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Moduli stabilization

Abstract

Metric moduli generically arise in theories with extra dimensions. If not stabilized
by some mechanism, these massless scalar fields can cause serious phenomenological
problems. In this talk, we discuss two mechanisms of moduli stabilisation, namely
stabilization via flux potentials and gaugino condensation.
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1 Motivation and Outline

1.1 What are moduli and why do we want to stabilize them?

In previous talks, we have encountered massless scalar fields, so called modulus fields,
which frequently arise in theories with extra dimensions. The vevs of these fields, called
moduli, are thus not constrained to any value by the scalar potential. A simple example
is the scalar component of the 5D metric g55, which sets the sets the scale of the extra
dimensions models with one extra dimension compactified on a circle. In more complicated
models fluctuations of the metric give rise to further massless scalars (hence referred to as
metric or geometric moduli).

In the context of Calabi-Yau compactification, non-trivial fluctuations of the metric
which preserve the Calabi-Yau condition Rij = 0 lead to two types of metric moduli (s.
Christoph’s talk) : (1,1)-forms which leave the Kähler structure of the metric invariant
(volume/ Kähler moduli) and (2,1)-forms which modify the Kähler structure (complex
structure moduli):

δg = δgij̄︸︷︷︸
→h1,1 Kähler moduli

dzidz̄ j̄ + δgij︸︷︷︸
→h2,1 complex structure moduli

dzidzj + h.c. (1)

If not stabilized by some mechanism, these moduli can cause serious problems:

• Typically the predictions of the theory crucially depend on the vevs of the moduli.
However, since these have no potential, their vev can be chosen arbitrary and hence
the theory looses predictivity. In other words, the moduli can be understood as fur-
ther continuous free parameters of the theory. In the context of type IIB string theory,
this implies literally hundreds of free parameters instead of one (string scale gs).

• Moreover, these parameters can be time-dependent, which is in conflict with obser-
vations.

• Massless scalars can mediate long range forces (typically roughly the strength of
gravity). This would lead to deviations from Newton’s law, which have not been
observed.

• One might argue, that scalar fields typically obtain large loop corrections to the bare
mass (as happens, e.g. to the Higgs in the SM), and hence the moduli are stabi-
lized automatically. However, in supersymmetric theories, the mass scale is set by
the SUSY breaking scale and hence only relatively small masses can be expected to
be produced. In the early universe, light scalar fields can obtain vevs of O(MP ).
Their subsequent oscillations and decays pose serious cosmological problems (over-
closure of the universe and entropy production which endangers successful BBN and
baryogenesis). This goes under the name of Polonyi problem.

• Note that there is a crucial difference between these massless scalars and the familiar
massless Goldstone bosons. The origin of the Goldstone mode in symmetry breaking
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implies that the physics in any vacuum connected by the Goldstone mode is the same,
since all these vacua are related by the symmetry. Moduli, however, can arise without
a symmetry, and hence in general physics will depend on their values. Thus one finds
a family of physically distinct vacua (the moduli space), which are connected by
varying massless fields.

• plus: stabilizing the moduli can also help with a completely different question. How
can parameters such as SM masses arise from a fundamental theory with no free
parameters? The mechanism of moduli stabilization discussed here will yield a “string
landscape”, hence helping to attack this question and maybe even the cosmological
constant problem.

The goal of this talk is to show how the metric moduli (in type IIB supergravity with
Calabi-Yau compactification) can be stabilized.

1.2 The idea

The metric moduli are directly related to the non-trivial topological objects of the Calabi-
Yau manifold. E.g. if you imagine the Calabi-Yau manifold as a Swiss cheese, then the the
complex structure moduli describe the effect of deforming the holes in the cheese, whereas
the volume moduli simply describe a rescaling.

On the other hand, topologically non-trivial objects can lead to non-vanishing fluxes1

when integrating a field strength over a closed surface which encloses the topological defect,
as happens, e.g., for magnetic monopols:

Flux =

∫
Σ

field strength , Σ = topologically non-trivial cycle2 . (2)

These non-vanishing fluxes add a non-vanishing energy contribution to the Lagrangian.
This energy will in general depend on the complex structure moduli (since they determine
the properties of the cycles over which the integration is performed), and hence we can
hope to create non-flat contribution for the effective scalar potential V of these moduli:

V 3
∫
M6

√
−g (field strength)2 . (3)

Later on we will see, that evaluating this term indeed yields expressions proportional
to the flux over the topologically non-trivial cycles of the manifold, thus confirming the
chain of thought explained above.

1In order to preserve Lorentz-invariance, we will focus on fluxes in the extra dimensions.
2More precisely, the homology group H(M) should be non-trivial and Σ a non-trivial element of the

homology.
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However, the technical problem of computing this quantity is difficult at the best, since
there is no closed form expression known for any Ricci-flat metric on a campact Calabi-
Yau manifold. At many points, we will therefore use qualitative arguments inferred from
holomorphy and dualities of the setting, instead of explicit computation.

Nevertheless, we can argue that we would expect energy scales such as the Planck mass,
the string tension or the inverse compactification radius to enter into the additional contri-
butions to the energy density, and hence the resulting masses could well be very heavy and
thus the moduli indeed stabilized. Section 3 is dedicated to demonstrating this mechanism
of moduli stabilization via generalized fluxes in some detail.

From Eq. (2), we can infer that a successful realization of the idea described above
requires the dimensions of the modulus related to the topologically non-trivial cycle Σ and
and field strength to ‘match’. Hence in order to stabilize the complex structure moduli
of type IIB supergravity with Calabi-Yau compactification described by (1,2)-forms, we
need 3-form field strengths. As we have seen in Felix’s talk on supergravity, we can find
such objects in type IIB d = 10 supergravity. However, in order to stabilize the volume
moduli described by (1,1)-forms by this mechanism, we require a 2-form field strength,
which cannot be found in the type IIB supergravity spectrum. In order to stabilize all
metric moduli, we thus need to introduce a further (non-perturbative) mechanism. This
is the topic of Section 4.

2 Setting

→ Christoph’s and Felix’s talks

2.1 Type IIB supergravity in d = 10

• Top-down approach: Type IIB string theory is a chiral N=2 supersymmetric su-
perstring theory in 10 dimensions. The mass spectrum of the one-particle states is
‘tower-like’, with quasi-degenerate levels separated by M2

string. The lowest level (=
low energy limit) can be described by chiral N=2 d = 10 Supergravity.

• Bottom-up approach: Searching for a ‘maximal supergravity’ yields a unique d = 11
supergravity theory, and from that different types of d = 10 supergravity. Here we
will focus on type IIB supergravity in d = 10.

• The bosonic field content is given by the symmetric tensor gMN (10d metric, gravi-
ton), the 2-form field B(2) (antisymmetric tensor), the dilaton φ and the 0-, 2-, and
4-form fields C(0), C(2) and C(4), also referred to as potentials. From these, the field
strengths can be calculated as

F(2p+1) = dC(2p) H(3) = dB(2) (4)
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Note that while we obtain two 3-form field strengths F(3) and H(3), we do not obtain
any 2-form field strengths. This indicates that the fluxes in this setting will help
stabilizing the complex structure moduli, but not the volume moduli.

• Furthermore, there are non-perturbative objects, so called D(p)-branes (Dirichlet
branes) and O(p)-branes (Orientifold branes). In particular the former will be of
interest for this discussion. They are p+1 dimensional objects, with p → 2p − 1 in
type IIB supergravity. In the context of string theory, they can be interpreted as
the boundaries of open strings, in the context of SUGRA, they can be understood
as solitonic objects. They source gauge fields in 10d and carry the tension Tp and
charge µp.

• A powerful analogy: electromagnetism (see Tab. 1). Comparing the p-form language
of type IIB 10d supergravity to Maxwell’s electromagnetism yields a far-reaching
analogy and helps to gain an intuitive understanding of this abstract language. In
Tab. 1, the first column describes electromagnetism in the ‘conventional’ language,
the second describes electromagnetism in the p-form language (see Sec. A) and the
third shows the generalization to 10d supergravity.

Electromagnetism 10d SUGRA type IIB

(vector) potential Aµ A(1) C(2p)

field strength F µν = ∂[νAµ] F(2) = dA(1) F(2p+1) = dC(2p)

action (pure gauge)
∫

d4xF µνFµν

∫
F(2) ∧ ∗F(2) ∼

∫ √
−g F 2

(2)

∫ √
−g F 2

(2p+1)

sources of gauge field e− D0-brane D(2p-1)-brane

action (source - gauge field) q
∫

dξνAµ(ξ) q
∫
C A(1) µp

∫
W C(2p)

flux
∫

dSµνFµν

∫
F(2)

∫
F(2p+1)

Table 1: Analogy between 10 dimensional Supergravity and Maxwell’s electromagnetism.
C denotes the worldline of a one-dimensional charged particle parametrized by ξ, W the 2p
dimensional worldvolume of a D(2p-1)-brane, and dSµν parametrizes the surface through
which the flux is measured.

Note that in electromagnetism, integrating over a closed surface yields a vanishing
flux - unless we encounter topologically nontrivial objects inside that surface, i.e.
magnetic monopoles. This also holds for the generalized situation in 10d SUGRA.
Luckily, when compactifying the 10 dimensional theory on a Calabi-Yau manifold
(see below), we obtain such topologically non-trivial objects. Hence we can hope to
be able to introduce non-vanishing fluxes, as required in Section 1.2.
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• 10d SUGRA effective action (bosonic part):

SIIB =
1

2 κ2
10

∫
dx10

√
−gs

{
e−2φ

[
Rs + 4(∇φ)2

]
− 1

2
F 2

(1) −
1

12
G(3) · Ḡ(3) −

1

4 · 5!
F̃ 2

(5)

}
+

1

8 i κ2
10

∫
eφC(4) ∧G(3) ∧ Ḡ(3) + Sloc .

(5)

Here C(2p) denote the 2p-form potentials of type IIB string theory and F(2p+1) = dC(2p)

the respective field strengths, with F 2 = (−g)−1/2F ∧ ∗F . The compact notation of
eq. (5) is a result of the following definitions:

τ ≡ C(0) + ie−φ , (6)

G(3) ≡ F(3) − τH(3) , (7)

F̃(5) ≡ F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) , (8)

with B(2) the antisymmetric 2-tensor of type IIB supergravity and τ referred to
as axio-dilaton. κ10, gs and Rs are the string coupling constant, the string metric
and the Ricci scalar, respectively. In Eq. (5), the first term describes the action of
Einstein gravity, the dilaton and the field strengths of type IIB d = 10 supergravity
(s. Tab. 1), whereas the second term is a metric-independent Cern-Simons-term.
Finally, Sloc denotes the action of localized objects, such as D-branes. For example,
the action of a p-brane wrapped on a (p-3) cycle Σ of the manifold M6 is given by

Sloc = −
∫

R4×Σ

dp+1ξ Tp

√
−g + µp

∫
R4×Σ

C(p+1) , (9)

where Tp and µp denote the brane tension and charge, respectively. The first term de-
scribes the coupling of the D-brane to gravity, the second term is a metric-independent
Cern-Simons-term and describes the coupling of the worldvolume of the brane to the
background potential (s. Tab. 1).

2.2 Calabi-Yau compactification

In order to recover a realistic scenario in our 3+1 dimensions, we need to compactify six
dimensions of the 10 dimensional theory discussed above. The 10 dimensional space is
described as

R1,3 ×M6 , (10)

with R1,3 describing the four dimensional Minkowski space andM6 describing the compact,
six dimensional, compact manifold unobservable at very low energies. Here, we choose M6

to be a Calabi-Yau manifold CY 3 with three complex dimensions (s. Christoph’s talk).
Among other properties, this implies
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• CY 3 is a complex manifold, i.e. we have two sets of coordinates, associated with d3z
and d3z̄ and we can define holomorphic functions.

• On a general CY 3-fold, there are following harmonic forms:

Ω [(3, 0)− form] , χa [(2, 1)− form] , χ̄ā [(1, 2)− form] , Ω̄ [(0, 3)− form] , (11)

with a = 1, .., h2,1, ā = 1, .., h1,2. χa is imaginary self dual (ISD): ∗6χa = iχa, whereas
Ω is anti imaginary self dual (AISD): ∗6Ω = −iΩ.

• CY 3 is Kähler, i.e. its metric can be expressed as derivatives of a Kähler potential.

• CY 3 is not unique but comes in families, parametrized by the metric moduli.

Moduli in CY - compactifications:

Metric moduli:
The Calabi-Yau metric is not unique, but comes in families parametrized by vacuum ex-
pectation values of metric fluctuations which preserve the CY condition. In the effective
4d theory, these metric fluctuations appear as massless scalar fields, i.e. modulus fields.
In the setting discussed here, this leads to two types of metric moduli: (1,1)-forms which
leave the Kähler structure of the metric invariant (volume/ Kähler moduli) and (2,1)-forms
which modify the Kähler structure (complex structure moduli):3, see Eq. (1). The number
of volume (complex structure) moduli is given by the Hodge number h1,1 (h2,1), which the
denotes the dimension of the respective co-homology group and is typically O(100).

Further moduli:
Further moduli, not originating from fluctuations of the metric, include the dilaton φ
(parametrizing the string coupling constant) and

∫
C(0),

∫
C(2) and

∫
B(2), sometimes re-

ferred to as axions. In general, further mechanisms (beyond the scope of this talk) are
required to stabilize these moduli.

3 Moduli Stabilization via Fluxes

3.1 A no-go-theorem and how to circumvent it

Before turning on fluxes to stabilize moduli, we need to check if the theory provides any
constraints for this case. As it turns out, the Einstein equations indeed impose severe con-
straints on the existence of fluxes in compact manifolds. However, allowing for localized
objects with negative tension, so called orientifold branes, these can be evaded.

A no-go theorem for fluxes and warped solutions on compact manifolds

3related to the co-homology groups H1,1(M) and H2,1(M).
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Our starting point on the way to examine the effect of fluxes on the Calabi-Yau mod-
uli is the effective low-energy type IIB SUGRA action Eq. (5). Deriving the resulting
Einstein equations, we obtain serious constraints for the existence of non-trivial warped
solutions and fluxes on compact manifolds. Since the calculation is quite tedious, I here
merely roughly outline the actual calculation before presenting the result. More elaborate
explanations can be found e.g. in [1].

• Reformulate eq. (5) in the Einstein frame (→ Felix’s talk)

• Looking for solutions with 4d Poincaré symmetry, choose the metric ansatz

ds2
10 = e2A(y)ηµν︸ ︷︷ ︸

gµν

dxµdxν + e−2A(y)g̃m,ndymdyn , (12)

with µ, ν = 0..3 and m, n = 4...9, i.e. x the coordinates of our 4 dimensional space
and y the coordinates of the compactified 6 dimensional manifold. A(y) is called
warp factor.

• Express F̃(5) as F̃(5) = (1 + ∗) [dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] with α = α(y).

• Calculate 10d trace reversed Einstein equations RMN = κ2
10(TMN − 1

8
gMNT )

(Christoffel connection → RMN , TMN ∼ (−g)−1/2δS/δgMN)

This finally yields the equation

∇̃2e4A = e2A G(3) · Ḡ(3)

12Imτ
+ e−6A(∂me4A∂me4A + ∂mα∂mα) +

1

2
κ2

10e
2A(Tm

m − T µ
µ )loc , (13)

where ∇̃ denotes the use of g̃mn. These equations imply stringent constraints on the exis-
tence of fluxes and non-trivial warp factors on compact manifolds. Note that integrating
the left side of eq. (13) over the compact six dimensional manifolds yields zero, whereas
the first two terms on the RHS are positive definite. Hence in the absence of localized
sources (third term), the first two terms must vanish independently, i.e. G(3) = 0 and
eA =constant. Hence in particular, their can be no non-vanishing fluxes due to 3-form
field strengths, which is however just the type of fluxes required to stabilize the (2,1)-form
complex structure moduli, as discussed in Section 1.2.

A second constraint can be derived from combining this result with the Bianchi identity
for F̃ 5. This restricts the allowed type of localized objects and in particular yields the
condition

∗6G(3) = iG(3) , (14)

i.e. requires G(3) to be imaginary self-dual (ISD).

...and a way around it
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In order to rescue the idea discussed in Section 1.2, our only hope in evading the no-go-
theorem above lies with the third term in Eq. (13), which describes the effect of localized
sources. String theory automatically supplies us with localized sources, so called p-branes4.
These are non-perturbative p+1 dimensional objects. The action of a p-brane wrapped
on a (p-3) cycle Σ of the manifold M6 is given by Eq. 9. From this, we can calculate the
stress-energy tensor

T loc
MN = − 2√

−g

δSloc

δgMN
. (15)

Exploiting the formal relation δφ(y)
δφ(x)

= δ(x−y) for functional derivatives and δg = −g gMN δgMN ,
we obtain

δSloc

δgMN
=

∫
R4×Σ

dp+1ξ
1

2
Tp (−g)−1/2 δg(ξ)

δgMN(x, y)

=
1

2

∫
R4×Σ

dp+1ξ Tp

√
−g gMN

δgMN(ξ)

δgMN(x, y)︸ ︷︷ ︸
δd(ξ−x,y)ΠMN

The projector ΠMN arises due difference between the external metric and the induced
metric on the manifold (similar to the Jacobian determinant). Hence for M, N = µ, ν, the
projector is trivial Πµν = gµν since on R4 the induced metric is just the external metric.
However, on the compact manifold M6, i.e. for M, N = m, n, the induced metric depends
on the specification of the manifold. Finally the integration of the d-dimensional delta-
distribution over R4×Σ yields a d− [4+(p−3)] = d−p+1 dimensional delta distribution
in the y-coordinates transverse to Σ, hence describing the position of the cycle (δ(Σ)).
With this, we obtain

T loc
µν = −Tpg

µνδ(Σ) , T loc
mn = −TpΠ

Σ
mnδ(Σ) , (16)

and hence

T µ
µ = gµνTνµ = − 4︸︷︷︸

dimR

Tpδ(Σ)

Tm
m = gmnTnm = −Tp (p− 3)︸ ︷︷ ︸

dimΣ

δ(Σ)
(17)

Regarding the third term on the RHS of Eq. (13), this implies

(Tm
m − T µ

µ )loc = (7− p)Tpδ(Σ) (18)

From this we see, that for p < 7 we can circumvent the no-go theorem from Section 3.1
if we have localized objects with negative tension in the theory5. String theory has such

4Exploiting the Bianchi identity for F̃5, one obtains that type IIB supergravity in d = 10 allows Dirichlet
branes D3, D7 and orientifold branes O3.

5p < 7 is not really a constraint, due to the equivalence C(p) ∼ ∗C(d−p).
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objects, e.g. O3-branes (3+1 dimensional orientifold branes). Here, we will not be con-
cerned about the details of these objects, but merely state, that if the theory contains such
objects, we can turn on non-trivial 3-form fluxes without violating the constraints derived
from the Einstein equations.

3.2 Scalar potential

Having learned that we can indeed turn on fluxes, we now proceed by examining the
scalar potential for the moduli fields generated by such fluxes. Our strategy will be to
calculate a treelevel approximation to the 4d effective potential via dimensional reduction
of d = 10 supergravity. In general, we will have to add possible quantum corrections
and nonperturbative contribution to this expression. We will come back to this point in
Section 4.

Rewriting eq. (5) in the Einstein frame yields (→ Felix’s talk)

SIIB =
1

2κ2
10

∫
d10x

√
−g

{
R− ∂Mτ ∂Mτ

2(Imτ)2
−

G(3) · Ḡ(3)

12Imτ
−

F̃ 2
(5)

4 · 5!

}
+

1

8iκ2
10

∫
1

Imτ
C(4) ∧G(3) ∧ Ḡ(3)︸ ︷︷ ︸

contains G(3) but no metric fluctuations

+Sloc

(19)

Following the idea introduced in Section 1.2, we are interested in the flux potential of the
symbolic form

∫ √
−g (field strength)2. SIIB contains two such terms, one for G(3) and

one for F(5). Since CY moduli are expressed by (1,1) and (2,1) forms, we will focus on
the G(3)-term in the following, since the dimension of the non-trivial cycle related to the
modulus and the flux threading this cycle must match. Hence the only term which can
potentially yield a scalar potential for the metric fluctuations generated by fluxes, is

SG = − 1

2 κ2
10

∫
d10x

√
−g

G(3) · Ḡ(3)

12 Imτ

→ L4d = − 1

24 κ2
10

∫
M

d6y
√
−g̃

G(3) · Ḡ(3)

Imτ

= − 1

12 κ2
10 Imτ

∫
M

d6y
√
−g̃ G+

(3) · Ḡ
+
(3)︸ ︷︷ ︸

V

− i

4 κ2
10 Imτ

∫
M

G(3) ∧ Ḡ(3)︸ ︷︷ ︸
contains G(3) but no metric fluctuations

,

(20)

with G(3) = G+
(3) + G−(3), where G+

(3) (G−(3)) are AISD (ISD) components of G(3): G±(3) =

(G(3) ± i ∗6 G(3))/2. Here we are working in the approximation of weak warping, A(y) =
const.. Note that Lorentz invariance in 4d requires G = G(y). The contribution to the
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scalar potential we are interested in is hence given by

V = −(12 κ2
10 Imτ)−1

∫
M

d6y
√
−g̃ G+

mnpḠ
+ mnp

= −(2 κ2
10 Imτ)−1

∫
M

G+
(3) ∧ ∗6Ḡ

+
(3)︸ ︷︷ ︸

−iḠ+
(3)

(21)

where we used the definition of the Hodge dual in six dimensions for the last equality.
Expanding6 the AISD 3-form G+

(3) spanning three real dimensions in the complex CY

manifold, i.e. in terms of the harmonic AISD forms Ω [(3, 0)− form] and χ̄ā [(1, 2)− form]
with ā = 1, 2, ..h1,2,

G+
(3) = αΩ + β̄āχ̄ā , (22)

we can determine the coefficients α and β as follows. Keeping in mind that it is possible
to express p-forms with anticommuting differentials, see Eq. (46), we observe that the
integration over the compact six dimensional manifold M over a wedge product of two
p-forms is only non-vanishing if the resulting product of differentials contains exactly three
dz s and three dz̄ s. Hence evaluating

∫
MG+

(3) ∧ Ω̄ and
∫
MG+

(3) ∧ χb yields

α =

∫
MG+

(3) ∧ Ω̄∫
MΩ ∧ Ω

,

β̄ā =

∫
MG+

(3) ∧ χb∫
M χ̄ā ∧ χb

= K āb

∫
MG+

(3) ∧ χb∫
MΩ ∧ Ω̄

, K āb =

∫
MΩ ∧ Ω̄∫
M χ̄ā ∧ χb

.

(23)

With this, inserting Eq. (22) into Eq. (21), thereby taking into account the anticommuting
relations for the differentials, yields

V = (2κ2
10Imτ)−1

∫
MG+

(3) ∧ Ω̄
∫
M Ḡ+

(3) ∧ Ω + Gab̄
∫
MG+

(3) ∧ χa

∫
M Ḡ+

(3) ∧ χ̄b̄∫
MΩ ∧ Ω̄

. (24)

Note that since
∫
MG−(3)∧Ω̄ and

∫
MG−(3)∧χa vanish, we can replace G+

(3) → G(3) in Eq. (24).

How does this expression depend on the moduli fields? Terms of the type
∫
M Ḡ(3) ∧Ω can

be rewritten exploiting the decomposition in terms of the dual cycles Aa and Ba (canonical
homology baisis for H3(M, Z)):∫

M
Ḡ(3) ∧ Ω =

∑
a

∫
Ba

G(3)︸ ︷︷ ︸
flux Na

∫
Aa

Ω︸ ︷︷ ︸
za

+
∑

a

∫
Aa

G(3)︸ ︷︷ ︸
flux Ma

∫
Ba

Ω︸ ︷︷ ︸
Πa(zb)

(25)

The integral of the holomorphic 3-form Ω over the topologically non trivial cycles Aa,
za =

∫
Aa Ω, can be identified as the projective coordinates of the complex structure moduli

6G−(3) then in turn can be expressed in terms of the (0,3) and the (2,1) ISD forms (Ω̄, χa).
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on the CY threefold [4]. Proving this relation is beyond the scope of this talk, however
from a qualitative point of view we can observe that

∫
Aa Ω projects the the structure of the

topologically non-trivial cycle onto a scalar, which should therefore be related to scalar the
modulus describing the cycle Aa. In other words, the complex structure of M is entirely
determined by the za. The integral over the dual cycles Ba can be interpreted as the “dual”
of the complex structure moduli, so called periods. The integral of the 3-from fieldstrength
G(3) over the topologically non-trivial cycles is just the flux threaded through this cycles.
Hence we have confirmed our earlier argument, that non-vanishing fluxes over topologically
non-trivial objects generates a potential for the complex structure moduli. Thus Eq. (24)
yields a scalar potential for the modulus fields, as required. In order to see, that this
actually stabilizes the moduli (and is not a flat or run-away potential), we could try and
express Eq. (24) in terms of the complex structure moduli using Eq. (25). In practice, this
is not quite as easy as it sounds since the Πa(zb) are in general complicated functions of
the zb, and therefore we will take a shortcut via the introduction of the superpotential and
Kähler potential.

3.3 Consequences for complex structure moduli

In supergravity, the scalar potential is given by

V =
1

2κ2
10

eK(Kij̄DiWDj̄W̄ − 3|W |2) (26)

with W the superpotential, K the Kähler potential, Kij̄ the inverse Kähler metric and
DiW ≡ ∂iW + W∂iK. From this, we can check that the effective 4d theory

W =

∫
M

G(3) ∧ Ω , (27)

K = −3 ln(T + T̄ )− ln(−i(τ − τ̄))− ln(−i

∫
M

Ω ∧ Ω̄) , (28)

with T denoting a volume modulus field, yield the scalar potential given by Eq. (24), e.g.:

DT W = 0 + W
−3

T + T̄
=

−3

T + T̄

∫
M

G3 ∧ Ω , (29)

DaW =

∫
M

G3 ∧ (kaΩ + χa)−
∫
MG3 ∧ Ω∫
MΩ ∧ Ω̄

ka

∫
M

Ω ∧ Ω̄ +

∫
M

χa ∧ Ω̄︸ ︷︷ ︸
=0


=

∫
M

G3 ∧ χa , (30)

DτW =
1

τ̄ − τ

∫
M

Ḡ3 ∧ Ω , (31)

KT T̄ = (∂T̄ ∂T K)−1 =
1

3
(T + T̄ )2 , etc. (32)
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where we used ∂Ω
∂za = kaΩ + χa [4].

Hence we have found a 4d effective supergravity theory for the original 10d setting.
Let’s have a closer look at this theory and its implications.
The way T enters in K implies KT T̄ DT WDT̄ W̄ = −3|W |2, and hence the resulting treelevel
scalar potential is independent of T (so called no-scale potential) and positive semi definite:

V ∼ Kτ τ̄DτWDτ̄W̄ + KaāDaWDāW̄ , (33)

with a running over the complex structure moduli. Hence vacua minima of the potential
are obtained for 7

DiW = 0 for i = τ, a . (34)

This is system of h2,1+1 equations for h2,1+1 variables for each choice of integral flux, with
h2,1 denoting the number of complex structure moduli. Hence for sufficient generic fluxes,
we will find isolated points satisfying Eq. (34) which (due to the positive definiteness of the
potential) correspond to minima of the potential with positive masses for all directions.
Thus generic fluxes will fix all of the complex structure moduli as well as the axio-dilaton τ .

4 Stabilization of Volume Moduli

In the last section, we demonstrated how the complex structure moduli arising in the
Calabi-Yau compactification of type IIB supergravity can be stabilized by an effective
treelevel potential generated by fluxes. Note however, that no effective potential for the
volume moduli was generated at the same time (no-scale form of the potential!). This can
be understood as follows: The volume (Kähler) moduli are (1,1)-forms, hence following
the arguments above we would require a 2-form flux, i.e. a 1-form potential in order to
generate an appropriate potential. However, type IIB supergravity in d = 10 only yields
potentials 2p-form potentials with 2p even, and hence this technique of stabilization can
not work.8

Hence we must consider a different mechanism to stabilize the volume moduli in this
setting. As mentioned above, we need to take quantum corrections of the Kähler potential
(the superpotential is protected by a non-renormalization theorem) and non-perturbative
contributions into account when calculating the full effective scalar potential. The main
ingredient we will focus on here will be non-perturbative D-branes. As we will see, a stack
of these can generate a SYM gauge group whose coupling constant is related to the volume
modulus of the cycle the stack of branes is wrapped around9. Considering a pure gauge

7Inserting Eqs. (31) and (30), Eq. (34) implies that at the minimum G(3) is a (2,1) form, i.e. ISD. This
is consistent with Eq. (14), derived in the 10d formalism using the Bianchi identity. This is a further
confirmation of our “guess” of W and K for the effective 4d theory.

8Note that in type IIA theories, p-form potentials with odd p arise and hence volume moduli can be
stabilized by flux potentials.

9In type IIA theories, the gauge coupling is related to the complex structure moduli.
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theory on the brane leads to gaugino condensation and thereby to an effective potential
for the volume moduli.

4.1 D-Branes

Until the mid 1990s, it was widely believed that compactifications of type II string theories
could never yield any SM - like phenomenology at low energies. This changed significantly
after the discovery of the so called Dirichlet (D)-branes (Polchinsky, 1995). D-branes pro-
vide a new origin for non-abelian gauge symmetries, can localize chiral matter representa-
tions at their intersection locus and can preserve some but not all of the supersymmetry of
the respective type II compactification, hence allowing N = 2 → N = 1 supersymmetry
for the low energy effective theory.

T-Duality:
An open string theory compactified on a small cycle is T-dual to a compactification on
large cycle with open string endpoints restricted to lie on hyperplanes. The latter are called
D-branes. Higher dimensional Dp-branes are obtained by dualizing further (compact) di-
mensions. The resulting Dp-branes fill all four Minkowski dimensions, the remaining p− 3
spatial dimensions are ‘wrapped’ around a cycle of the complex manifold. Viable type IIB
compactifications include D7-branes.

Mass Spectrum:
In the context of one dualized dimension, consider the massless spectrum of open strings,
which arises by considering strings with zero winding number and with both endpoints
confined to the same D-brane. If all D-branes are located at distinct locations (in the
remaining coordinates), we obtain

• d-1 states with tangent polarization → gauge field living on hyperplane.

• 1 state with perpendicular polarization with respect to the hyperplane → collective
coordinate for the shape of the hyperplane.

Hence we find that the D-brane has become a dynamical object of the theory (described
by the latter dof) with a U(1) gauge symmetry living on the brane. If N branes coincide,
i.e. have the same location, the resulting massless spectrum of open strings consists of

• N2 massless vectors (tangent polarization) → non-abelian U(N) + SU(N) × U(1)
gauge symmetry on the coinciding branes.

• N2 massless scalars (perpendicular polarization) → after gauge transformation: N
collective coordinates describing the fluctuations of the N D-branes.

The same qualitative behavior is found for higher dimensional Dp-branes.

Phenomenology
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From the discussion above, we see that non-Abelian gauge groups can be realized on stacks
of branes. The gauge coupling is given by

g2
Y M =

gs lp−3
s

V ol(Σ)
, (35)

where gs denotes the string coupling, ls the string length and V ol(Σ) is the volume of the
cycle wrapped by the brane under consideration. Generally, different gauge groups arise
from stacks of branes wrapping different cycles with different volumes, so the couplings
have no reason to be equal. The branes responsible for the SM dofs can be localized to
a small subregion of the compact manifold, allowing its energy scales to be influenced by
warping.

Analogy to Electromagnetism:
A Dp-brane can be understood as the analogue of an electron in electromagnetism. The
electron, a point-like particles, sources a 1-form potential (A) and its action is given by
coupling its one-dimensional wordline to this 1-form potential. The Dp-brane sources a
p+1-form potential C(p+1) and its action is given by coupling its p+1 dimensional world-
sheet to this p+1-form potential.

4.2 Stabilization via gaugino condensate

The the non-abelian U(N) gauge symmetry (with N large) on the coinciding branes shares
many features of the non-abelian SU(3) gauge symmetry of QCD.

• Due to RGE, the coupling constant increases for decreasing energy. Hence there is a
cutoff scale Λ, below which the perturbation theory is no longer valid but the physics
is governed by non-perturbative effects.

• In analogy to quark confinement below the cutoff scale ΛQCD in QCD, this leads to
gaugino condensation: 〈λλ〉 ∼ Λ3.

• The physics below the scale Λ can be described by an effective field theory. In QCD,
the “elementary” particles of this theory are e.g. protons and pions and we can write
down effective interactions and an effective potentials for effective dofs. In the U(N)
SYM theory on the brane, we can also formulate such an effective theory, and in
particular an effective scalar potential and superpotential.

The action describing the SU(N) gauge theory on the brane is given by∫
d2θ

1

g2
W αWα , (36)

with g the SU(N) coupling constant in the high energy limit. In type IIB supergravity,
this coupling constant is promoted to a dynamical (modulus) field T (see Eq. (35))

g2 ∼ V ol(Σ)−1 ∼ T−1 . (37)
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We can thus rewrite the action as

∼
∫

d2θ T WαWα ⊃ FT λλ , (38)

exploiting that the lowest order (θ0) contribution of W αWα = λλ projects out the F-term
of the modulus T . Analogous to quark confinement in QCD, the strong coupling regime
of this theory will induce gaugino condensation

λλ → 〈λλ〉 ∼ Λ3 , (39)

where Λ is the scale where the coupling becomes strong, given by the running of the gauge
coupling

g2(µ) =
1

1
g2

IR
+ b

8π2 ln
(

MIR

µ

) → Λ = MIR exp

(
− 8π2

g2
IR · b

)
(40)

with b determined by the structure of the gauge group and gIR the gauge coupling of
the low energy effective theory, governed by the modulus T . Plugging this into Eq. (38),
we obtain a contribution to the action of the form

∼ FT exp(−2π

N
T ). (41)

In the 4d effective theory this can be expressed as

W (T ) = W0 + Ae−
2π
N

T , (42)

where W0 is the perturbative treelevel superpotential and N explicitly shows the depen-
dence on the size of the D7-stack. Large N allow for to fix T at large values, hence justifying
the supergravity assumption of large volumes.

The effective contribution to the scalar potential obtained from Eq. (42) yields a pos-
itive squared mass contribution for the Kähler modulus T (quadratic term in W → mass
term). This demonstrates the basic idea of how non-perturbative effects can stabilize the
Volume moduli.10 It can be extended to the case of more than one volume modulus.

So finally, including fluxes and non-perturbative effects, we have demonstrated a loose
proof-of-principle argument, that it is possible to stabilize all metric moduli.

5 Summary

In theories with extra dimensions, fluctuations of metric generically give rise to massless
scalars in the effective 4d theory. If not stabilized by some mechanism, these so-called
moduli fields can cause serious phenomenological problems.

10The effective scalar potential derived from Eq. (42) yields V min < 0, i.e. and AdS vacuum. This can
be uplifted into a dS vacuum by introducing D3-branes.
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In type IIB supergravity in 10 dimensions with Calabi-Yau compactification, the complex
moduli can be stabilized using flux potentials. These fluxes, obtained by integrating a
3-form field strength over topologically non-trivial objects parametrized by the complex
structur moduli, generate an effective scalar potential for the moduli. Starting form the
IIB sugra action in d = 10, we derived an expression for the 4d scalar potential, which
can be mimicked by an effective 4d supergravity theory characterized by a superpotential
and a Kähler potential. Examining the latter theory, we found that for sufficiently generic
fluxes, it allows for a stabilization of all complex structure moduli.
Considering non-perturbative effects, in particular gaugino condensation on D7-branes,
can stabilize the volume moduli. Large stacks of D-branes wrapped around topologically
non-trival cycles source gauge groups with the coupling constant related to the volume of
the respective cycle and hence to a volume modulus. Gaugino condensation on the brane
yields a contribution to the low energy effective theory, which stabilizes the volume moduli.

A p-forms

• p-form A(p): completely antisymmetric p-index tensor Aµ1,...µp with indices omitted.

• wedge product (∼ diadic product, tensor product):

(A(p) ∧B(q))µ1,..µp+q =
(p + q)!

p!q!
A[µ1..µpBµp+1..µp+q ] , (43)

with [..] denoting antisymmetrisation.

• exterior derivative takes p-form to p+1 form:

(dA(p))µ1..µp+1 = (p + 1)∂[µ1Aµ2..µp+1] . (44)

• Integral:
∫

A(d) ≡
∫

ddxA0,..,d−1.

• Stokes theorem:
∫
M dA(p−1) =

∫
∂MA(p−1).

• Hodge star:

∗Aµ1..µd−p
=

√
−g

p!
εν1..νp
µ1..µd−p

Aν1..νp , (45)

i.e. the hodge star converts a p-form into its Hodge dual, a d-p-form. In the complex
Calabi-Yau three-fold, the situation is slightly more complicated. Here the hodge
star converts a (q,p)-form into a (3-p, 3-q) form and the 6d epsilon tensor is replaced
by two 3d epsilon tensors.

• Representation with anticommuting differentials dxµ

Ap =
1

p!
Aµ1..µpdxµ1 ..dxµp . (46)
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