Humidity dependence of anode etching in HERA-B Outer Tracker Chambers with $Ar/CF_4/CO_2$

Alexander Schreiner Hamburg 3.10.2001

Contents

- * Aging tests with different water contents
 - exp. setup
 - humidity dependence of:
 - wire ruptures
 - transient aging
 - dark currents
- * Plasma chemistry in the avalanche
 - production rate of fluorine species
 - lifetimes of radicals
 - concentration profile
 - summary

Chamber construction & parameters

parameter	value in Outer Tracker
HV	1700 V (1900 V for 10 mm)
gain	3·10 ⁴
gas	Ar/CF ₄ /CO ₂ (65:30:5)
current	0.05 μA/cm
flow	1 vol/h

Setup

boxes with different humidity

One mono-layer is equipped with capillaries to convey gas flow through the cells, the other has normal "open" end-pieces.

Wire ruptures in X-ray tests with different humidity

dose C/cm	H ₂ O (inp/outp) ppm	O ₂ (inp/outp) ppm	ruptures
0.55	<10/50	30/200	yes, after 0.3 C/cm
1.2 straws	<10/100	30/200	yes, after 0.6 C/cm
4.5	350/400	30/200	no
3.5	700/750	30/300	no
1.2 / used ch.	<10/80	30/250	yes, after 0.28 C/cm
1.2	<10/120	30/250	yes, after 1.2 C/cm

^{*} Wire ruptures after 0.3 C/cm (1/2 years in HERA-B) in dry chambers ($H_2O < \approx 100$ ppm)

^{*} No aging effects until 5 C/cm in relatively humid chambers ($H_2O>300$ ppm)

Longitudinal ⁵⁵Fe scanning after aging tests

Inspite of the homogeneous irradiation intensity profile, the gas gain loss increases towards the center of the irradiated region

e-microscopy \Rightarrow gain loss was due to wire swelling

Electron Dispersive X-ray Spectroscopy

Open dry layer after 0.6 C/cm area of wire breaking

W deposited on cathode was probably etched away in irradiation area

irradiated region

G10 strips

after aging test (texture became visible)

new

Transient aging - temporary drop of current during high rate irradiation

Transient aging:

- * probably resulted from production of a very electronegative gas in the avalanche.
- * was not pronounced in open cells due to higher gas flow (thermal convection)
- was not observed in humid gas

responsible species are F_2

dark currents

Molecule-averaged e-impact cross sections for ionization and production of radicals in $Ar/CF_4/CO_2$

e-impact dissociation was considered to dominate in production of radicals

Lifetimes of radicals

intesity = $0.6 \mu A/cm$

Reaction	Constant
$CF_3 + F + M \rightarrow CF_4 + M$	0.1 s
$F + F + M \rightarrow F_2 + M$	25 s
$CF_3 + CF_3 + M \rightarrow C_2F_6 + M$	$0.046 \mathrm{\ s}$
$H_2O + F \rightarrow HF + OH$	$2 imes 10^{-5} \; \mathrm{s}$
$OH + OH \rightarrow H_2O + O$	$0.8 \mathrm{\ s}$
$F + OH \rightarrow HF + O$	$0.014 \mathrm{\ s}$
$F + O_2 + M \rightarrow FO_2 + M$	4 s
$F + CH_4 \rightarrow HF + CH_3$	$1.8 \times 10^{-9} \text{ s}$
M≡ collision partner (argon)	
	$CF_3 + F + M \rightarrow CF_4 + M$ $F + F + M \rightarrow F_2 + M$ $CF_3 + CF_3 + M \rightarrow C_2F_6 + M$ $H_2O + F \rightarrow HF + OH$ $OH + OH \rightarrow H_2O + O$ $F + OH \rightarrow HF + O$ $F + O_2 + M \rightarrow FO_2 + M$ $F + CH_4 \rightarrow HF + CH_3$

- ***** F rapidly reacts with water \Rightarrow probably F is responsible for etching.
- * $I_F \approx I_{HF} \approx 0.6 * I_e$

Longitudinal concentration profile for HF ($\tau > 1$ h) in X-ray setup

 $\neq 0 \Leftarrow$ accumulation of HF in box

- * Concentration of HF is 15 ppm and 50 ppm (maximum) in box and in irr. cells, respectively.
- * The concentration profile can be rescaled for other long-lived species.
- * Concentration is maximal at the upper parts of chambers.

Species responsible for etching are not long-lived

For more details see:

A. Schreiner, Aging Studies of drift chambers of the HERA-B Outer Tracker Using CF4-based Gases,

PHD thesis, Humboldt University

Summary

of results with honeycomb chambers in $Ar/CF_4/CO_2$ (65:30:5)

* anode etching \Leftarrow humidity < 100ppm after 0.3 C/cm

- wires swell (gain drops by O[10%])
- gold coating peels off
- wires rupture approximately

in the centre of irradiated area

- X-ray spectroscopy of exposed W did not reveal responsible (external) species
 - W-deposits contained always O and sometimes C and F
 - anode etching correlated with "transient aging"

Because $F_{(2)}$ reacts with H_2O we believe that:

- anode etching is caused by F and
- transient aging by F_2 very electronegative gas
- ★ dark currents ← conductivity of G10 strips ←← humidity > 500ppm

We assume that conductivity of G10 strips arises due to production of HF forming with water hydrofluoric acid (which is weakly conductive)

