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Emittance Growth

• Numerically and experimentally: Emittance growth depends sensitively on

initial Twiss parameters

• Numerical method: parameter scan

• Time-consuming: can it be avoided?
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Emittance Growth

• Emittance growth within dispersive regions is partially spurious; subtract

dispersion

• Emittance growth is caused by

– Nonlinear transverse forces

– Longitudinal forces in dispersive regions
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General Case

Consider a system of D ≥ dε degrees of freedom. We are interested in the

correlation matrix Cε in the first dε degrees of freedom. The system evolves

according to
d

ds
x = T (s)x+ F (s) , (1)

where T describes a unimodular (symplecticity is too strong a condition here)

behavior.
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General Case

With
d

ds
M(s) = T (s) , M(0) = 1 (2)

and

I(s) =

∫ s

0

M−1(s′)F (s′)ds′ (3)

the system is determined by its initial conditions according to

x(s) = M(s)[x(0) + I(s)] . (4)
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General Case

Now we are interested in the system’s correlations matrix:

C(s) =
〈

x(s)x>(s)
〉

= M(s) (C0(0)

+

∫ s

0

∫ s

0

M−1(s1)
〈

F (s1)F
>(s2)

〉

M−1>(s2)ds1ds2

+

∫ s

0

〈

x(0)F>(s1)
〉

ds1 + transp.

)

M>(s)

= M(s)(C0 + CFF + CFx + C>Fx)M
>(s) , (5)

so the system behaves as if it had been transported linearly with an initial

correlation given by the middle term in the last line.
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Emittance Growth by Dispersion Mismatch

The equations of motion for a single particle in a lattice of focal strength n and

curvature ρ without external forces read

d

ds





x(s)

p(s)

δ(s)





=





0 1 0

n(s) 0 ρ(s)

0 0 0









x(s)

p(s)

δ(s)





, (6)

where we restrict all considerations to x, p, δ-subspace (which is approximately

closed under the CSR-beam-interaction, if all dipoles bend in the same plane)

of the full phasespace.
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Emittance Growth by Dispersion Mismatch

We can introduce new coördinates by




x̄(s)

p̄(s)

δ(s)





=





1 0 −η(s)

0 1 −η′(s)

0 0 1









x(s)

p(s)

δ(s)





. (7)
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Emittance Growth by Dispersion Mismatch

In these coördinates, the equations of motion are

d

ds
x̄(s) = p̄(s)− η(s)

d

ds
δ(s)

d

ds
p̄(s) = n(s)x̄(s)−

d

ds
η(s)

d

ds
δ′(s)+

+ δ(s)
(
ρ(s)− n(s)η(s)− η′′(s)

)

︸ ︷︷ ︸







. (8)

where the underbraced term vanishes if we choose η to be the usual dispersion

function. Then, (8) has the same form as (2) with an inhomogeneity of

F (s) = δ′(s)





η(s)

η′(s)




. (9)
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Uncorrelated Energy Perturbations

Let’s assume the energy kicks are uncorreleated across the bunch. Then, the

total emittance is (because det(M) = 1)

ε2 = det(C0 + CFF ) . (10)

For a transport line, we are free to choose the shape of C0, while its

determinant is fixed by the initial emittance. It is easy to see that (10)

becomes minimal if we choose C0 ∝ CFF , in which case ε2total = ε20 + ε2FF . In

terms of distibutions this means that the final distribution is the convolution of

the initial distribution subjected to the linear forces only, and a

zero-emittance-distribution subjected to the perturbation and the linear forces.
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Uncorrelated Energy Perturbations

The problem becomes significantly simpler when the energy noise is white, i. e.,

if 〈δ′(s1)δ
′(s2)〉 = δ(s1− s2)

〈
δ2(s)

〉′
, where

〈
δ2(s)

〉′
is the noise amplitude

squared. In this case, we can write down the optimum values for the initial

Twiss parameters in terms of the transport matrix and the noise amplitude:

α0(0) = λ

∫ L

0

〈
δ2
〉′
(s)
(
M12(s)η(s)

′ −M22(s)η(s)
) (

M11η(s)
′ −M21η(s)

)
ds

β0(0) = λ

∫ L

0

〈
δ2
〉′
(s)
(
M12η

′ −M22η
)2

ds

γ0(0) = λ

∫ L

0

〈
δ2
〉′ (

M11η
′ −M21η

)2
ds







,

(11)

where λ has to be chosen such that β(0)γ(0) = 1 + α(0)2 and β > 0.
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Uncorrelated Energy Perturbations

For purely longitudinal dependence of F : emittance can be minimized by

matching C0 to CFF .

For ’fat’ bunches: CFx matters: scan parameter space for minimal emittance

or use a descent method.
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Uncorrelated Energy Perturbations

"Optics" using 1:2:7
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Figure 1: Emittance growth from numerical simulation for a single bend: R =

2m, L = 1m, q = 1nC, E = 40.7MeV, εnormalized = 70 · 10−6m
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Uncorrelated Energy Perturbations
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Figure 2: Emittance growth from CFF extrapolation at α = 0, β = 10m
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Slice Emittance

For FEL operation, beam quality is crucial.

The FEL process involves only particles within a certain longitudinal range

(“slippage length”).

This range may be much smaller than the bunch length:
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Slice Emittance

x

l

Projection to x,x’-space

x’

For Phase 1 of TTF-FEL, the slippage length ∆l ≈ 10µm¿ lfinal = 250µm
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Slice Emittance

→ Projective emittance misleading for judging beam quality for FEL

operation.

(But important for optics considerations)
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Nonlinear Transverse Phasespace
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