DIS03 St. Petersburg

Production of Heavy Quarks at HERA

Beate Naroska University of Hamburg

Introduction, Theoretical Framework

- Charm Tagging, Fragmentation
- Charm (+jets) in DIS
- Charm (+jets) in Photoproduction
- Charmonium \rightarrow Parallel

- Beauty Tagging
- \bullet Beauty (+jets) in DIS and γ p
- $D^* \mu$ Correlations
- Overview

Introduction

This talk will concentrate on the collider experiments H1 and ZEUS at HERA (for time reasons) Datataking of HERA I results in $\sim 120 \text{ pb}^{-1}$ /experiment –

not everything analysed yet for Heavy Flavour Production

Main contributing processes to HF Production (LO): BGF (Boson Gluon Fusion)

Many previous results for charm have shown that

- Charm is an important contribution to F_2 ; QCD NLO works well in DIS
- Photoproduction has an important resolved component, more problems with QCD

$\sigma_{\gamma p} \sim f^\gamma \otimes \hat{\sigma} \otimes f^p \otimes \mathcal{D}(z)$

pQCD calculations in NLO

fixed order, **massive scheme**: HQ **produced dynamically**;

 $p_t \lesssim m_q$

- γp: FMNR (Frixione et al.)
- **DIS:** HVQDIS (Harris & Smith)

Resummed calculations in NLL

all orders, massless scheme:

HQ in γ or p; $p_t \gg m_q$

• Cacciari et al., Kniehl et al.,...

'Matched' scheme FONLL

fixed order + NLL scheme incorporate mass effects up to NLO, avoid double counting

• Cacciari et al.

DGLAP evolution

MC generators (LO ME + PS)

• AROMA:

direct only, DGLAP evolution

• **PYTHIA, RAPGAP, HERWIG**: direct + **resolved**, DGLAP

• CASCADE:

direct only, **CCFM**–like evolution, k_t dependent gluon density

Fragmentation:

non perturbative models

CHARM Tagging Methods

Charm Fragmentation Parameters

reconstruct all charm ground states, D^{\pm} , D^{0} , D_{s}^{\pm} , Λ_{c}^{\pm} and $D^{*\pm}$ ZEUS: $\sim 66~{
m or}~79\,{
m pb}^{-1}$ Determine from data: ZEUS prel. (γp) Combined H1 prel. (DIS) $P_T(D,\Lambda_c) > 3.8 \,\mathrm{GeV}, \, |\eta(D,\Lambda_c)| < 1.6$ e^+e^- data $f(c
ightarrow D^+) = 0.249 \pm 0.014^{+0.004}_{-0.008}$ $0.202 \pm 0.020^{+0.045}_{-0.033} \, {}^{+0.029}_{-0.021}$ 0.232 ± 0.010 $f(c
ightarrow D^0) = 0.557 \pm 0.019^{+0.005}_{-0.013}$ $0.658 {\pm} 0.054 {}^{+0.115}_{-0.148} {}^{+0.086}_{-0.048}$ 0.549 ± 0.023 $f(c
ightarrow D_s^+) = 0.107 \pm 0.009 \pm 0.005$ $0.156{\pm}0.043^{+0.036}_{-0.035}{}^{+0.050}_{-0.046}$ 0.101 ± 0.009 $f(c
ightarrow \Lambda_c^+) = 0.076 \pm 0.020^{+0.017}_{-0.001}$ 0.076 ± 0.007 $f(c
ightarrow D^{*+}) = 0.223 \pm 0.009^{+0.003}_{-0.005}$ $0.263 {\pm} 0.019 ^{+0.056}_{-0.042} \, {}^{+0.031}_{-0.022}$ 0.235 ± 0.007

charm fragmentation fractions are universal

 \rightarrow HERA errors competitive!

 $R_{u/d}$, γ_s , V/(P+V) also determined and in good agreement with w.a.

$D^* \text{ in DIS}$ (new)

H1: Inclusive $D^{*\pm}$ Cross Section

 $Q^2>2\,\,{
m GeV^2};\,0.05< y<0.7;\,1999,2000~$ 47 pb $^{-1}$ $p_T^{D^*}>1.5\,{
m GeV};\,|\eta^{D^*}|<$ 1.5

Jet Cross Section with D^* in DIS (new)

H1: D^* and 2 jets (inclusive k_t algorithm in Breit frame) $E_T^{jet} > 4, 3 \,\text{GeV}; -1 < \eta_{lab}^{jet1,2} < 2$ H1 preliminary H1 preliminary CASCADE (CCFM) too high d₀(ep→eD*jjX)/dQ² [nb GeV⁻²] >eD*jjX)/dE^{max}[nb GeV⁻¹] H1 D*+jj (prelim.) RAPGAP dir RAPGAP (LO+PS) too low RAPGAP dir+res 10 CASCADE 10 Summary plot: Jet cross section 10 H1 D*+jj (prelim.) RAPGAP dir versus inclusive RAPGAP dir+res CASCADE H1 preliminary do(ep-10 10 10² 3 5 10 10 20 [qu] (X[[$\mathsf{E}_{\mathsf{t}}^{\mathsf{max}}$ $Q^2 [GeV^2]$ [GeV] H1 D H1 preliminary CASCADE ε=0.10 **CASCADE** ε=0.078 H1 D*+jj (prelim.) **CASCADE** ε=0.035 2 RAPGAP dir RAPGAP dir.+res. *0 © 1.5 **RAPGAP dir+res** RAPGAP dir. CASCADE HERWIG AROMA 1 ÷ 0.5 0 0 2 3 1 2 10 0 8 6 Δη **σ(D^{*}X)** [**nb**] Heavy Quarks at HERA

D^* Photoproduction (new)

D^* Photoproduction double differential distributions

- η distribution in $p_T^{D^*}$ bins
- NLO below data at medium $p_T^{D^*}$ and high η
- FONLL close to data only at low $p_T^{D^*}$

Charm: Two-Jet-Events (published:DESY-03-015)

 $\sim 120\,\mathrm{pb}^{-1}$

$$p_T^{D^*}>$$
 3 GeV
2 jets: $E_T^{jet}>$ 5 GeV, $|\eta^{jet}|<$ 2.4;
 $M_{jj}>$ 18GeV

Momentum fraction of photon in jets:

$$x_{\gamma}^{\text{obs}} = \frac{\sum_{j_1, j_2} (E_T^j e^{-\eta^j})}{2y E_e}$$

- Significant contribution from resolved (\sim 40%)
- MCs give good description of shape
- CASCADE too high at high x_{γ}^{obs}
- NLO below data at low $x_{\gamma}^{\mathrm{Obs}}$ (not shown)

Charm: Dijet Angular Distributions (published:DESY-03-015)

- Contribution of LO resolved to $x_{\gamma}^{obs} > 0.75$ NLO ok for $x_{\gamma}^{obs} > 0.75$ explains the asymmetric distribution in $\cos \theta^*$ • NLO below data for $x_{\gamma}^{obs} < 0.75$ in
- Strong rise in $d\sigma/d\cos\theta^*$ towards γ direction for $x_{\gamma}^{obs} < 0.75$
- Clear evidence for charm from the photon

• CASCADE exceeds data, shape ok

 γ and p direction

Fragmentation Fractions and Fragm. Function measured Good agreement with results from other experiments

DIS: D^* with jets:

RAPGAP, CASCADE show some problems while they are ok for inclusive D^*

Photoproduction: New tagged inclusive analysis shows similar problems with QCD as untagged (mainly at low p_T and large η); CASCADE too hard

Detailed analysis of angular distribution of jets with a D^* :

Resolved component has large contribution from charm in photon direction. NLO QCD does not describe this component well; Shapes reproduced better by Monte Carlo Models

Beauty Production

B in γp : 1996–2000 Results

Comparison to NLO QCD: p_T^{μ} and η^{μ} in visible region, ok within errors For x_{γ} extrapolate muon phase space (PYTHIA), Factor 2 disagreement Heavy Quarks at HERA

Beauty in DIS

 $Q^2 > 2 \text{ GeV}^2, \ 0.05 < y < 0.7 \sim 60 \, \mathrm{pb}^{-1}$ 1 muon, $p_T^\mu > 2 \, \mathrm{GeV}$ 1 jet: $E_T^{Breit} > 6 \, \mathrm{GeV}$

$$\sigma^{\text{vis}} = (38.7 \pm 7.7^{+6.1}_{-5.0}) \text{ pb}$$

- QCD NLO (DGLAP) ok within errors NLO (Harris et al): $\sigma^{\text{vis}} = (28^{+5.3}_{-3.5})\text{pb}$
- CASCADE (CCFM) good agreement $\sigma^{\rm vis} \approx 35 {\rm pb}$
- RAPGAP (DGLAP, LO+PS) too low

Heavy-Flavour Double-Tag: $D^*\mu$ – Correlations

 $c\mathcharge$ separation using charge and angular correlations

combined $D^* (\Delta M) + D^* \mu$ correlation analysis $\sigma(ep \rightarrow D^* \mu X)$ charm : $[720 \pm 115(stat.) \pm 245(syst.)]$ pb \rightarrow factor 1.8 above AROMA beauty: $[380 \pm 120(stat.) \pm 130(syst.)]$ pb \rightarrow factor 3.6 above AROMA

$D^*\mu$ – Correlations

Present (mostly preliminary) results show:

Data/QCD~ 2 for $b\overline{b}$ production Consistent using different methods (p_T^{rel} , δ , $D^* \mu$) and between H1 and ZEUS

Differential analyses have given new insights: Excess is not localised in p_T , η or x_{γ}^{obs} Extrapolation procedure from measured 'visible' region is under discussion...

Waiting for final data from HERA I

Overview: Beauty-Production: The World

HERA-B

