Linac Coherent Light Source Update

Coherent Synchrotron Radiation Workshop 14 January 2002

Conceptual View of LCLS at SLAC

Parameters & Performance

FEL Radiation Wavelength	<u>1.5</u>	<u>0.15</u>	nm
Electron Beam Energy	4.54	14.35	GeV
Repetition Rate (1-bunch)	120	120	Hz
Single Bunch Charge	1	1	nC
Normalized rms Emittance	2.0	1.5	mm-mrad
Peak Current	3.4	3.4	kA
Coherent rms Energy Spread	<2	<1	10 ⁻³
Incoherent rms Energy Spread	<0.6	<0.2	10 ⁻³
Undulator Length	100	100	m
Peak Coherent Power	11	9.3	GW
Peak Spontaneous Power	8.1	81	GW
Peak Brightness *	1.2	12	10 ³²
Bunch Length	230	230	fsec

* photons/sec/mm²/mrad²/0.1%-BW

LCLS R&D is a collaboration of...

UCLA

R&D Progress – Gun

Excellent interaction between simulation effort and experiment

Excellent interaction between SSRL and TD

Computer simulations:

Cecile Limborg; SSRL

E. Colby, V. Ivanov, P. Krejcik; TD

Gun Test Facility program:

Jim Clendenin TD, John Schmerge SSRL,

Paul Bolton, Steve Gierman, Brendan Murphy; TD

Simulations for GTF

Comparison to experimental results: ϵ vs. Q for 2ps-4ps pulses

- PARMELA computer code comparison to data
- •Agreement is reasonable at target current of 100A
- •SLAC is upgrading GTF to cover wider parameter range

<u>Why 2ps is lower than</u> <u>4ps:</u>

- 4ps core emittance lower than 2ps
- Matching of slices
 better for 2ps at standard
 booster gradient
- Matching is improved with lower gradient for both 4ps and 2ps
- With better matching

$$\varepsilon_{4ps} < \varepsilon_{2ps}$$

Mismatch parameter

$$\xi = \frac{1}{2} (\gamma_{\rm o}\beta - 2\alpha\alpha_{\rm o} + \beta_{\rm o}\gamma)$$

R&D Progress – Prototype Undulator

•Titanium strongback mounted in eccentric cam movers

- •Magnet material 100% delivered
- •Poles >90% delivered
- •Assembly underway

Helmholtz Coil – magnet block measurement

Poletip alignment fixture

Translation stages for undulator segment

Magnet block clamping fixtures

Planned beam diagnostics in undulator include pop-in C(111) screen To extract and observe x-ray beam, and its superposition on e-beam

Calculated spatial distribution of the undulator radiation from a three-undulator cell with a missteering $q_{mis} = 4 \mu rad$, an electron beam emittance of 0.05 nm·rad, and a photon energy of 8.29 keV, at 60 m from the undulators.

R&D Progress – Undulator diagnostics

- •P. Krejcik, W. K. Lee, E. Gluskin
- •Exposure of diamond wafer to electron beam in FFTB-
- •Same electric fields as in LCLS
- •No mechanical damage to diamond
- •Tests of crystal structure completed, crystal structure intact

X-ray reflectivity shows no damage from exposure to electron beam

R&D Progress – X-ray optics

•LLNL tests of damage to silicon crystal

- •Exposure to high- power laser with similar energy deposition
- •Threshold for melting 0.16 J/cm², as predicted in model

•Fabrication/test of refractive Fresnel lens

- •Made of aluminum instead of carbon
- •Machined with a diamond point
- •Measurements from SPEAR presently under analysis

•Significant effort to estimate costs of experiments!

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

C. Schroeder*, J. Arthur^, P. Emma^, S. Reiche*, and C. Pellegrini*

^ Stanford Linear Accelerator Center *UCLA

Strong possibility for shorter-pulse operation

UCLA

Also a **DESY** scheme which emphasizes line-width reduction (B. Faatz)