at HERA
- ·Isolated leptons
- 3-jet events
- Exclusion limits
- Summary/Outlook

Single-top production at HERA

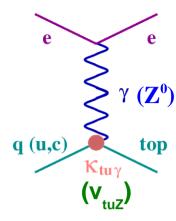

HERA:

$$\begin{array}{ccc}
e^{+}(e^{-}) & & p \\
& & & \\
\hline
27.5 \text{ GeV} & 920 \text{ GeV} \\
& & & \\
& & & \\
\hline
(820 \text{ GeV})
\end{array}$$

$$\sqrt{s} = 318 \, GeV \, (300 \, GeV)$$

ZEUS: $L_{int} = 130 \text{ pb}^{-1}$

- production of single top quarks through quarkflavour changing neutral currents (FCNC)
- SM contribution <1 fb (GIM suppression)
- several BSM theories (e.g. SUSY models) predict sizeable FCNC rates
- effective anomalous coupling at t-u-γ- or t-u-Z⁰ vertex:



$$\Delta \mathcal{L}_{\text{eff}} = e \ e_t \ \bar{t} \ \frac{i\sigma_{\mu\nu}q^{\nu}}{\Lambda} (\kappa_{tu\gamma}) u \ A^{\mu} + \frac{g}{2\cos\theta_W} \ \bar{t} \ \gamma_{\mu} (v_{tuZ}) u \ Z^{\mu} + \text{h.c.}$$

- differences w.r.t LEP/Tevatron analyses:
 - we neglect c-coupling (u dominant at large x>0.3)

•
$$\kappa_{\text{t-u-}\gamma}^{\text{LEP}} = \sqrt{2}\kappa_{\text{t-u-}\gamma}^{\text{ZEUS}}$$
 and $v_{\text{t-u-}\gamma}^{\text{LEP}} = \sqrt{2}v_{\text{t-u-}\gamma}^{\text{ZEUS}}$

Experimental signature

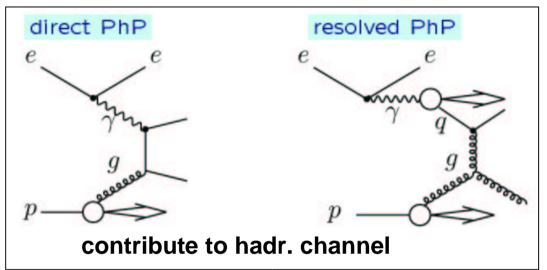
- Production modes:
 - γ -exchange: scattered el. not in detector ~65%
 - Z-exchange: scattered el. in detector ~100%

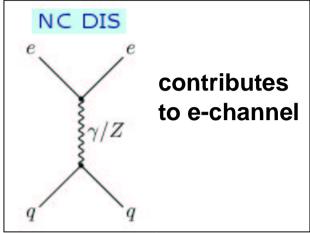
- Decay modes:
 - SM:
 - leptonic (BR~32%): $t \rightarrow bW$, $W \rightarrow lv$ isol. e/μ , b-jet, missing $p_{_T}$
 - hadronic (BR=68%): $t \rightarrow bW$, $W \rightarrow q\overline{q}'$ 3 jets, inv.mass~m_{top}
 - FCNC:
 - κ_{t-u-γ}

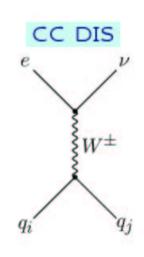
 $t \rightarrow u\gamma$

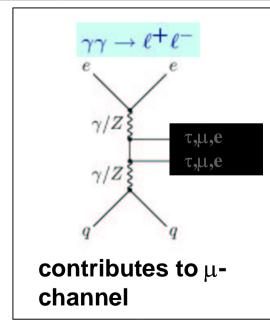
n-jets (+ lepton pairs)

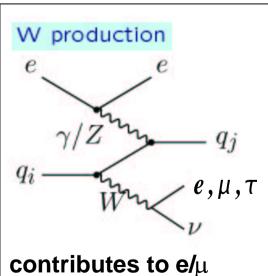
• **V**_{t-u-Z}:


 $t \rightarrow uZ^0$


- Search strategy:
 - optimize acceptance for
 - γ -exchange (highest sensitivity at HERA)
 - SM decay modes (existing constraints on FCNC decay)
 - consider also other production and decay modes


MC Simulation for signal process

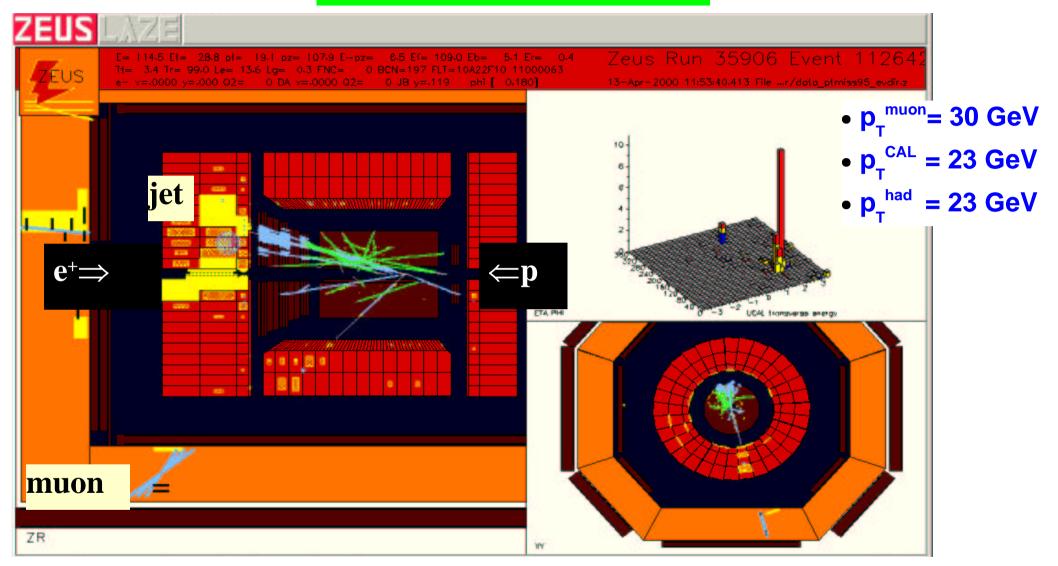

- Two generators used:
 - HEXF (modified version)
 - produce excited u* with m_{u*}=m_{top}
 - Only SM decay: u* → bW
 - uses Hagiwara model (only right-handed top quarks)
 - ISR according to Weizsäcker-William-approximation
 - CompHEP + PYTHIA
 - LO calculation for single-top Lagrangian
 - samples for all combinations of production and decay modes
 - no ISR
- Good agreement between both generators (<10% difference in efficieny)
 - → use HEXF as default, CompHEP for anomalous decays
- single top efficiencies from samples for
 - all combinations of production and decay modes
 - m_{top}=170, 175, 180 GeV (main systematic uncertainty)


Standard Model Background

reweighted with
recent NLO
calculations for PhP
part
(Diener,
Schwanenberger,
Spira:
hep-ex/0302040),
→talk by Chr.
Schwanenberger

EPVEC LO MC,

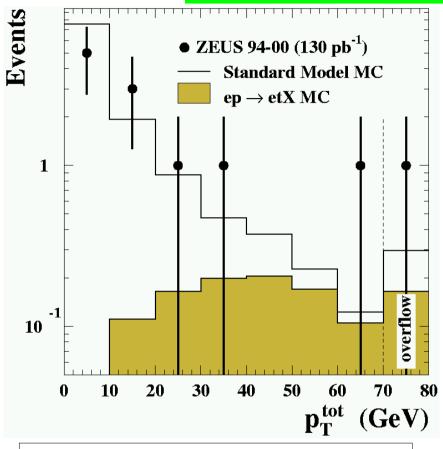
channel

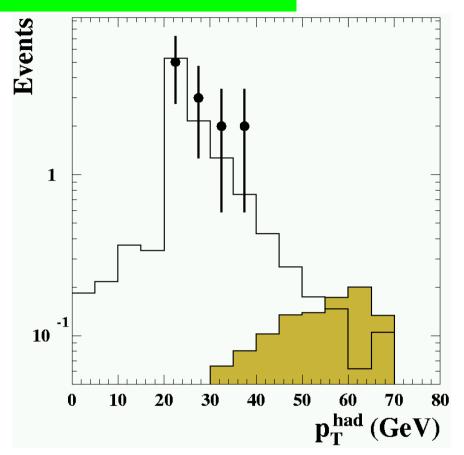

Preselection leptonic channel: isolated electrons/muons

$$egin{aligned} ep &
ightarrow e \ t \ \mathbf{X} \
ightarrow b \ W \
ightarrow e
otag (\mu
u) \end{aligned}$$

- Missing transverse momentum p_T^{CAL} > 20 GeV
- \geq 1 jet with $p_T^{jet} > 5$ GeV, $9^{\circ} < \theta < 140^{\circ}$
- ≥ 1 track with:
 - $p_{T}^{track} > 5 \text{ GeV}, 17^{\circ} < \theta < 115^{\circ}$
 - Isolation to other tracks/jets:
 - distance to closest track in η - ϕ -plane:
 - distance to closest jet in η-φ-plane:
- Lepton identification:
 - electron or muon
 - (tau →talk by Damir Lelas tomorrow)
- ϕ_{acopl} >8° for el. (NC DIS rejection)

$$D_{trk, jet} = \sqrt{\left(\Delta \eta_{trk, jet}\right)^2 + \left(\Delta \phi_{trk, jet}\right)^2}$$

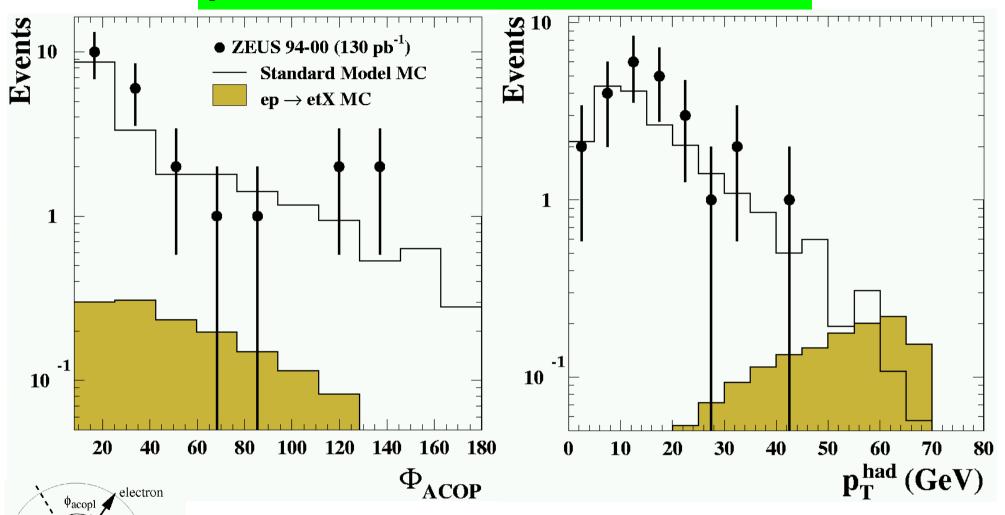

Muon candidate event



- striking signature
- main motiviation for this search:

H1 sees excess at large p_{τ}^{had} (\rightarrow following talk by Andre Schöning)

preselection of isolated muons



$$p_T^{tot} = \sqrt{(p_x^{CAL} + p_x^{\mu})^2 + (p_y^{CAL} + p_y^{\mu})^2}$$

- 12 events observed, 11.9^{+0.6} expected from SM background
- SM background dominated by $\gamma\gamma \to \mu\mu$ (low $p_{_{\scriptscriptstyle T}}^{_{\scriptscriptstyle tot}}$)
- large p_T had for signal MC
- good agreement between data and SM MC

- 24 events observed, 20.6^{+1.7} expected from SM background
- SM background dominated by NC DIS (low acoplanarity)
- good agreement between data and SM MC
- large p_{τ}^{had} for signal MC

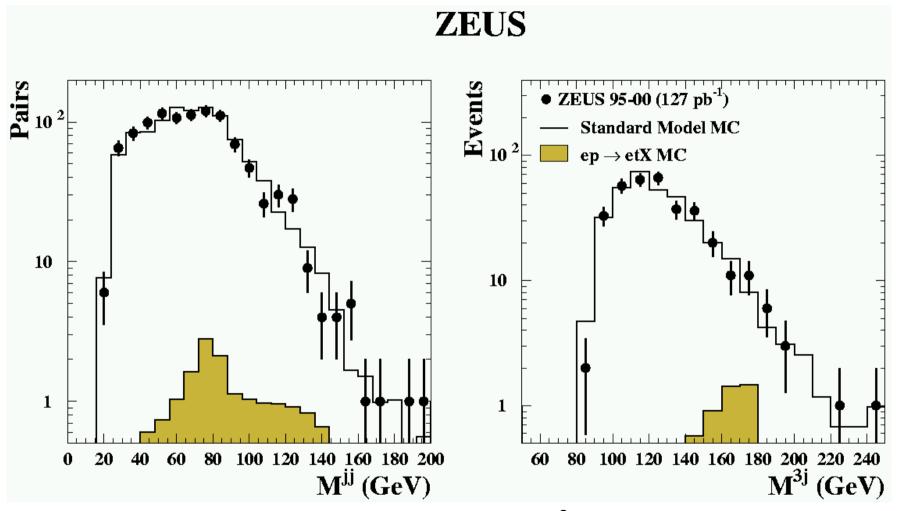
Final selection of single-top candidates

- •optimize selection for single-top signal:
- minimize expected Bayesian upper limit on signal in the presence of background
- → additional selection cuts:
 - E-p₇<47 GeV (only electron candidates)
 - p_T^{tot} > 10 GeV (only muon candidates)
 - $p_T^{had} > 40 \text{ GeV}$

	Positron	Muon
Leptonic channel	channel	channel
	obs./expected (W)	obs./expected (W)
Preselection	$24 / 20.6^{+1.7}_{-4.6} (17\%)$	$12 / 11.9^{+0.6}_{-0.7} (16\%)$
Final selection $(p_T^{\text{had}} > 25 \text{ GeV})$	$2 / 2.90^{+0.59}_{-0.32} (45\%)$	$5 / 2.75^{+0.21}_{-0.21} (50\%)$
Final selection $(p_T^{\text{had}} > 40 \text{ GeV})$	$0 / 0.94^{+0.11}_{-0.10} (61\%)$	$0 / 0.95^{+0.14}_{-0.10} (61\%)$

- No top candidate in HERA I dataset observed
- •1.9 events expected from SM background
- •SM background dominated by direct W production
- •signal efficiency: 33% el. channel, 34% muon channel

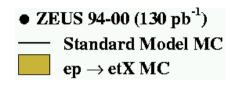
Hadronic channel

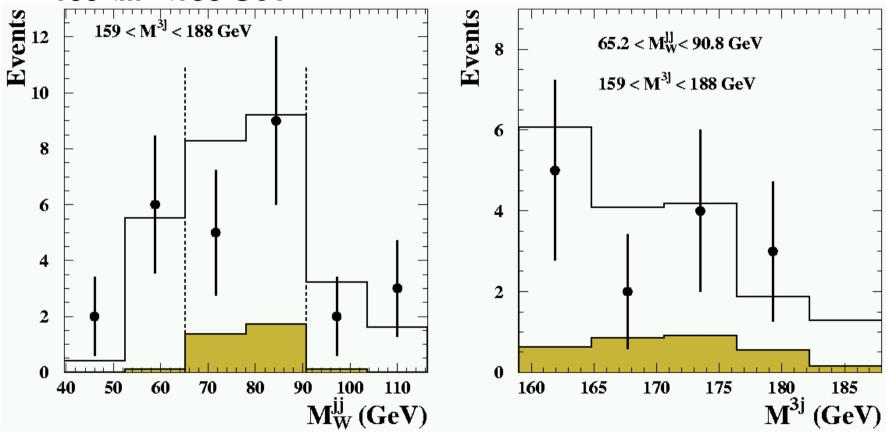

$$egin{array}{c} eoldsymbol{p}
ightarrow e\,t\,\mathbf{X} \
ightarrow b\,W \
ightarrow qar{q}' \end{array}$$

- Signature: 3 jets with invariant mass M^{jj}~M_w, M^{3j}~M_{top}
- main SM background: QCD multi-jet production
- Preselection:
 - \geq 3 jets -1< η <2.5
 - $E_{T}^{\text{jet}(1,2,3)} > 40, 25, 14 \text{ GeV}$
 - N_{el}=0 (NC DIS rejection)
 - $p_T^{CAL}/\sqrt{E_T^{tot}}$ < $2\sqrt{GeV}$ (CC DIS rejection)
 - 8.8<E-p_z<52.2 GeV (NC DIS and p-beam-gas rejection)

$$\begin{split} M^{\rm jj} &= \sqrt{2E_T^{\rm jet,k}E_T^{\rm jet,l}[\cosh{(\eta^{\rm jet,k}-\eta^{\rm jet,l})}-\cos{(\varphi^{\rm jet,k}-\varphi^{\rm jet,l})}]} \\ M^{\rm 3j} &= \sqrt{\sum_{k< l} 2E_T^{\rm jet,k}E_T^{\rm jet,l}[\cosh{(\eta^{\rm jet,k}-\eta^{\rm jet,l})}-\cos{(\varphi^{\rm jet,k}-\varphi^{\rm jet,l})}]} \end{split}$$

- resolution:
 - M^{jj}~8% for M^{jj}>50 GeV
 - M^{3j}~4% for M^{3j}>80 GeV

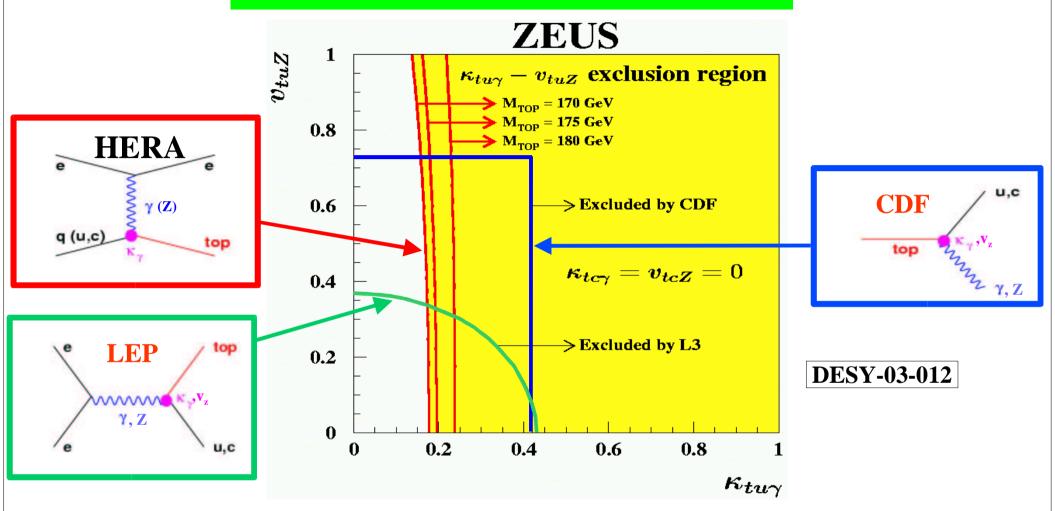

preselection hadronic channel



- background dominated by low Q² QCD Multi-jet production
- PYTHIA PhP MC normalised to data for M^{3j}<159 GeV
- good agreement with SM expectations

final selection hadronic channel

- Optimized windows for final selection:
 - 65.2<M^{ij}<90.8 GeV
 - 159<M^{3j}<188 GeV



- 14 events selected, 17.6 expected from SM background
- → good agreement with SM expectations
- → signal efficiency ~24% for t →bW, W →qq'

Exclusion limits on $\kappa_{\text{t-u-y}}$

- NLO QCD corrections for $\sigma(\kappa_{t-1-\gamma})$:
 - calculations by Belyaev and Kidonakis (PRD 65(2002) 037501)
 - $\mu_R = \mu_F = m_{top}$
 - reduced scale-dependence: $\mu_R = \mu_F = m_{top}/2$.. $2m_{top} \rightarrow \Delta \sigma < \pm 4\%$
 - systematic uncertainties:
 - m_{top} =±5 GeV $\rightarrow \Delta \sigma$ =±25% (±20%) for \sqrt{s} =318 (300) GeV
 - $\alpha_s(M_z) \rightarrow \Delta \sigma = \pm 2\%$
 - proton PDF $\rightarrow \Delta \sigma = \pm 4\%$
- 95% C.L. on κ_{t-u-v} , assuming $v_{t-u-z} = 0$:
 - $m_{top} = 170 \text{ GeV}$: $\kappa_{t-u-v} < 0.158$
 - m_{top}=175 GeV: κ_{t-u-y} <0.174 (σ <0.225 pb at \sqrt{s} =318 GeV)
 - $m_{top} = 180 \text{ GeV}: \kappa_{t-u-y} < 0.210$

2-dimensional exclusion limits

- → LEP and Tevatron limits displayed for HERA Lagrangian convention and assuming no charm contribution
- highest sensitivity for κ_{t-u-ν}
- significant region excluded by ZEUS limit

Summary/Outlook

- search for single-top production through FCNC
- full HERA I dataset covered, L_{int} = 130 pb⁻¹
- search in leptonic and hadronic W decay channels
- no signal observed
- constraints on anomalous couplings κ_{t-u-v} and v_{t-u-z}
- limits competitive with other colliders:

$$\kappa_{\text{t-u-}\gamma}$$
 <0.174 \Leftrightarrow σ<0.225 pb at $\sqrt{\text{s=318 GeV}}$

Future data from HERA II:

- 5x higher int. luminosity \rightarrow 2x higher sensitivity to couplings
- improved detector, in particular forward tracking