News on Spin

Werner Vogelsang

RIKEN-BNL Research Center / BNL Nuclear Theory

DIS 03, April 23, 2003

Purposes of this talk :

- summarize latest status and main new developments in the field
- introduction to (some of) the talks in WG E

parallel session organizers Anselmino / van der Steenhoven

Vernon W. Hughes (1921-2003)

Outline :

Part I : Nucleon Helicity Structure

- What we know, and what we'd like to know
- Today's facilities & experiments in Spin Physics
- Recent results & future prospects

Part II : Transverse-Spin Phenomena

- Transversity
- Single-spin asymmetries
- \bullet Developments in $~\sim$ past year

Part I : Nucleon Helicity Structure

- 1. What we know, and what we'd like to know
- Spin physics $\lesssim 2000$:
- dominated by *inclusive DIS* at SLAC,CERN,DESY

learned about

*
$$[\Delta q + \Delta \bar{q}](x,Q^2)$$
 distributions

- * small axial charge $\sim \ \langle P | \bar{\psi} \, \gamma^{\mu} \, \gamma^5 \, \psi | P \rangle \ \approx 0.2 \; , \;$ axial anomaly
- * Bjorken sum rule $\int dx \ [g_1^p g_1^n] \propto g_A$ confirmed

• identified goals for near future :

 $\int_0^1 dx \,\Delta g$ – a likely major contributor to the nucleon spin ! a main emphasis at most current experiments

- * more detailed information on quark distributions :
 - flavor separations : $\Delta \bar{u}$ vs. $\Delta \bar{d}$, Δs , Δs vs. $\Delta \bar{s}$ etc. (models, Pauli blocking, . . . , relation to baryon β decays)
 - small-x / large-x behavior
- * orbital angular momentum of quarks and gluons :

- $\left(\vec{x} \times \vec{T}_{q,g}\right)_z$ matrix elements can be measured in DVCS & Co.

- spin structure on the lattice :
- * can calculate low moments of pdfs
- * agreement w/ phenomenological values at 20% level (or worse)
- * chiral extrapolations? Arndt, Savage; Chen, Ji; Detmold, Melnitchouk, Negele, Renner, Thomas
- * continuum extrapolations ? QCDSF

• $g_A = \int dx \ (\Delta u - \Delta d)$ RBC : Sasaki, Orginos, Ohta, Blum

2. Today's facilities & experiments in HE Spin Physics

Lepton-Nucleon :

- HERMES ($E_e \leq 27.5 \text{ GeV}$)
 - * DIS structure functions, semi-inclusive, transversity, DVCS/excl., . . .
 * recent run with transversely polarized target
- JLab ($E_e \leq 6 \text{ GeV}$)
 - * structure functions in valence region, GDH sum rule E99-117 * + DVCS, beam-spin az. asymmetry in $\vec{e}p \rightarrow e\pi^{\pm}X$ CLAS
- COMPASS ($E_{\mu} = 160 \text{ GeV}$) * gluon polarization, transversity, DVCS
- E161 ($E_{\gamma} = 35 45 \text{ GeV}$)
 - * gluon polarization
 - * currently on hold

A new milestone : polarized $\, pp \,$ collider RHIC

Makdisi

- 55 bunches
- different spin comb. every 212 nsec.
- maintain pol. for 10 hrs.

- \bullet '02 run : $P \lesssim 0.2$
- currently $P\gtrsim 0.4$
- ultimately $P\approx 0.7$
- currently $\sqrt{S} = 200 \text{ GeV}$ (500 GeV later)
- '02 run : $L \sim 1.5 \times 10^{30} \, {\rm cm}^{-2} {\rm s}^{-1}$
- current goal : $L \sim \times 10^{31} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- \bullet ultimately $L\sim 2\times 10^{32}\,{\rm cm}^{-2}{\rm s}^{-1}$

3. Recent results & future prospects

- \bullet gluon polarization $\ \Delta g(x,Q^2)$
- more detailed information on quark distributions :
 - flavor separations
 - large-x behavior / valence region

Probing gluon polarization Δg

• lepton-nucleon : for direct measurement, may use $\gamma p \rightarrow c \bar{c} X$

(NLO corr. Stratmann, Bojak; Contogouris et al.)

• can also use high- p_T hadrons HERMES, COMPASS (idea Bravar, Kotzinian, v. Harrach) Marchand

Excellent prospects for RHIC :

• several different reactions with sensitivity to Δg can be studied :

- can check consistency of Δg determinations (universality / factorization theorems)
- theory framework under control :
 - * experience from unpolarized case (Tevatron,SpS)
 - * NLO corrections now known for all relevant reactions
 Gordon,WV; Contogouris et al.; de Florian,Frixione, Signer,WV; Stratmann,Bojak;
 de Florian; Jäger,Stratmann,WV; . . .

unpol. NLO calculation : Aversa, Chiappetta, Greco, Guillet CTEQ 5M (unpol. pdf), Kniehl et al. (fragm. fcts)

improvement in scale dependence:

variation of scales: $\mu = p_T/2 \dots 2p_T$

Jäger, Stratmann, WV

• jet physics at STAR

Simulated A_{LL} $p+p \rightarrow jets, \sqrt{s} = 200 \text{ GeV}, 3 \text{ pb}^{-1}, P_{beam} = 0.4$ ightarrow0 GRSV – max -0.055 25 10 15 20 0.15 cone alogrithm, R = 0.70.1 ϕ Å 0.05 Ā Q \bigcirc \bigcirc \bigcirc 0 GRSV - std -0.05 Measured jet transverse energy (GeV) 5

Rakness

Further information on quark distributions

- \bullet inclusive DIS cannot distinguish between q and \bar{q}
- considerable interest :
 - * SU(2) breaking in sea (meson cloud models, Pauli exclusion, . . .)

(Thomas, Signal, Cao; Diakonov, Goeke, Polyakov, Weiss; Glück, Reya; Schäfer, Fries; Kumano; Wakamatsu)

* strange quark polarization

(Ellis,Karliner et al.; Brodsky,Ma Bo-Qiang et al; . . .)

• one option : semi-inclusive DIS. Detect a hadron $h = \pi^{\pm}, K^{\pm}, \dots$

Last year's HERMES results :

Beckmann

HERMES analysis :

current points of discussion :

- small sea polarization ?
- positive strange polarization ? Bass; Leader,Stamenov
- validity of MC 'purity' approach? Christova,Kretzer,Leader; Kotzinian
- and/or higher twist ?

A neat way at RHIC : W production

Bourrely, Soffer

$$A_L^{W^+} \approx rac{\Delta u(x_1) \, \bar{d}(x_2) - \Delta \bar{d}(x_1) \, u(x_2)}{u(x_1) \, \bar{d}(x_2) + \bar{d}(x_1) \, u(x_2)}$$

HO corrections, lepton level : Nadolsky,Yuan

Isenhower

New JLab neutron results at large-x :

E99-117

McCormick

• testing ground for models at $x \to 1$:

- * constituent quark models : $\Delta d/d \rightarrow -1/3$ (Close, Thomas; Isgur)
- * pQCD models with hadron helicity retention : ∆d/d → 1 (Farrar,Jackson; Brodsky,Burkardt,Schmidt → Leader,Sidorov,Stamenov,Boglione)
 * "statistical" pdf approach Soffer , duality phenom. Fantoni

Part II : Transverse-Spin Phenomena

• Ralston, Soper '79 : Parton density of transversity

$$\delta q(x) = \left| \xrightarrow{P,\uparrow} X \right|^2 - \left| \xrightarrow{P,\uparrow} X \right|^2$$

• in helicity basis :

$$|\uparrow\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle + i |-\rangle \right) \qquad |\downarrow\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle - i |-\rangle \right)$$

• then :

"Helicity flip" !

● → not for gluons at leading twist Jaffe, Ji; Ji; Artru, Mekhfi; Soffer, Teryaev • Standard Model probes preserve chirality (\approx helicity)

$$\gamma, W^{\pm}, Z^{0}, g: \begin{cases} \bar{\psi}\gamma^{\mu}\psi = \bar{L}\gamma^{\mu}L + \bar{R}\gamma^{\mu}R \\ \bar{\psi}\gamma^{\mu}\gamma^{5}\psi = \bar{L}\gamma^{\mu}L - \bar{R}\gamma^{\mu}R \end{cases}$$

• however, spontaneous χ SB, $m_q \neq 0$, . . . Collins, Diehl; Jaffe; Polyakov, Weiss . . .

• transversity not accessible in inclusive DIS :

• Collins '93 : use fragmentation as "transversity polarimeter"

• contributes to $leading \ power \ single-spin \ asymmetry \ in \ ep^{\uparrow} \rightarrow e\pi X$

• (at small measured k_T a special factorization theorem applies)

• recall, HERMES measurement of $e\vec{p} \rightarrow e\pi X$

Oganessyan, Avakian, Bianchi, Kotzinian; Mulders, Tangerman; Boer, Jakob, Mulders; Efremov, Goeke, Schweitzer; Oganessyan, Bianchi, De Sanctis, Nowak

+ other power suppressed

Schill

• (QCD corrections ? Sudakov effects . . .)

• however, intrinsic k_T of quarks in proton ? Sivers '90 :

• however Collins '93 : for distribution functions correlation $\vec{S}_T \cdot (\vec{P} \times \vec{k}_T)$ ruled out by T invariance

Brodsky ,Hwang,Schmidt '02 : find *leading-power* asymmetry

from final-state interaction in model calculation

- assumes ordinary fragmentation function !
- then realized : gauge links that make pdfs gauge invariant allow the Sivers "T-odd" structure Collins; Belitsky, Ji, Yuan; Boer, Mulders, Pijlman; Metz
- non-standard time-reversal discussed also by Anselmino, Barone, Drago, Murgia

• gauge-invariant parton distributions :

$$q(x) \sim \int d\xi^{-} e^{i\xi^{-}x} \langle P \mid \overline{\psi}_{+}(\xi^{-}) U_{[\infty,\xi^{-}]} U_{[0,\infty]} \psi_{+}(0) \mid P \rangle$$
$$U_{[a,\xi^{-}]} \equiv \mathcal{P} \exp\left(-ig \int_{a}^{\xi^{-}} d\lambda A^{+}(\lambda)\right)$$

 \bullet with k_T dependence

$$q(x, \vec{k}_T) \sim \int d\xi^- d^2 \xi_T \, \mathrm{e}^{i\xi^- x + i\vec{k}_T \cdot \vec{\xi}_T}$$
$$\times \langle P \mid \overline{\psi}_+(\xi^-, \vec{\xi}_T) \, \tilde{U}_{[\infty, \xi^-]} \, \tilde{U}_{[0, \infty]} \, \psi_+(0) \mid P \rangle$$

• gauge link survives even in $A^+ = 0$ gauge

(Belitsky, Ji, Yuan; Boer, Mulders, Pijlman)

Implications for phenomenology :

• two leading contributions to $ep^{\uparrow} \rightarrow e\pi X$

• hadronic single-spin asymmetries in $p^{\uparrow\downarrow}p \rightarrow \pi X$

$$A_{\rm N} \equiv \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

 large A_N seen in fixed-target experiments at BNL,ANL,Fermilab,Serpukhov • E704 ('96) :

- in pQCD, $A_{\rm N}$ is power-suppressed as $1/p_T$
- intrinsic transverse momentum effects à la Sivers, Collins, Boer Anselmino, Boer, D'Alesio, Murgia; Leader, Boglione; Boer, Mulders; . . .
- "Twist-3 quark-gluon correlation functions"
 Efremov, Teryaev; Qiu, Sterman; Koike et al.; . . .

• also : $\bar{p}^{\uparrow}p \rightarrow \pi X$, $pp \rightarrow \Lambda^{\uparrow}X$

Soffer; Anselmino, Boer, D'Alesio, Murgia; . . .

• also : $\cos(2\phi)$ dependence in unpolarized Drell-Yan NA10; Brandenburg,Nachtmann,Mirkes; Boer; Collins; Boer, Brodsky ,Hwang . . .

- higher p_T . . .
- Drell-Yan $f_{1T}^{\perp}|_{\text{DY}} = -f_{1T}^{\perp}|_{\text{DIS}}$ Collins; Brodsky,Hwang,Schmidt; Belitsky,Ji,Yuan; Boer,Mulders,Pijlman; Anselmino,D'Alesio,Murgia

• another recent development :

Fourier transforms of off-forward parton distributions give information on position space distribution of partons

$$q(x, \vec{b}_T) = \int d^2 \Delta_T \, \mathrm{e}^{-i\vec{\Delta}_T \cdot \vec{b}_T} \, H(x, 0, -\Delta_T^2)$$

Burkardt; Ralston, Pire; Diehl

- for transverse nucleon polarization : expect distortion Burkardt (Brodsky,Hwang,Schmidt; Ji,Ma,Yuan)
- \bullet may lead to $A_{\rm N}$ asymmetry
- connection between $q(x, \vec{k}_T)$ and $q(x, \vec{b}_T)$ Burkardt
- similar in spirit to early "rotating constituent" models Boros, Liang, Meng

model by Burkardt

More possibilities for transverse-spin physics at RHIC :

• transversity also from :

$$A_{\rm TT} = \frac{d\sigma^{p^{\uparrow}p^{\uparrow}} - d\sigma^{p^{\uparrow}p^{\downarrow}}}{d\sigma^{p^{\uparrow}p^{\uparrow}} + d\sigma^{p^{\uparrow}p^{\downarrow}}}$$

* Drell-Yan, direct-photon, jets

Jaffe,Saito; Soffer Stratmann,WV; NLO corr. Mukherjee,Stratmann,WV

Enjoy talks of WG "Spin Physics" !