Introduction to dump issues

Rob Appleby
Daresbury Laboratory

17th August 2005 at Snowmass ‘05
This session...

- Introduction to the dump issues (Appleby, 5’)
- Summary of dump studies at KEK (Sugahara, 20’)
- A water dump for the ILC (Walz, 30’)
- Agreement in prewritten summary (Markiewicz, 5’)

This talk: Issues of dumps and a brief summary of the talk by Michael Schmitz of DESY at the BDIR meeting in London in June.
Baseline configuration document

<table>
<thead>
<tr>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main beam dumps based on water vortex scheme rated for 18MW beam. Common e+ and g dump for 20mrad, separate g dump for 2mrad. Separate beam dumps rated for full power for all beamlines (total six beam dumps). Undisrupted beam size increased by distance.</td>
<td>Prototype and tests of beam dump window? Gas dump prototype?</td>
<td>Elliptical wide window. Gas beam dump (1km of Ar in Fe). Beam sweeping and/or graphite rod to increase undisrupted beam size.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

6 18MW dumps!!!
Introduction

- **Thermal and Mechanical Issues**
 - heating and heat extraction
 - stresses and pressure

- **Radiochemical Aspects**
 - radiolysis, dissociation

- **Radiological Issues**
 - handling of induced radioactivity
 - shielding of direct radiation

Beam to be dumped (TESLA 800 parameters)

- $E_0=400\text{GeV}$, $N_t=6.84\times10^{13}\text{e-}$, $T_t\approx1\text{ms}$, $\nu_{\text{rep}}=4\text{Hz}$
 - pulsed power source
 - $W_t=4.4\text{MJ}$ per train
 - $P_{\text{ave}}=17.5\text{MW}$ in average

Diagram:

- **Beam Sweeping**
- **Window**
- **Absorber**

- **Distribution of Beam on Absorber**
 - intra bunch train (fast sweep)
 - average power (slow sweep)

- **Repetition time** $1/\nu_{\text{rep}}$
Solid Dump: Heat Extraction

C-based absorber embedded in Cu

- capture 400 GeV shower ⇒ longitudinal: ≈5m, transversal: 1R_m(C)+3R_m(Cu)=7cm+5cm
- $E_0=400\text{GeV}$, $P_{\text{ave}}=17.5\text{MW}$ ⇔ $I_{\text{ave}}=44\mu\text{A}$ ⇒ $(dP/dz)_{\text{max}}\approx 75\text{kW/cm}$! How to get rid of?

Heat extraction by transverse heat conduction and sweeping

\[\alpha_{\text{tot}} \approx 0.12\text{W/(cm}^2\cdot\text{K)} \text{ and } (dP/dz)_{\text{max}} = \alpha_{\text{tot}} \cdot w \cdot (\Delta T_{\text{eq}})_{\text{max}} \]

allow $(\Delta T_{\text{eq}})_{\text{max}} \leq 400\text{K}$ (prevent oxidation of C)

⇒ $w \approx 20\text{cm} / (\text{kW/cm}) \cdot (dP/dz)_{\text{max}}$

Discussion

- huge and heavy absorber
- huge vacuum system
- complicated slow beam sweeping

⇒ C-Cu Approach not suitable

only reasonable for $(dP/dz)_{\text{max}} \approx \text{kW/cm} ⇔ P_{\text{ave}} \approx 100\text{kW level}$
Water Dump: Overall Scheme

- normal cooling water
- exhaust / chimney?
- sand
- enclosure
- water-system
- basin
- emergency/comm. beam tilted ≈15mrad
- water-dump vessel
- dump shielding
- spent beam, tilted ≈15mrad
Gas Dump: First Thoughts

One atomic noble gas core (Ar, Xe) is surrounded by solid material (Fe)

- gas core acts as scattering target (only small amount of energy deposition) and distributes energy longitudinally over ~1km into surrounding material → low energy densities, no sweeping, small spot size possible, no radiolysis
- surrounding material takes main part of energy
 \[Z > 20 \rightarrow \text{reduced tritium production} \]

Basic Idea

Energy density (1 electron 400GeV), \(\frac{dE}{dV} \ [\text{GeV/cm}^3] \)

First Attempt (not optimized)

- water, 4cm
- Fe, 52cm thick
- Ar core, ∅ 8cm @ normal conditions

[Diagram showing energy density with r-bin=1cm, z-bin=10m]
Comparative Summary

<table>
<thead>
<tr>
<th>Graphite-Copper Dump</th>
<th>Water Dump</th>
<th>Noble Gas Dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>2m x 2m, 5m long</td>
<td>Ø1.5m, 10m long</td>
<td>Ø1.2m, 1km long (extra? tunnel)</td>
</tr>
<tr>
<td>heat conductivity & immense slow sweep</td>
<td>adequate water flow no slow sweep</td>
<td>heat conductivity no slow sweep</td>
</tr>
<tr>
<td>radiation degradation of heat conductivity of graphite?</td>
<td>explosive radiolysis gases in a highly activated system</td>
<td>no dissociation of one atomic gas</td>
</tr>
<tr>
<td>cyclic stress in C tolerable</td>
<td>transient pressure in water</td>
<td>gas buffers transient expansion</td>
</tr>
<tr>
<td>window Ø2m unless not put upstream of sweeping</td>
<td>vac./water window Ø20cm challenging design</td>
<td>vacuum/gas window Ø8cm design ~exists</td>
</tr>
<tr>
<td>need increased spot size (fast sweep) to limit energy density</td>
<td>applicable for smaller spot sizes and therefore as (\gamma/\gamma)-dump</td>
<td></td>
</tr>
<tr>
<td>total tritium inventory (\approx 300)TBq (\approx 30%) in water, rest in C-Cu</td>
<td>tritium inventory factor 10 less and 98% bound in a solid</td>
<td></td>
</tr>
<tr>
<td>maintenance complicated</td>
<td>easier maintenance</td>
<td>activation of 1km tunnel</td>
</tr>
<tr>
<td>high activated components, dismantling costs not negligible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technically not practicable for high power applications

Principally feasible, but inherent risks will make it difficult to „sell“ it as reliable, safe and robust.

Attractive new idea, which should be investigated in more detail.