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1 Motivation

In Planck-scale mediated supersymmetry breaking secarios one imagines that
dynamical supersymmetry breaking in a hidden sector is communicated to
the MSSM purely through Mp; supressed operators.

Let us assume that X is a chiral superfield whose F-term breaks SUSY
in the hidden sector and consider the supersymmetric effective Lagrangian
including Planck-scale suppressed operators that communicate between the
visible (MSSM) sector and the hidden sector.
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Here the @,’s denote the MSSM matter fields. The source of these higher
dimensional operators are Planck scale (string states) that couple to the
visible as well as hidden sector. After integrating out those states one obtains
Planck-scale suppressed couplings, which are not expected to preserve flavor
symmetry!

Thus even though gravity couples flavor blind to the visible sector, Plnack-
scale mediated supersymmetry breaking models lead generically dangerous
flavor violating terms.

Is there a way to further suppress those Planck-scale suppressed opera-
tors?



Anomaly mediation setup

Assuming an extra-dimensional theory where the visible (MSSM) sector is
spatially separated by a distance r from the hidden sector. Such a setup can
be realized within string theory by having two D3-branes separated spatially
in the remaining extra dimensions.

“the bulk”

visible sector Hidden brane

Then the potentially dangerous operators are exponentially suppressed
by e=MPR and if MpR > 1 one can ignore those couplings. Thus there

are no allowed couplings on tree level between the visible and hidden sector, |

however there will be couplings generated on the radiative level between these
tow sectors.

2  Weyl compensator formalism

Before we start with the supergravity Lagrangian let us briefly take a look
at ordinary Einstein gravity whose action takes the form

S= / d'z/=gR (4)

where g = det(g,,) and R is the Ricci scalar.

One easily sees that the action is not invariant under the scale transfor-
mations

(@) = Q*(2) g, () R=guR. — Q7(2)R V=g Q' (z)V=g

(%)

However one can introduce an additional real scalar n that transforms
under scale transformations

(@) = Q2 (@)n(x) (6)
and with the replacement g,, = 1g,, one obtains a scale invariant

/d“z\/gﬁ = /d4a;\/—_g [nR - 6(87])2] (7

Note the kinetic term for the scalar has a wrong sign, however this is not a
problem since eta is not a physical degree of freedom, it can be gauged away.
A non-zero vev of eta will break the scale invariance and Einstein gravity
can be recovered with the choice

n(x) = Mp (8)

Supergravity

In the standard superfield formalism on has the following action
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where the dots denote higher derivative terms. Here E = det(EY) is the
determinant of the supervielbein, £ is the chiral density and W@ is the
gauge superfield strength.

e IV is the superpotential, a holomorphic function of the superfields, that
governs the Yukawa couplings

e [ denotes the Kéhler potential that is a real function of the superfields
and determines in particular the kinetic terms of the chiral superfields.

+he + ..



e f is the gauge kinetic function that is holomorphic and determines the
kinetic terms of the gauge fields.

The idea is to extend the local supersymmetric action to a local super-
conformal action. Under a scale transformation one has the following trans-
formations:
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As it stands the action (9) is not invariant, however this can be compensated
by introducing a field ¢ known as the Weyl compensator that transforms as

oo e (11)

and ensures superconformal invariance of the action
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In the low energy limit one gets
Si= / d'zd*0d*d ¢ Qe?V Q (14)
+ / d*zd®0 [df’w + 4—;W<ﬂ>“w(“>a] +he+.. (15)

A vev for ¢ will break superconformal invariance (one uses (¢) =1 as gauge

fixing), but moreover in the presence of supersymmetry breaking in a hidden

sector (F) # 0 the auxiliary field component of ¢ acquires a non-zero vev
(£)

(Fy) = WUy ~ e (16)

o

Thus the auxiliary component of ¢, Fy, parametrizes the SUSY breaking in
(15)-

In case the superpotential takes the form W ~ @Q? with a field redefinition
Q' = ¢Q the Weyl compensator seems to disappear from the action. Thus
there is no direct coupling between the hidden and visible sector and the
action seems to be superconformal invariant. However the scale invariance is
broken on loop level by the running of the couplings. Thus it is expected that
the breaking of supersymmetry in the visible sector is related to the conformal
anomaly. Thus the name Anomaly mediated supersymmetry breaking.

3 Couplings as superfields

‘Tt turns out to be a very useful idea to promote coupling constants to super-

fields x where the vev of the lowest component is identified with the coupling
constant. Note that a nonzero constant vev does not break supersymmetry
as long as

Qal{x) = Qslx) =0 (17)

with Q, = % - i(r(’l‘daﬂau.

Let us assume we have the following ”fairly generic“action
/ d'zd'8 Z0e? Q + / dizvd®d {yo Q- %TW“WO} (18)
m

where Z denotes the wave function renormalization, yy the Yukawa coupling
and 7 = g‘zﬁ;‘f- —+ %. Promoting those constants to superfields (here Z is a
real superfield and g, 7 are chiral superfields)
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one can elegantly proof various non-renormalization theorems.
For instance the holomorphic Yukawa coupling are not renormalized.

However the Yukawa coupling of the canonical normalized fields run due
to wavefunction renormalization

phus — 20, 20
y 2 (20)
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One can also argue that the holomorphic gauge coupling receives on pertur-
bative level only one-loop corrections.

However the introduction of such superfield couplings also allows for an
elegant treatment of soft supersymmetry breaking terms, by allowing the
superfield couplings to have non-zero higher components, non-zero F-terms.

Z -1+ (0°B+0°B)+6%9°C (21)
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In terms of those auxiliary field vacuum expectation values one obtains the
following masses:

e Gaugino masses

The gaugino mass term arises from the Lagrangian
L= —# / A0 7(X, p)Ww, (24)
With
W® = —iX*+6D + ... (25)
the gaugino masses compute to
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However, note that the in order to have canonically normalized gauge
fields we have to rescale
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e Scalar masses

The scalar masses arise from the D-term
B / 4'02QQ (29)
that computes with
Q=q+F, Q=g+Fy Z=1+(B+05)+60°C (30)
after integration over the Grassmann variables to
Cqq+ FoFq + BFqq+ BFgq + ... (31)

Integrating out the auxiliary fields one obtains £ ~ (C — |B|?) qG + ....
Thus the mass term for the scalars is

mg = (|B* = C) @ = —~n(2)| i@ (32)
e A-terms
The A terms arise from the Lagrangian
/ dizd'9 Z(X, X, )0V Q + / Padloy(X, 1) Q*  (33)
which gives after integration over the Grassmann variables
Fyd® + FFq + BFoq + 3yoFod” + . (34)

which after integrating out the auxiliary field FQ gives (not that in
contrast to the mass term for the scalars here the contributions from
the superpotential enter in Fg)

Agqgq ~ (3Byo — 2Fy,) 43 = —Q.UAOCI3 = —2y—0§ ¢ (35)
Zz o2

4 Soft SUSY-breaking masses

Let us apply the procedure laid out above to the case of Anomaly mediation,
where as we discussed above the whole supersymmetry breaking arises from
the Weyl compensator

(¢) =1+ 6°F, (36)



From dimensional analysis it is clear that Z, as well as 7 will depend on

i/Apv, however as can be shown by Pauli-Villars regularization the cutoff

scale is always accompanied by ®. An illustrative argument is the following:

any mass term induced by regularization will scale with Ay, but also has

to scale with ¢, since otherwise we break scale invariance of the Lagrangian.
Thus we have
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and now we will use the formalism discussed above.
e Gaugino masses
Applying (28) and expanding 7 around ¢ = 1 + F}, one gets
wy = - 7 \T) ) |,_F, (38)
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where b = 3N — Np for a non-abelian supersymmetric SU(N) gauge
symietry.

Summarizing the gaugino masses are induced at one-loop and are sup-
pressed compared to the gravitino mass. Moreover the ratio of the
gaugino masses are given by their  function.

e Scalar masses

From (32) one obtains
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Analogously as above we can trade the derivative with respect to ||
with he derivative with respect to p. Then we get
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Here we used the definition of the anomalous dimension and the
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Scalar masses only appear at 2 loop (similar to gauge mediation). In
case we consider scalar masses only appearing from purely gauge field
loops, asymptotically free theories give rise to positive masses while
infrared free theories give rise to tachyonic states. This is a serious
problem for the slepton masses, additional contributions to their masses
may be required.

e A-terms

‘From equation (36) we get
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One can easily generalize that result to a yukawa term y;;#@'Q’Q*
which gives

Aijke ~ (v + 77 + ) GijeFy (45)

Insensitivity to UV physics

Consider some new chiral superfields P and P transforming as vector-like
representations under the SM gauge symmetry, that have a large supersym-
metric mass term

AL = / d>60M PP + h.c. (46)
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Note that the mass term contains the Weyl compensator ¢. Due to the
presence of these additional fields the gauge B functions will have different
values above and below the scale M.

N % Mé b "
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where b and b’ denote the 3 function coefficients below and above the scale M,
respectively. Note that the second term in (47) is independent of ¢ and thus
does not give any contribution to the gaugino mass. Similar arguments apply
for the wavefunction normalization Z. Thus the masses are independent of
the UV physics.

Another way to think about this is that the gauge mediated mass term
arising from the fields P and P at the scale M is cancelled by the difference
in the § function above the scale M. However that opens the door for mass
shifts in the gaugino and scalar masses arising from soft supersymmetry
breaking mass thresholds. That might help to make sleptons non-tachyonic

5 Mass spectrum and Phenomenology

Now let us apply the above formula to the MSSM spectrum. We make the
following simplifying assumptions 8, = 0 Vi, thus all masses are basically
given by the 8 function of the gauge couplings. At the scale =1 TeV we
have

ay = 0.01 ay = 0.032 a3 =01 (48)

and then get for the gaugino masses

Mo = 6.1 x 1074 Fy|? M2 =64 x 1079 Fy|> M, =7.0x107°|Fy?
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(49)
and for the scalar masses

M
(50)
One sees that squarks and gluinos are the heaviest particles. Sleptons are

tachyonic, which is a severe problem.
Ways out of that
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consider additional bulk fields B that couple to the visible sector (slep-
tons) as well as the hidden sector and induce additional mass contri-
butions.

consider additional Higgs fields with large yukawa couplings. On first
sight they make the f function for the gauge couplings worse, but the
tachyonic behavior of the sleptons might be overcome by the behavior
of B.

introduce SUSY violating thresholds as discussed above

introduce an additional gauge symmetry for sleptons and Higgses that
is asymptotically free (along the lines of Technicolor), in that case the
leptons and sleptons are composite fields.

The p-term problem

In Anomaly mediated setups one cannot simply have a p term in the super-
potential, since such a term is accompanied with the Weyl compensator

6= / d*0uoH Hy , (51)

whose F-term would induce a too large Bu ~ pFy term.
Potential solutions:

e Consider rather the NMSSM.

e Inducing the p term via a D-term. Consider a chiral superfield X that
is invariant under a shift symmetry with a coupling to the Higgs sector

£= / d“&%%YHqu +he. (52)

that will induce a a p term

F
L,= / dzé)ﬁo'Hqu (53)

without inducing a By term.



