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In this talk we consider the electroweak phase transition in two models
beyond the standard model. We are looking for the possibility of a first order
phase transition. Why are we interested in this?

A first order phase transition is an out-of-equilibrium process and (as
stated by the third Sakharov condition) this is needed for baryogenesis. But
for baryongenesis we need an even stronger condition coming from the ‘wash-
out’ criterium, that is, suppressing sphaleron processes in the broken phase
that wash out the generated baryon asymmetry. The crucial parameter for
this suppression is the order parameter v(Tc)/Tc which has to be larger than
one for a successful preservation of the baryon asymmetry.
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The effective Higgs potential in the SM

Recall the SM case (which we considered two weeks ago). The effective
Higgs-potential reads

V SM
eff = −m2(T )φ2 − ESM T φ3 +

λ(T )

2
φ4 + . . . , (1)

where m2(T ) and λ(T ) each contain zero temperature and finite temperature
corrections (the latter drive m2(T ) negative at high T ), whereas the cubic
term comes only from finite temperature corrections due to the transversal
gauge boson contribution. The cubic coefficient reads

ESM '
2

3

(
2M3

W +M3
Z√

2πv3

)
∝ g3 . (2)

(Numerically, ESM ' 0.018.) This cubic term is crucial for the first order
phase transition because it allows for a barrier in the effective potential.

The order parameter is

v(Tc)

Tc
'
√

2 ESM

λ
& 1 , (3)

where the one on the right-hand side reveals the demand of a strong first
order phase transition. Another restriction of v(Tc)/Tc originates from the
validity of the perturbative expansion. The loop expansion parameter is
θ = g2T/MW ∼ gT/v and thus

v(Tc)

Tc
'
√

2 ESM

λ
∼ g

θ
& g . (4)

(3) is the more restrictive condition here. For the measured value of mt (that
affects the loop corrections of the Higgs mass) and the lower bound on the
Higgs mass from LEP (recall m2

h = λv2) a strong first order phase transition
in the SM is clearly ruled out.

In the following we consider two different extensions of the SM and show
their capability of providing a strong first order phase transition: The light
stop scenario and the SM plus gauge singlet.
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The light stop scenario

The stop mass matrix reads

m2
t̃

=

(
m2

Q +D2
L +m2

t 2mtÃt

2mtÃt m2
U +D2

R +m2
t

)
, (5)

where m2
Q,m

2
U are bilinear soft breaking parameters, DL,R and mt are the

D-term and F -term contributions, respectively, and Ãt = At−µ/ tan β is the
effective stop mixing parameter, wherein At in turn comes from the trilinear
soft breaking term and µ/ tan β is another F -term contribution. The matrix
possesses the eigenvalues

m2
1,2 =

1

2

(
m2

Q +D2
L +m2

U +D2
R + 2m2

t

)
∓
√

1

4

(
m2

Q +D2
L −m2

U −D2
R

)2
+ 4m2

t Ã
2
t .

(6)

In the MSSM the Higgs mass is restricted to not exceed MZ at tree-level.
Thus we need high loop corrections (from the stop) to push mh upwards.
This task is fulfilled by the left handed stop which is therefore considered to
be very heavy in this scenario. On the other hand we want the right handed
stop to be light (we’ll see why in a minute). To obtain this setup we have to
adjust the parameters. We consider

m2
Q � all other parameters in (5)

and expand the square root to first order in ‘(small parameters)/m2
Q’ obtain-

ing

m2
1 ' m2

U +D2
R +m2

t

(
1− Ã2

t

m2
Q

)
,

m2
2 ' m2

Q +D2
L +m2

t

(
1 +

Ã2
t

m2
Q

)
.

(7)

Now, let us come back to Veff. What changes in comparison to the SM case?

T =0
1-loop

:


→ heavier stop contributes to m,λ

and pushes the Higgs mass up

→ lighter stop: small contributions
(unimportant)


T =0, 2-loop does
not change picture
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T 6=0
1-loop

:


→ heavier stop: Boltzmann suppressed

(unimportant)

→ lighter stop: plays a key role!

So, let us write down the improved one-loop finite temperature effective
potential:

V MSSM
eff = −m2(T )φ2−T

[
ESM φ3 +

(m2
1 + ΠR(T ))

3/2

2π

]
+
λ(T )

2
φ4+. . . , (8)

where

ΠR(T ) =

{
4

9
g2

3 +
1

6
y2
t

[
1 + sin2 β

(
1− Ã2

t/m
2
Q

)]
+

[
1

3
− 1

18
| cos 2β|

]
g′2
}
T 2

(9)

is the finite temperature self-energy contribution.
Now comes the trick! In general the light stop does not induce a cubic

term (as happens with the longitudinal components of the gauge fields).
This is because the effective finite temperature mass does not vanish in the
symmetric phase (

meff
1

)2
(φ = 0) = m2

U + ΠR(T ). (10)

But if one now adjusts m2
U to be negative and m2

U ' −ΠR(Tc) one obtains
approximately

m2
1 + ΠR(T ) ∝ φ2 , (11)

which provides a cubic term when inserted in (8). The resulting EMSSM then
reads

EMSSM ' ESM +
y3
t sin3 β

(
1− Ã2

t/m
2
Q

)3/2

2π
. (12)

This means that in the limiting case of vanishing mixing, EMSSM can be
enhanced with respect to EMS by a factor of up to

EMSSM

ESM

' 1 +
m3

t

m3
W

' 10 . (13)
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Recalling (3) and m2
h = λv2, this loosens the bound on the Higgs mass for a

strong first order phase transition by a factor of up to roughly three.
Considering the loop expansion parameter θ = (yt sin β)2 T/mt ∼

yt sin β T/v results in the condition

v(Tc)

Tc
'
√

2 ESM

λ
& yt sin β . (14)

Hence, concerning the validity of perturbation theory the Higgs bound is
loosened by a factor of up to mt/mW .

But this is not the whole story. Since mU is now negative it might acquire
a VEV. Such a VEV would obviously be color-breaking and this is something
we clearly do not observe. To examine the situation is rather simple for
Ãt = 0 but quite involving for the general case Ãt 6= 0. So let us just sketch
the situations that can occur. Considering the VEVs 〈φ〉 and 〈U〉, one has
to ask:

• Which transition happens first?

• Which minimum is deeper?

You can distinguish four cases:

1. Instability: 〈U〉 first, 〈U〉 deeper

2. Two-step phase transition: 〈U〉 first, 〈φ〉 deeper

3. Stability: 〈φ〉 first, 〈φ〉 deeper

4. Meta-stability: 〈φ〉 first, 〈U〉 deeper

The first case is unacceptable while the second is proven to be unachievable.
We are left with the latter ones. In fact it turns out that those scenarios
that successfully provide a viable mass region for the Higgs and the stop are
meta-stable, but sufficiently large life-times can be achieved. Figure 1 shows
the allowed region in the mh-mt̃1

-plane.
Can we find such a light stop at the LHC? Well, the so called co-annihila-

tion region where the mass gap between the neutralino LSP and the light
stop is less than about 30 GeV (and other SUSY particles are heavy) is ex-
tremely hard to explore. Since all other decay modes of the stop are either
kinematically forbidden or disfavored (like the four-body decay t̃ → bjjχ0

1
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Figure 1: Allowed window for first order phase transition and a metastable
vacuum solution. The allowed regions are to the left of the solid lines (for
tan β ≤ 15) and dashed line (for tan β ≤ 5). In the case of tan β ≤ 15 the
thick solid line displays the central value concerning the Higgs mass compu-
tation, while the maroon solid thin lines indicate its theoretical uncertainty
by applying a ±3 GeV uncertainty. All sfermion masses except the right
handed stop mass are set to 30 TeV (left panel) and 8000 TeV (right panel).
M1 = M2 = 100 GeV. Taken from [2].

or t̃ → blνχ0
1) only the loop-induced FCNC decay t̃ → cχ0

1 is present. The
resulting signature of this decay is two relatively soft c-jets plus MET which
is not a very promising channel! So, if there is no strong production channel
other than stop pair production in the reach of the LHC, the scenario can
perfectly hide itself from observation—none of the current exclusion limits ap-
ply for this situation (see arXiv:1111.2250 or very recent arXiv: 1111.4467).
With more integrated luminosity initial state radiation (that is the search
for mono jet events) might, however, offer a certain handle on this scenario.
In contrast, if the gluinos are within the reach of the LHC the scenario will
show up in anomalous same-sign top pair events coming from the decay of
the gluinos g̃ → t t̃.
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SM plus gauge singlet

Consider the most general (renormalizable) tree-level potential for the SM
Higgs field h and the singlet s with an additional Z2 symmetry s → −s,
containing the five parameters µh, µs, λh, λs and λm,

V = −1

2
µ2
hh

2 +
1

2
µ2
ss

2 +
1

4
λhh

4 +
1

4
λss

4 +
1

4
λms

2h2 . (15)

Within this potential it is possible to obtain two minima separated by a
barrier at tree level! (In contrast to the SM and MSSM where the barrier is
always due to the loop induced cubic term.)

But can we build a viable model with this?
Since the barrier is present at tree-level it is sufficient to only consider

the leading term in the high temperature expansion of the effective potential

V T 6=0
1−loop =

(
1

2
chh

2 +
1

2
css

2

)
T 2 + . . . , (16)

where

ch =
1

48

[
9g2 + 3g′

2
+ 2(6y2

t + 12λh + λm)
]
,

cs =
1

12
(2λm + 3λs + . . . ) ≡ 1

4
λs + δcs . (17)

The ellipses denote possible contributions from other particles coupled to the
singlet. We can absorb the temperature evolution in a redefinition of µh,s:

−µ2
h(T ) ≡ −µ2

h + ch(T 2 − T 2
c ) ,

µ2
s(T ) ≡ µ2

s + cs(T
2 − T 2

c ) . (18)

Note that at very high temperatures the symmetry is restored. Let us con-
sider the structure of the minima and how they evolve with temperature.

The stationary points of the potential will be determined by ∂V/∂h = 0
and ∂V/∂s = 0,

∂V

∂h
= 2h

∂V

∂h2
= 2h

(
−µ2

h + λhh
2 +

1

2
λms

2

)
= 0

⇒ h = 0 , h2 = D2
h(s) =

µ2
h

λh
− λm

2λh
s2 ,

(19)
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∂V

∂s
= 2s

∂V

∂s2
= 2s

(
µ2
s + λss

2 +
1

2
λmh

2

)
= 0

⇒ s = 0 , h2 = D2
s(s) = −2µ2

s

λm
− 2λs
λm

s2 .

(20)

{D2
h, h = 0} and {D2

s , s = 0} are the curves along which the derivatives in
the h and s direction, respectively, vanish. For an extremum both derivatives
have to vanish. So we are looking for the intersection points of these curves.

To decide whether a stationary point is a minimum, maximum or saddle
point we consider

∂2V

(∂s)2

∣∣∣∣
s=0

= 2
∂V

∂s2

∣∣∣∣
s=0

= 2µ2
s + λmh

2 = λm
(
D2

h(0)−D2
s(0)

)
, (21)

∂2V

(∂h)2

∣∣∣∣
h=0

= 2
∂V

∂h2

∣∣∣∣
h=0

= −2µ2
h + λms

2 = −2λhD
2
h(s) . (22)

It turns out that each solution with two minima (separated by a barrier)
contains one minimum at h = 0, s 6= 0 and the other at h 6= 0, s = 0. One
of the symmetries is always broken. Let us make a picture. At Tc the curves
look like

-1.5 -1 -0.5 0 0.5 1 1.5

s / w
0

0

1

h
2
 /

 v
2

where the red and blue curves correspond to {D2
h, h = 0} and {D2

s , s = 0},
respectivly. The dots denote the minima. Obviously µ2

s < 0 at Tc.
When temperature evolves the parabolas are only shifted, but the sym-

metry axis and the width remain the same:

dD2
h(s)

dT 2
= − ch

λh
,

dD2
s(s)

dT 2
= −2cs

λm
. (23)
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We illustrate this by the following pictures showing the evolution with de-
creasing temperature. (i) T � Tc in the symmetric phase. (ii) Still T > Tc,
but the Z2 symmetry is now broken, w2(T ) ≡ 〈s2(T )〉 = −µ2

s(T )/λs.
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2

(i) T � Tc
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2
 /

 v
2

Z2 broken

(ii) T > Tc

At some temperature the blue curve exceeds the red one at s = 0, D2
h(0) >

D2
s(0), thus, according to (21) a EW broken minimum occurs, v2(T ) ≡
〈h2(T )〉 = µ2

h(T )/λh. (iii) At Tc both minima have equal depth and eventu-
ally (iv) at T = 0 the EW broken minimum is the deepest, V (v, 0) < V (0, w).

-1.5 -1 -0.5 0 0.5 1 1.5

s / w
0

0

1

h
2
 /

 v
2

(iii) T = Tc

-1.5 -1 -0.5 0 0.5 1 1.5

s / w
0

0

1

h
2
 /

 v
2

(iv) T = 0

Enabling such a behavior restricts the introduced parameters. Basically

1. D2
s parabola must be the wider one: λm > 2

√
λhλs

2. D2
h must evolve faster with temperature: ch/λh > 2cs/λm
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These conditions can be combined to obtain

ch
cs
>

√
λh
λs
. (24)

This condition coincides with the restriction that at Tc the EW broken min-
imum should decrease faster than the EW symmetric one

d∆Vbs(T )

dT 2

∣∣∣∣
Tc

> 0 , (25)

where ∆Vbs(T ) ≡ V [v2(T ), 0]− V [0, w2(T )].
Combining (24) with (17) now leads to a condition on the singlet quartic

coupling,

λs > λs,min ≡
4

λh

[
2c2

h − λhδcs − 2ch

√
c2
h − λhδcs

]
, (26)

while an upper bound comes from the width constraint (first restriction
above):

λs < λs,max ≡
λ2
m

4λh
. (27)

Let us now write down the order parameter for this model. Therefore we
consider

v2(T ) =
µ2
h(T )

λh
=
µ2
h + ch(T 2 − T 2

c )

λh
= v2

EW −
ch
λh
T 2 , (28)

where vEW ≡ v(0). From this we can extract the important ratio v(Tc)/Tc as

v(Tc)

Tc
=

√
v2

EW

T 2
c

− ch
λh

. (29)

Note that the phase transition cannot be made arbitrarily strong by choos-
ing low Tc, in which case v(Tc) ' vEW, since then the tunneling probabil-
ity becomes small and furthermore the high-T approximation breaks down.
However, one can easily achieve values well above one for a wide range of Tc

and λh (see figure 2).
Finally, let us write down an expression for the singlet mass at T = 0.

m2
s ≡

∂2V

(∂s)2

∣∣∣∣
s=0

(T =0) = µ2
s(0)+

1

2
λmv

2
EW = µ2

s(Tc)− csT 2
c +

1

2
λmv

2
EW . (30)
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Figure 2: Ratio v(Tc)/Tc (upper-left plot) and values of the singlet scalar
mass (rest of plots) as a function of the critical temperature for the cases
a) mh = 115 GeV, λm = 0.2; b) mh = 115 GeV, λm = 1; c) mh = 200
GeV and λm = 0.5. Different masses correspond to different values of λs ∈
(λs,min, λs,max), with ms increasing for lower λs. Taken from [3].

From ∆Vbs(Tc) = 0 we obtain w2(Tc)/v
2(Tc) =

√
λh/λs and thus

µ2
s(Tc) = −v2(Tc)

√
λhλs = −

(
v2

EW −
ch
λh
T 2

c

)√
λhλs , (31)

resulting in

m2
s =

(
1

2
λm −

√
λhλs

)
v2

EW +

(
ch

√
λs
λh
− cs

)
T 2
c . (32)

The singlet mass squared is a simple linear combination of the two mass scales
v2

EW and T 2
c with positive coefficients. This is ensured by the allowed values

of λs. λs,min and λs,max are exactly the limiting cases where the coefficient of
T 2
c and v2

EW, respectively, would vanish.
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