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1 Introduction

The goal of this talk is to explain how to calculate VEVs of gauge theory opera-
tors in the instanton background. Doing so, one can learn something about possible
nonperturbative aspects of a theory.

Remember: An instantons is a topologically nontrivial stationary point of an Eu-
clidean finite action.

The VEV of an operator in pure a Yang–Mills theory can be calculated using the
path integral:

〈O(x1, . . . , xn)〉 =

∫
[Dφ]e−

S[φ]
h̄ O(φ(x1), . . . , φ(xn)) , (1)

The classical vacuum corresponds to a constant expectation value 〈φ〉 for the el-
ementary fields. A perturbative series is gained by expanding the action for small
fluctuations δφ around the classical vacuum.

In instanton calculations one expands the action around the instanton instead of
the vacuum. Let φ be an instanton solution and

φ(x) = φ(x) + δφ(x) = φ(x) + h̄1/2η(x)

Expand S[φ] in powers of h̄:

S[φ] = S[φ] +
h̄

2

∫
d4xd4y

(
δ2S

δφ(x)δφ(y)

)∣∣∣∣
φ=φ

η(x)η(y) +O(h̄3/2) ,

The VEV of an operator O[φ] can be evaluated in the semiclassical limit (h̄ → 0) by
a saddle point approximation:

〈O(x1, . . . , xn)〉 =

∫
[Dη]e−

S[φ+η]
h̄ O[(φ+ η)(xi)] =

= O(φ) e−
S
h̄

[
det

(
δ2S

δφ(x)δφ(y)

)∣∣∣∣
φ=φ

]− 1
2

(1 +O(h̄)) . (2)

In non-supersymmetric non-Abelian gauge theories the quantum corrections turn
out to be divergent in the instanton background.

With supersymmetry, there are no quantum corrections to the classical vacuum,
like in loop calculations a cancellation between fermions and bosons takes place. But
there is a caveat: the presence of a background instanton field in general breaks su-
persymmetry. There are, however, so-called magic backgrounds that preserve one half
of supersymmetry. This is enough to ensure the cancellation of quantum corrections.

In the gauge theories any (anti-)self-dual gluon field preserves one half of su-
persymmetry. But these are exactly the field configurations corresponding to (anti-
)instantons!

I will start with a simpler (non-gauge) example where the conservation of one
half of supersymmetry and subsequent cancellation of quantum corrections also takes
place: the domain wall in the minimal Wess–Zumino model. Then I will discuss
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non-supersymmetric Yang–Mills instantons and sketch how SUSY instantons are con-
structed out of them. The section on instanton calculus outlines how the path integral
calculation is performed. If there is enough time left, I will discuss in the end how the
holomorphic gauge couling obtains instanton corrections. This is somewhat out of the
line of this talk, but it is a good preparation for the following talks, where holomorphy
arguments will play an important role.

1.1 Preliminary: Superspace and superfields

The four-dimensional space xµ can be promoted to superspace by adding four Grass-
mann coordinates θα and θ̄α̇, (α, α̇ = 1, 2). The coordinate transformations

(xµ, θα, θ̄α̇) → (xµ + iθσµε̄− iεσµθ̄, θα + εα, θ̄α̇ + ε̄α̇) (3)

(with σµ = {1, ~τ}, ~τ Pauli the matrices) add SUSY to the translational and Lorentz
transformations.

Since the SUSY transformation mixes between bosonic and fermionic fields, single
bosonic or fermionic fields can not be SUSY invariant. SUSY invariant fields are called
Superfields and contain always both bosonic and fermionic components.

The minimal supermultiplet of fields includes one complex scalar field φ(x) (two
bosonic states) and one complex Weyl spinor ψα(x) , α = 1, 2 (two fermionic states).
Both fields are united in one chiral superfield,

Φ(xL, θ) = φ(xL) +
√

2θαψα(xL) + θ2F (xL) , (4)

It is called chiral because it is defined on the first of the two invariant subspaces
{xµ

L , θα} and {xµ
R , θ̄α̇} of superspace (xµ

L,R = xµ ∓ iθσµθ̄). It’s conjugate Φ̄(xR, θ̄) is
defined on the other subspace and is thus called antichiral. F is an auxiliary compo-
nent, that means it appears in the Lagrangian without the kinetic term.

2 Instanton solutions

2.1 Supersymmetric domain wall

2.1.1 Preliminary: The minimal Wess-Zumino model

The minimal Wess-Zumino model contains one chiral superfield Φ(xL, θ) and its com-
plex conjugate Φ̄(xR, θ̄). The action of the model is

S =
1

4

∫
d4x d4θΦΦ̄ +

1

2

∫
d4x d2θW(Φ) +

1

2

∫
d4x d2θ̄ W̄(Φ̄) . (5)

Note that the first term is the integral over the full superspace, while the second and
the third run over the chiral subspaces. The holomorphic function W(Φ) is called the
superpotential. In components the Lagrangian has the form

L = (∂µφ̄)(∂µφ) + ψαi∂αα̇ψ̄
α̇ + F̄F +

{
F W ′(φ)− 1

2
W ′′(φ)ψ2 + H.c.

}
. (6)
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From Eq. (6) it is obvious that F can be eliminated by virtue of the classical equation
of motion,

F̄ = − ∂W(φ)

∂φ
, (7)

so that the scalar potential describing self-interaction of the field φ is

V (φ, φ̄) =

∣∣∣∣∂W(φ)

∂φ

∣∣∣∣2 . (8)

If one limits oneself to renormalizable theories, the superpotential W must be a
polynomial function of Φ of power not higher than three. In the model at hand, with
one chiral superfield, the generic superpotential can be always reduced to the following
“standard” form

W(Φ) =
m2

λ
Φ− λ

3
Φ3 . (9)

The quadratic term can be always eliminated by a redefinition of the field Φ. Moreover,
by using the R symmetries one can always choose the phases of the constants m and
λ at will.

Let us study the set of classical vacua of the theory, the vacuum manifold. In
the simplest case of the vanishing superpotential, W = 0, any coordinate-independent
(coordinates in superspace) field Φvac = φ0 can serve as a vacuum. The vacuum
manifold is then the one-dimensional (complex) manifold C1 = {φ0}. The continuous
degeneracy is due to the absence of the potential energy, while the kinetic energy
vanishes for any constant φ0.

This continuous degeneracy is lifted by the superpotential. In particular, the su-
perpotential (9) implies two classical vacua,

φvac = ±m
λ
. (10)

Thus, the continuous manifold of vacua C1 reduces to two points.

2.1.2 Supersymmetric domain wall

Field configurations interpolating between two degenerate vacua are called the domain
walls. They have the following properties: (i) the corresponding solutions are static
and depend only on one spatial coordinate; (ii) they are topologically stable and
indestructible – once a wall is created it cannot disappear. Assume for definiteness
that the wall lies in the xy plane. Then the wall solution φw will depend only on z.
Since the wall extends indefinitely in the xy plane, its energy Ew is infinite.

The classical equation of motion is

0 = ∂2
zφ− 2λ̄φ̄(

m2

λ
− λφ2) . (11)

The solution is
φw =

m

λ
tanh(|m|z) . (12)
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Note that the parameters m and λ are not assumed to be real. A remarkable feature
of this solution is that it preserves one half of supersymmetry. Indeed, the SUSY
transformations (3) generate the following transformation of fields,

δφ =
√

2εψ , δψα =
√

2
[
εαF + i ∂µφ (σµ)αα̇ ε̄α̇

]
. (13)

The domain wall we consider is purely bosonic, ψ = 0. Moreover,

∂zφw(z) = |m|m
λ

(1− tanh2(|m|z)) = eiη ∂W̄
∂φ̄

∣∣∣∣
φ̄=φ∗w

= −eiη F (14)

where

η = arg
m3

λ2
. (15)

The relation (14) means that the domain wall actually satisfies the first order
differential equation, which is by far a stronger constraint than the classical equations
of motion. Due to this feature

δψα ∝ εα + i eiη (σz)αα̇ ε̄
α̇ (16)

vanishes provided that
εα = −i eiη (σz)αα̇ ε̄

α̇ . (17)

This condition singles out two supertransformations (out of four) which do not act on
the domain wall.

Now, let us calculate the wall tension at the classical level. To this end we rewrite
the expression for the tension as

E =

∫ +∞

−∞
dz

[
∂zφ̄ ∂zφ+ F̄F

]
(18)

=

∫ +∞

−∞
dz

{∣∣ ∂zφ+ eiη F
∣∣2 +

[
e−iη ∂φ

∂z

∂W
∂φ

+ H.c.

]}
(19)

=

∫ +∞

−∞
dz

{∣∣ ∂zφ+ eiη F
∣∣2 +

[
e−iη ∂zW + H.c.

]}
, (20)

where F = −∂W̄/∂φ̄ and it is implied that φ depends only on z.
For the wall tension Ew the first term vanishes and all we need to calculate is W

at φw(z = ±∞) = ±m
λ
. The result is

Ew = e−iη {W(φw(z = ∞))−W(φw(z = −∞))}+ H.c. =
8

3

∣∣∣∣m3

λ2

∣∣∣∣ . (21)

The wall tension coincides with the modulus of the topological charge Z
Ew = |Z| , (22)

which is defined as

Z = 2 {W(φ(z = ∞))−W(φ(z = −∞))} =
8m3

3λ2
. (23)

Note that the phase of Z coincides with η introduced in Eq. (15).
Such states which satisfy the first order equations and have masses that coincide

with the topological charges are called BPS or BPS-saturated. BPS stands for Bogo-
molny, Prasad and Sommerfield.
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2.2 Instantons in Yang–Mills theories without SUSY

Before discussing instantons in supersymmetric theories, the pure Yang–Mills instan-
ton has to be adressed, because it is needed for the construction of the SUSY instanton.

The Euclidean Yang–Mills action is

SYM =

∫
d4xTr(FµνF

µν) (24)

Since solutions of the classical equations of motion minimize the action, the can be
found by calculating the lower bound of the action.

0 ≤
∫
d4xTr(Fµν ± F̃µν)

2 =

∫
d4xTr(2F 2 ± 2FF̃ ) (25)

⇒
∫
d4xTrF 2 ≥

∣∣∣∣∫ d4xTrFF̃

∣∣∣∣ = 16π2|n| , (26)

where F̃ µν = 1
2
εµνρσFρσ is the dual field strength and n is the winding number of the

gauge field. So the Euclidean action is minimized for

F µν = ±F̃ µν . (27)

The solution of this equation for the SU(2) gauge theory and winding number 1 is the
BPST-instanton

An = g−1 2(x−X)mσmn

(x−X)2 + ρ2
, (28)

with σmn = 1
4
(σmσ̄n − σnσ̄m). ρ and Xm are collective coordinates that parametrize

different instanton solutions. ρ is the instanton size and Xm its position. The SU(2)
BPST 1-instanton has in total 8 collective coordinates, a general n-Instanton in the
SU(N) theory has 4nN. One can find all instantons of a pure Yang–Mills theory by the
ADHM construction (Atiyah, Drinfel’d, Hitchin, Manin 1978).

2.3 Instantons in supersymmetric gauge theories

2.3.1 Preliminary: SUSY gauge theory

To get a supersymmetric gauge theory, we have to introduce a SUSY analogue to a
vector field. This is the vector superfield V, which is defined as a real superfield

V = V † . (29)

A general vector superfield has many components, one of them being a vector field

V = · · ·+ θσµθ̄Aµ + . . . . (30)

One can also make a vector superfield out of a chiral superfield Φ by taking Φ + Φ†.
This contains a term

Φ + Φ† = · · ·+ θσµθ̄ (i∂µ(φ− φ∗)) + . . . . (31)
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Now V → V + Φ + Φ† takes Aµ → Aµ + ∂µΛ. This is the SUSY version of an Abelian
gauge transformation. It can be used to put V into Wess-Zumino gauge, where for
N = 1 only the following component fields are left:

V = −θσµθ̄Aµ + iθ2(θ̄λ̄)− iθ̄2(θλ) +
1

2
θ2θ̄2D (32)

Here Aµ is the gauge boson λ and λ̄ are gauginos and D is an auxiliary field. Now we
need a gauge invariant and supersymmetric field strength so that we can add kinetic
terms to the lagrangian. One can construct the following chiral superfield out of the
components of V:

Wα = −iλα + θαD − i

2
(σµσ̄ν) β

α θβFµν + θ2σµ
αα̇∂µλ̄

α̇ (33)

Squaring this, we almost arrive at the superpotential for the SUSY Yang–Mills action:

W αWα|θ2 = −1

2
F µνFµν +

i

2
F µνF̃µν − iλσµ∂µλ̄+D2 (34)

We also introduce the holomorphic gauge coupling

τ =
θYM

2π
+

4πi

g2
(35)

The SUSY Yang–Mills action is

1

16πi

∫
d4xd2θ τ WαWα + H.c. (36)

=

∫
d4x

[
− 1

4g2
F µνFµν −

θYM

32π2
F µνF̃µν +

i

g2
λσµ∂µλ̄+

2π2

g2
D2

]
. (37)

2.3.2 Construction of SUSY instantons

For the this section a slightly more general (to cover also N = 2 and N = 4) and
Euclidean SUSY Yang–Mills action is used. It is

S =

∫
d4xTr

{
−1

2
F 2

mn −
iθYMg

2

16π2
FmnF̃mn − 2Dnλ̄Aσ̄nλ

A +DnφaDnφa (38)

−gλ̄AΣAB
a [φa, λ̄B]− gλAΣaAB[φa, λ

B]− 1

2
g2[φa, φb]

2

}
(39)

A = 1, ..,N is an R-Symmetry index and ΣAB
a are associated to the different R-

Symmetry groups for different N . D are covariant derivatives. φa, a = 1, ..., 2(N − 1)
are real scalar fields that are part of the vector supermultiplets for N ∈ {2, 4}. For
the N = 1 case it is set to zero.

The equations of motions for N = 1 are thus

DmFnm = 2gσ̄n{λ, λ̄} (40)

6D̄λ = 0 (41)

6Dλ̄ = 0 (42)
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The ADHM instanton with λ = λ̄ = 0 is a solution of these equations. To get the
general solution, 41 and 42 have to be evaluated in the ADHM background (Am =
Am,ADHM−instanton) of topological charge n. It can be shown that 41 has in general
2nN linearly independent solutions Λi with i = 1, ..., 2nN , while 42 has no nontrivial
solutions for (n > 0). So for the general and exact N = 1 instanton

λ̄ = 0 (43)

λ =
2nN∑
i=1

ψiΛi (44)

The source term in 40 vanishes because of 43, so the vector field stays the same as in
pure Yang-Mills theory. The ψi are Grassmann valued collective coordinates.

For N ∈ {2, 4} one can also consider fluctuations around the ADHM instanton,
but now also the scalar fields φa have to be considered. The equations of motion are
now

DmFnm = 2gσ̄n{λA, λ̄A}+ 2g[φa,Dnφa] (45)

6D̄λA = gΣAB
a [φa, λ̄B] (46)

6Dλ̄A = gΣ̄aAB[φa, λ
B] (47)

D2φa = g2[φb, [φb, φa]] + gΣ̄aABλ
AλB + gΣAB

a λ̄Aλ̄B (48)

One can proceed perturbatively order by order in the coupling. For N = 2 an exact
solution can be obtained for the case that the scalar VEVs are zero. For N = 4 no
exact solution is known. Approximate solutions are called quasi-instantons.

3 Instanton calculus

In the introduction it was discussed how the path integral can be calculated using
the saddle point approximation for one instanton. In the previous section however a
continuum of instantons was found, parameterized by the collective coordinates. As
before, the fields are expanded around the instantons,

An(x) = An(x;X) + δAn(x;X) . (49)

Since the total field does not depend on the collective coordinates X, both the instan-
ton and the fluctuations do. The saddle point approximation can only be performed
over the non-zero modes, so the fluctuations are split in zero modes δµAn and non-zero
modes Ãn:

δAn(x;X) =
∑

µ

ξµδµAn + Ãn . (50)

Now the integrals over the zero and non-zero modes of the gauge field are separated
in the path integral ∫

[dAn] =

∫ {√
det g(X)

∏
µ

dξµ

√
2π

}
[dÃn] . (51)
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g(X) is the metric on the moduli space

gµν(X) = −2

∫
d4xTrδµAn(x;X)δνAn(x;X) . (52)

The chiral fermion is split into zero and non-zero modes (it is expanded around 0).

λA(x) = λ(0)A(x;X,ψA) + λ̃A(x;X,ψA) . (53)

The anti-chiral fermions and scalar fields have no zero modes in the instanton back-
ground, so they keep their names and are treated like the non-zero modes. The
fermionic integrals are separated∫ N∏

A=1

[dλA][dλ̄A] ∝
∫ N∏

A=1

{
2nN∏
i=1

dψiA[dλ̃A][dλ̄A]

}
. (54)

The integral over the non-zero modes can now be performed using the saddle point
method like in the introduction. The action is expanded around the instanton:

S[An + A(0)
n + Ãn, λ

(0)A + λ̃A, λ̄A, φa] = −2πinτ + Skin + Sint . (55)

Skin denotes the kinetic terms for the non-zero mode fluctuations and Sint includes
interactions between zero and non-zero modes.

Now the integration over the non-zero modes {Ãn, λ̃
A, λ̄A, φa} and the ghosts {b, c},

which arise from Pauli-Villars regularization, can be performed. This defines the
instanton effective action Seff on the collective coordinates:

e−Seff := e2πinτ

∫
[dÃ][db][dc][dλ̃][dλ̄][dφ]e−Skin−Sint−Sgh (56)

It turns out that Seff vanishes if the instanton is an exact solution. For N = 4 and
N = 2 with non-vanishing VEVs, it can be determined perturbatively in g using the
Feynman rules emerging from Skin and Sint.

The integrals over the expansion coefficients of the zero modes ξµ can be traded
for integrals over the collective coordinates. The derivatives of the instanton with
respect to the collective coordinates ∂An/∂X

µ are tangent vectors pointing towards
directions in which the action stays minimized. This means they are a mix of zero
modes and local gauge transformations. If all the ∂An/∂X

µ are orthogonal to the
gauge transformations, one can simply replace ξµδµAn by Xµ∂An/∂X

µ. Otherwise a
few more steps are needed.

4 The holomorphic gauge coupling

Now let us determine the scale dependence of the holomorphic gauge coupling τ . It
will turn out that it gets no perturbative corrections, but instead non-perturbative
instanton corrections.
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The one-loop running is given by the renormalization group equation

µ
dg

dµ
= − b

16π2
g3 , (57)

where for an SU(N) gauge theory with F flavours and N = 1 SUSY

b = 3N − F . (58)

The solution for the running coupling is

1

g2(µ)
= − b

8π2
ln

(
|Λ|
µ

)
. (59)

|Λ| is the intrinsic scale of the non-Abelian gauge theory. It is written as a modulus,
because it will be turned into a complex number next.

The one-loop running version of τ is

τ1−loop =
θYM

2π
+

4πi

g2(µ)
=
θYM

2π
+

b

2πi
ln

(
|Λ|
µ

)
=

b

2πi
ln

(
|Λ|
µ

e
iθYM

b

)
. (60)

The holomorphic intrinsic scale is now defined as

|Λ|e
iθYM

b , (61)

so

τ1−loop =
b

2πi
ln

(
Λ

µ

)
. (62)

Complex coefficients in the superpotential such as couplings or here Λ can be regarded
as background fields and so the superpotential also has to be a holomorphic function
of Λ.

One can now determine how instanton corrections depend on Λ. The Euclidean
action is minimized by setting λ = λ̄ = D = 0 and F µν = F̃ µν , as in the non-SUSY
case. Then the n-instanton action Sn−inst becomes

Sn−inst =
4π2n

g2(µ)
− iθYMn = −2πinτ1−loop . (63)

This leads to n-instanton effects being proportional to

e−Sn−inst = e2πinτ1−loop =

(
Λ

µ

)bn

. (64)

Let’s get to τ being holomorphic in Λ. It can thus be written as

τ(Λ;µ) =
b

2πi
ln

(
Λ

µ

)
+ f(Λ;µ) , (65)

with f(Λ;µ) holomorphic in Λ. In the weak coupling limit Λ → 0 this must reduce to
the one-loop solution, so f(Λ;µ) must have a Taylor series in positive powers of Λ.
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Looking at the path integral ∫
DADλDDeiS , (66)

one sees that θYM → θYM +2π is a symmetry of the theory, because S depends only on
θYM through the term which is an integer times θYM. The symmetry transformation
can also be expressed as Λ → e

2πi
b Λ. To respect this symmetry, the Taylor series must

be in powers of Λb. This leaves us with the final result

τ(Λ;µ) =
b

2πi
ln

(
Λ

µ

)
+

∞∑
n=1

an

(
Λ

µ

)bn

, (67)

The new terms have the form of n-instanton corrections. There are no further pertur-
bative corrections.
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