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SM trapped on a brane

Last session we heard about the original KK idea and learned that compact extra dimen-
sions give rise to 4D mass terms—the KK excitations. The reason for introducing extra
dimensions in the framework of today’s topic is completely different to the original KK
idea. We don’t want to unify gravity and the gauge couplings of the SM (which by the
way is hardly achievable due to the non-abilian structure). On the contrary we banish the
SM fields from our extra dimension and trap them on a (3 + 1)-dimensional brane (called
3-brane). We only allow the graviton to propagate in the bulk (that is the full higher di-
mensional space). Such a scenario is of course string/M-theory motivated since SM fields
correspond to open strings whoes ends have to fulfill certain boundary conditions while
gravitons correspond to closed strings.

This idea leads to interesting consequences in the gravity sector and opens new possi-
bilities, e.g. for solving the hierarchy problem. Let’s consider such an attempt.

Before we examine the Randall-Sundrum idea let’s briefly consider the “large” extra
dimensions model (ADD)—as a warm up and also to compare it to RS later on. By the
way, “large” means that the size of the compact extra dimension is big compared to the
inverse Planck scale MPl

−1.

Large extra dimensions (ADD)

In this set-up the higher dimensional space is made up of the direct product of the 4D
Minkowski space and and d flat compact extra dimensions of size yc (M × Td). The
canonically normalized (4 + d)D Einstein-Hilbert action reads

S = M (d+2)

∫ yc

0

ddy

∫
d4x
√
−GR , (1)

where M , GMN and R is the (4 + d)D Planck mass, metric and Ricci scalar, respectively.
Due to the trivial metric this can be easily reduced to a 4D effective action by performing
the integral over the extra dimensions y

Seff = M (d+2)ydc

∫
d4x
√
−g(4)R(4) . (2)

Thus, the 4D Planck mass MPl is related to the higher dimensional one as

MPl
2 = M (d+2)ydc . (3)
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That is, you can in principle pretend to live in 4+d dimensions and choose d and yc in such a
way that the fundamental Planck scale M is of order 1 TeV which would straightforwardly
solve the hierarchy problem.

Let’s see in a very simple consideration what this means for Newton’s gravity. This
can be easily read off from the Gaussian law in 4 + d dimensions:

V (r)Newton ∼
1

M (d+2)

{
r−(d+1) for (r � yc)

y−dc r−1 for (r � yc)
. (4)

Since there has been no deviation found from Newton’s law (lower case of (4)) down to
distances of about 0.2 mm, d ≥ 3 and yc . 10−8 m has to be chosen. However, there are
constraints from cosmology and astrophysics which set a direct bound on the achieved
fundamental scale M in this scenario which is why ADD is not as interesting anymore.

Incorporating brane tensions—the Randall-Sundrum

model

Although in the ADD model we put the SM on a 3-brane the effect on the space-time is
not reflected by the action (1). So, we simply neglected this contribution.

Now, one of the basic ingredients of the Randall-Sundrum approach is to include the
brane tension (energy per unit 3-volume on the brane) and also allow for a 5D cosmological
constant. The goal is to obtain 4D Poicare invariance but retain a non-trivial 5D metric.

The RS set-up

Consider one extra dimension which is the compact space S1/Z2, that is, you impose the
symmetries

• Periodicity: y → y + 2yc

• Orbifold symmetry: y → −y

in the coordinate of the extra dimension y.

We take two 3-branes which we will call the (+)-brane and the (−)-brane and localize
them at the fixed point y = 0 and y = yc, respectively. Assuming that the thickness of the
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branes is small compared to yc we approximate them as δ-functions in the y-space. The
5D action of this set-up reads

S =
∫ yc
−yc d

dy
∫
d4x
{√
−G (M3R− Λ)

−
√
−g+T+δ(y)−

√
−g−T−δ(y − yc) + (SM on one brane)

}
, (5)

where Λ is the 5D cosmological constant, T± is the tension on the (±)-brane and

g±µν(x
µ) = GMN

(
xµ , y =

{
0
yc

})
δMµ δNν . (6)

Variation with respect to GMN gives the standard Einstein equation with Λ plus junction
conditions on the branes:(

RMN −
1

2
GMNR

)
= − 1

2M3

{
ΛGMN +

δµMδ
ν
N√
−G

[
T+

√
−g+ g

+
µν δ(y)

+ T−
√
−g− g−µν δ(y − yc)

]}
. (7)

In the rest of this talk I will solve (7) first for the background metric and then for
pertubations in the µν componets (the graviton).

Solutions for the background metric

The appealing thing about this set-up is that it allows for a 4D Poicare invariance back-
ground solution. To see this we choose a 4D flat ansatz

ds2 = e−2σ(φ)ηµνdx
µdxν + dy2 (8)

where e−2σ(φ) is just a fancy way of writing a positive function of the real variable y. It is
called the warp-factor. This metric is of course non-factorizable unlike in the ADD case.
Plugging into (7) gives us

yy : σ′ =

√
−Λ

12M3
, (9)

“µν − yy” : σ′′ =
1

6M3
(T+ δ(y) + T− δ(y − yc)) (10)

Imposing the additional requirement of the orbifold symmetry the solution to (9) is

σ = |y|
√
−Λ

12M3
. (11)
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The second derivative is

σ′′ = 2

√
−Λ

12M3
(T+ δ(y)− T− δ(y − yc)) . (12)

Matching (12) with (10) leads to

T− = −T+ = −
√
−12M3 Λ ≡ −12M3k , (13)

where we introduce the single dimensionful parameter k. We want to state four remarkable
things:

• There is a solution

• Λ must be negative, so the resulting background metric is AdS5 with radius ∼ k−1

• T−, T+ and Λ has to be fine-tuned (in some way similar to cosmology to get Ω = 1)

• T− has negative tension

Now, the background metric reads

ds2 = e−2k|y|ηµνdx
µdxν + dy2. (14)

Since every slice of this AdS5 space is 4D flat one can decompose every field into four
dimensional plane waves

Φ ∼ eipxφp(y) . (15)

Since we now know the background metric and some properties of it we will examine
pertubations. But before solving the linearized Einstein equations, let’s calculate the
effective 4D action analogous to (2):

Seff ⊃
∫
d4x

∫ yc

−yc
dyM3e−4k|y|

√
−g(4) e2k|y|R(4)

=

{
M3

k
(1− e−2kyc)

}∫
d4x
√
−g(4)R(4) . (16)

Thus, the expression in curly brackets is the 4D Planck mass MPl. Here—in contrast
to (2)—we see that the size of the extra dimension has little effect on the ratio between
M and MPl. As we will show now, you can choose M ∼ k ∼ MPl but still solve the
hierarchy-problem.
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Solving the hierarchy problem with RS

Assuming that the SM is trapped on the negative-tension-brane and considering the fun-
damental Higgs field H one obtains

S ⊃
∫
d4x
√
−g−

{
gµν− DµH

†DνH − λ(|H|2 − v2
0)2
}
, (17)

where v0 is a mass parameter. Plugging in the 4D metric g
(4)
µν = e−2kycg−µν (g

(4)
µν = ηµν in

flat space) and performing a wave-function renormalization H → ekycH we obtain

Seff ⊃
∫
d4x
√
−g(4)

{
g(4)µνDµH

†DνH − λ(|H|2 − e−2kycv2
0)2
}
. (18)

Thus,
v = e−kycv0. (19)

Any fundamental mass parameter will be redshifted on the (−)-brane according to the
warp factor. To generate a mass parameter of order 1 TeV with M ∼ k ∼ MPl one only
needs kyc ∼ 30.

Pertubations

Now we consider perturbations about the background metric δGµν . Thereby we set δGyy =
δGµy = 0.

(In principle one has to consider δGyy which would result in the appearance of a massless
scalar mode. To then give this scalar mode a mass is the object of modulus stabilization.
We do not consider this issue but simply assume that the modulus is stabilized in one or
the other way. See Golderberger-Wise: hep-ph/9907447. At the present stage yc can just
be treated as a free parameter.)

Because of (15)
δGµν = hµν(x, y) = eipx hµν(y) . (20)

Without further sources of gravity (apart from T−, T+, Λ) it is possible to fix the gauge
such that h is transverse and trace-free:

∂µh
µ
ν = hµµ = 0 . (21)

With this all components of hµν obey

bulk : h′′ −
(
4k −m2e2k|y|)h = 0 (22)

branes : h′ + 2kh = 0 (junction condition)
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For m2 = 0 this can easily be solved

h0(y) = e−2k|y| (0−mode) . (23)

The 0-mode is localized around the (0)-brane.

Clearly—due to the compact extra dimension—the KK-modes build up a discrete spec-
trum. Obtaining explicit solutions for the KK-modes m 6= 0 is quite involving and I will
not go into detail here. But let me briefly sketch the calculation. Performing a coordinate
transformation to conformal coordinates

ds2 =
1

(k|z|+ 1)2

(
ηµνdx

µdxν + dz2
)

(24)

will turn (22) into a Schroedinger-like equation:

[
−∂2

z + V (z)
]
h(z) = m2h(z) , V (z) =

15k2

8(k|z|+ 1)2
− 3k

2
δ(z) (25)

V (z) is called the volcano potential. The KK-modes have a small probability to “tunnel”
to z = 0 because of the potential wall. The solutions are described by Bessel functions.
One obtains a KK tower with a mass splitting of ∆m ∼ z−1

c ∼ ke−kyc . With k ∼MPl and
kyc ∼ 30 one can easily achieve ∆m ∼ 1 TeV.

Randall-Sundrum II

Let us briefly illustrate another possibility which the warped metric gives rise to. By a
second look at (16) one finds that this expression also makes sense in the limit yc → ∞
(in contrast to ADD). This statement is equivalent to the fact that the 0-mode (23) is
normalizable even in the limit yc →∞ (again in contrast to ADD).

Let’s see how the KK-modes behave and what the effect of the 4D gravity would be
if one shifted the (-)-brane to infinity. Due to the lack of a second junction condition at
y = yc the spectrum becomes continuous. The Bessel functions that solve (25) can be
approximated in the limit of large y (we now go back to our original coordinates) where
they oscillate

hm(y) ∼ e−k|y| sin
(m
k
e2k|y| + ϕm

)
(26)

whereas they decrease towards small y and are suppressed at y = 0,

hm(0) ∼
√
m

k
. (27)
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From this, one can compute the contribution of the KK-modes to the 4D gravity. Pretend-
ing the SM is now trapped on the (+)-brane we can ask for the gravitational potential of
two test masses with distance r on this brane. Each KK graviton produces a potential of
Yukawa type. Therefore we obtain

∆V (r) ∼
∫ ∞

0

dm
|hm(0)|2

M3

e−mr

r

∼ k

rM3

∫ ∞
0

dm
me−mr

k2
∼ 1

MPl
2 r

1

k2r2
. (28)

Thus, the 4D gravitational potential reads

V (r) ∼ 1

MPl
2 r

(
1 +

const.

k2r2

)
. (29)

The correction has a power law. At distances exceeding the AdS radius∼ k−1 the correction
is negligible.

This is in strong contrast to ADD. There, for yc → ∞ the 0-mode becomes more and
more diluted and on the other hand more and more KK-modes enter the game. In the end
higher dimensional gravity is recovered.
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