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Hybrid inflation [1,2,3] combines chaotic inflation with spontaneous symmetry breaking. At its

late stages it is driven by the energy density of the vacuum and it ends in a rather unusual waterfall

transition which is triggered by a tachyonic instability in the effective potential. Preheating in

this scenario is not based on parametric resonance [4] but occurs due to the spinodal growth of

long-wavelength Higgs modes [5,6]. It is so efficient that symmetry breaking completes within a

single oscillation of the scalar fields. Particles coupled to the inflaton sector may be produced non-

adiabatically as well [7].

I. OVERALL PICTURE

The transition from the inflationary era to the stan-

dard thermal FLRW Universe may proceed in various

different ways depending on the details of the underlying

particle physics model. In our two talks in this seminar

we wish to present the most important mechanisms on

the market that may be responsible for the reheating of

the Universe after the end of inflation.

Two weeks ago [4] we considered a simple chaotic sce-

nario with a convex potential (V,φφ > 0) for a coherently

oscillating classical scalar inflaton field φ,

V (φ) =
1

2
m2φ2 (1)

and encountered a stage of preheating during which

bosonic degrees of freedom coupled to the inflaton were

excited due to parametric resonance. We, however, also

noted that realistic theories of reheating require sponta-

neous symmetry breaking (SSB) in the inflaton sector in

order to allow for inflaton two-body decays. But as pre-

heating in combination with SSB turns out to be much

more subtle we decided to postpone this issue.

Now we return to it and investigate preheating from

a concave potential (V,σσ < 0) for a Higgs field σ that

breaks some global symmetry of the vacuum:

V (σ) =
λ

4

(
σ2 − v2

)2
; M2 = λv2 (2)

In addition to changing the curvature of the effective

scalar potential we choose completely different initial

conditions. Last time we started with a homogeneous

field at the Planck scale, φ & Mp. Now we take the

homogeneous component σ0 to be of the order of the ini-
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FIG. 1: Effective scalar potential V (φ, σ) as in Eq. (3) with
m = 100 GeV, M = 1011 GeV, λ = 10−1 and g = 1.

tal quantum fluctuations δσ which will render the usual

perturbative picture of a classical field with small fluctu-

ations on top of it inapplicable. Instead, we will find that

SSB occurs due to the spinodal growth of the fluctuations

such that any initial homogeneity soon is destroyed up

to rather short scales. The purely classical description of

the fields in the inflaton sector thus has to be traded for

a semiclassical treatment of quantum fluctuations.

One of the simplest cosmologically viable scenarios of

inflation featuring the concave potential in Eq. (2) is the

standard hybrid inflation model which was proposed by

Andrei Linde in the early 90s [1] and which represents a

mixture of the usual theory of SSB and chaotic inflation:

V (φ, σ) =
1

2
m2φ2 +

λ

4

(
σ2 − v2

)2
+

1

2
g2φ2σ2 (3)

The first part of our talk outlines the characteristics of

this inflationary model. The second part is devoted to

the dynamics of SSB and the related preheating process.
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II. HYBRID INFLATION

A. Motivation

From the perspective of particle physics hybrid in-

flation is very attractive as it provides a natural set-

ting for SSB. Linde’s original motivation, however, was

to construct a model in which inflation ends differ-

ently compared to the standard scenarios of a first-order

phase transition and slow-roll motion becoming faster

and faster. Indeed, as we will show, hybrid inflation may

end in a waterfall regime which is characterized by a fast

rolling of the Higgs field σ triggered by the slow rolling of

the inflaton field φ. Let us now formulate the conditions

for a successful waterfall transition and confront them

with observational data.

B. Evolution of the scalar fields

The evolution of the scalar fields is governed by the

classical EOMs in an expanding background:

φ̈+ 3Hφ̇+
(
m2 + g2σ2

)
φ = 0 (4)

σ̈ + 3Hσ̇ − 1

a2
∇2σ +

(
g2φ2 −M2 + λσ2

)
σ = 0 (5)

At the early stages of inflation φ is very large, φ &Mp, re-

sulting in an effective Higgs mass meff.
σ that is much larger

than the corresponding effective inflaton mass meff.
φ :

(
meff.
φ

)2
= V,φφ = m2 + g2σ2 (6)(

meff.
σ

)2
= V,σσ = g2φ2 −M2 + 3λσ2 (7)

Because of that σ initially rolls down to σ = 0 and re-

mains there for the most part of inflation. As initial

conditions we can, hence, safely assume φ & Mp and

σ = 0. The end of inflation is initiated once φ has rolled

down to the bifurcation point at the critical inflaton value

φc = M/g. For φ < φc the Higgs potential exhibits a

tachyonic instability at σ = 0, that is, the Higgs field

possesses a negative effective mass squared, and inflation

quickly ends due to false vacuum decay.

Before turning to the details of the waterfall regime let

us first check how inflation in fact emerges in our model.

Successful inflation requires a flat inflaton potential. We

therefore assume the bare mass m to be small:

m2 � H2 (8)

At the beginning of inflation, when the inflaton energy

density still dominates over the vacuum energy density,

1

2
m φ2

∣∣
φ&Mp

� M4

4λ
(9)

we thus simply deal with ordinary chaotic inflation:

V (φ &Mp, σ = 0) ' 1

2
m2φ2 (10)

In his construction of the hybrid model Linde assumes in

addition to Eq. (8) also that:

m2 � g2

λ
M2 (11)

such that eventually inflation is driven by the vacuum

energy density:

V (φ ' φc, σ = 0) ' 1

2
m2

(
M

g

)2

+
M4

4λ
(12)

=
M2

2g2

(
m2 +

g2

2λ
M2

)
' M4

4λ
(13)

The Hubble parameter can then be estimated as:

H2 ' H2
c =

8π

3M2
p

· M
4

4λ
=

2πM4

3λM2
p

(14)

Omitting the negligible acceleration term the EOM for

the inflaton field turns into:

3Hcφ̇+m2φ ' 0 ⇒ φ̇ ' −rHcφ ; r =
m2

3H2
c

(15)

Integration of Eq. (15) yields:

φ(t) = φc exp [−rHc (t− tc)] (16)

Given the time dependence of the scale factor, a(t) ∝
eHct, we may rewrite φ(t) as a function of the number of

e-folds N to the phase transition:

N = Hc (tc − t) ; φ(N) = φce
rN (17)

We find that for sufficiently small r the Universe also un-

dergoes a stage of accelerated expansion when φ is close
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FIG. 2: Probability distribution P (φ, |σ| , t) for finding the
field values φ and |σ| at a given point in space at time t,
extracted from numerical 3D lattice simulations with M =
1015 GeV and λ = g = 10−2. Figure taken from Ref. [5], an
animated GIF version can be found on the arXiv.

to φc. For instance, with r . 0.01 more than 70 e-folds

are generated during the period of vacuum domination.

For comparision, recall that adiabatic density perturba-

tions that we observe in the present Universe at galactic

scales leave the Hubble horizon 50 to 60 e-folds before

the end of inflation.

C. Waterfall conditions

In order to figure out for which parameter choices infla-

tion ends in an almost instantaneous waterfall transition

we have to determine two time scales. tσ: The time it

takes until the negative mass squared term becomes effi-

cient such that SSB sets it. And tφ: The time after which

the inflaton field has settled at the minimum of the ef-

fective potential. We will speak of a successful waterfall

transition once the following hierarchy is realized:

tσ, tφ � H−1
c (18)

Given the initial conditions σ0 = 0 and σ̇0 = 0 it is

clear that SSB can only be accomplished by growing

quantum fluctuations δσ. Neglecting the expansion of

the Universe and the Higgs self-interaction for a moment

the mode equations for these fluctuations read as follows:

σ̈k +
(
k2 − µ2

σ (φ)
)
σk = 0 (19)

Here µ2
σ = M2−g2φ2 denotes the negative mass squared

of the Higgs field in the absence of any self-interaction.

For momenta k < µσ the solutions of Eq. (19) are su-

perpositions of exponentials that are either growing or

decaying at rate ωk:

σk(t) ∼ exp [±ωk (φ) t] ; ωk (φ) =
√
µ2
σ (φ)− k2 (20)

The k = 0 mode has the largest growth rate, ω0 = µσ.

We may, thus, estimate tσ as the time scale on which the

increase of this mode sets in [2]: tσ = µ−1
σ (tσ). In other

words: At time tσ the negative mass squared has become

that large that exactly the time µ−1
σ has passed. Let us

now estimate µ2
σ (tσ) (for convenience we set tc = 0):

µ2
σ (tσ) = − g2

(
φ2 (tσ)− φ2

c

)
' −g2 d

dt

∣∣∣∣
tc

φ2 · tσ (21)

= − g22φcφ̇ctσ = g22φc
m2

3Hc
φctσ (22)

=
2

3
g2M

2

g2
m2

√
3λ

2π

Mp

M2
tσ (23)

Solving for t−1
σ = µσ (tσ) leads us to:

t−3
σ ∼

√
λm2Mp (24)

We arrive at our first waterfall condition:

t−6
σ ∼ λm4M2

p � H6 ∼ M12

λ3M6
p

(25)

which is equivalent to:

M3 � λmM2
p (26)

In order to estimate tφ suppose now that one Hub-

ble time H−1
c � tσ has passed since tc. At this time

symmetry breaking has already occured and the Higgs

field distribution has reached the minimum of the effec-

tive potential. To a good approximation the peak of the

distribution σ̄ ∼
〈
δσ2
〉1/2

minimizes V (φ, σ) at fixed φ:

V,σ (φ, σ̄) = 0 ⇒ g2φ2 −M2 + λσ̄2 = 0 (27)

⇒ σ̄2 =
1

λ

(
M2 − g2φ2

)
(28)

The distribution of the fields φ and σ evidently moves

along an ellipse in the (φ, σ)-plane:

φ2 +
λ

g2
σ̄2 = φ2

c (29)
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After one Hubble time the inflaton field value has de-

creased by ∆φ. From the inflaton EOM we infer:

∆φ

H−1
c

' −rHcφc ⇒ φ
(
H−1
c

)
' φc (1− r) (30)

Within the first Hubble time after tc the effective mass

squared of the inflaton meff.
φ grows significantly and it is

reasonable to estimate the time scale on which inflation

will end tφ by 1/meff.
φ at t = H−1

c [1]. According to

Eq. (6) we then have:

t−2
φ =m2 + g2σ̄2

(
H−1
c

)
(31)

=m2 +
g2

λ

(
M2 − g2φ2

(
H−1
c

))
(32)

=m2 +
g2

λ

(
M2 − g2φ2

c (1− r)2
)

(33)

'm2 +
g2

λ
· 2M2r (34)

=m2 +
2g2M2

λ
· m

2

3H2
c

(35)

=m2

(
1 +

2g2M2

3λ
·

3λM2
p

2πM4

)
(36)

=m2

(
1 +

g2M2
p

πM2

)
'
g2m2M2

p

πM2
(37)

The second waterfall condition demands that tφ be much

smaller than H−1
c :

t−2
φ ∼

g2m2M2
p

M2
� H2

c ∼
M4

λM2
p

(38)

which is equivalent to:

M3 �
√
λgmM2

p (39)

D. Cosmological implications

Confronting the power spectrum of adiabatic energy

density perturbations predicted by hybrid inflation with

observational data (CMB anisotropies, galaxy surveys,

gravitional lensing, Ly-α forest) gives preference to cer-

tain regions in parameter space. We will now show that

in these favored regions the end of inflation typically is

described by the waterfall transition.

First, let us write the cosmic density field ρ as:

ρ (t, ~x) = ρ0(t) + δρ (t, ~x) (40)

with ρ0 = 〈ρ〉. The power spectrum δρ2
k follows from a

decomposition of the mean square fluctations
〈
δρ2
〉

on a

logarithmic momentum scale:

〈
δρ2 (t, ~x)

〉
=

∫
d ln

k

H
δρ2
k (41)

At the onset of galaxy formation, when the energy in cold

matter has come to dominate, δρk can be estimated by

standard methods [3]:

δρk
ρ0

=
16
√

6π

5M3
p

V 3/2

V,φ

∣∣∣∣
k=aH

(42)

In hybrid inflation for σ = 0:

δρk
ρ0

=
16
√

6π

5M3
p

(
1
2m

2φ2 + M4

4λ

)3/2

m2φ

∣∣∣∣∣∣∣
k=aH

(43)

As mentioned at the end of Sec. II B the galactic scales

cross the Hubble horizon during vacuum domination:

δρk
ρ0
' 2
√

6π

5M3
p

M6

λ
√
λm2φc

φc
φ

∣∣∣∣
k=aH

(44)

With φ/φc = erN = (ac/a)
r → (kc/k)

r
we finally obtain:

δρk
ρ0
' 2
√

6π

5M3
p

gM5

λ
√
λm2

(
k

kc

)r
(45)

As a very usual feature of the hybrid inflation model

we note its blue spectrum. The scalar spectral index ns

always is larger than 1:

ns − 1 =
d ln δρ2

k

d ln k
= 2r =

2m2

3H2
c

=
λm2M2

p

πM4
(46)

Since m2 � H2, cf. Eq. (8), the deviation from 1 is

vanishingly small. But still, observations clearly indicate

ns < 1. The ΛCDM fit of the WMAP7 data yields:

ns = 0.963± 0.014 (47)

Moreover, notice that for fluctuations with very small k,

which left the Hubble horizon while the inflaton contribu-

tion to the potential energy density still dominated over

the vacuum term, the spectrum begins growing again.

Neglecting the k-dependence in Eq. (45) and using
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Eq. (8) we may write:

1

Hc
· 2
√

6π

5M3
p

gM5

λ
√
λm2

� 1

m
· δρk
ρ0

(48)

⇔
√

3λ

2π

Mp

M2

2
√

6π

5M3
p

gM5

λ
√
λm
� δρk

ρ0
(49)

⇔ M3 � δρk
ρ0
· 5λ

6g
mM2

p (50)

The typical scale of the amplitude of the power spectrum

has been measured by the COBE satellite, δρk/ρ0 ∼ 5×
10−5. In order to generate density perturbations of the

right size the parameters of the hybrid inflation model

thus have to satisfy:

M3 � 5× 10−5 · λ
g
mM2

p (51)

This means that for a wide range of values of the cou-

pling constants λ and g the waterfall conditions (26) and

(39) are automatically satisfied merely by virtue of the

assumption m2 � H2 and the requirement δρk/ρ0 ∼
5× 10−5. In cosmologically realistic scenarios hybrid in-

flation hence tends to end in a waterfall regime.

III. TACHYONIC PREHEATING

The basic form of the effective potential in hybrid in-

flation scenario is given by Eq. (3). As stated above, in-

flation in this model occurs while the φ field rolls slowly

in the σ = 0 valley towards the global minimum at φ = 0

and |σ| = v. In realistic versions of this model, the mass

m and the velocity φ̇ are small after inflation. The fields

then fall along a trajectory φ(t), σ(t) in such a way that

the initial trajectory is flat, then it rapidly falls down, and

becomes flat again near the minimum. In between, the

curvature of the effective potential is initially negative,

and therefore, the field should experience a tachyonic in-

stability along the way.

A. Dynamics of the Symmetry breaking

The main goal of this section is to show that the tachy-

onic instability leads to SSB so efficient that it completes

typically within an oscillation. We will see that the quan-

tum fluctuations of the Higgs field grow such that it pro-

duces Higgs classical waves.

At the initial stages of Spontaneous Symmetry Break-

ing (SSB), the Higgs modes follow the linear Eq. (19). In

the symmetric phase σ = 0, i.e. when φ > φc, we take

the quantum fluctuations of the mode functions to be the

same as the one for a massless field

σk(t) =
1√
2k

e−ikt, k ≡ |~k| . (52)

At t = 0, one “turns on” the term −M2σ2/2, correspond-

ing to a negative mass squared −M2. Consequently, in

this quench approximation, all modes k < M grow expo-

nentially

σk(t) =
1√
2k

et
√
M2−k2 , (53)

At latter stages, the mean value of the field stays equal

to zero 〈σ〉 = 0. The first non-vanishing quantity is the

second moment of σ, i.e. 〈σ2〉. This is this quantity that

we use to characterize the symmetry breaking process,

stating that symmetry breaking occurs when 〈σ2〉 = v2.

Using the Heisenberg representation of the quatum

fluctuations of the σ field is

σ(t,x) =

∫
d3k

(2π)3/2

[
ak σk(t) e−ikx + a†k σ

∗
k(t)eikx

]
,

(54)

where x and k denote the position and momentum vec-

tors, one can deduce the initial (t = 0) dispersion of all

growing fluctuations with k < M

〈σ2〉 ≡ 〈0|σ(x)σ(x)|0〉 , (55)

=

∫ m2

0

dk2

8π2
=
m2

8π2
. (56)

where the canonical commutation relation [ak, a
†
k′ ] =

δ(3)(k − k′) has been used. Using the 2-point correla-

tion function

〈σ(x)σ(y)〉 =

∫
dk

k

sin(k|x− y|)
k|x− y|

δσ2
k , (57)

one can deduce the average initial amplitude δσk of all

fluctuations with k < M

δσk =
k

2π
. (58)

At t > 0, the modes with k < M start to growth expo-
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nentially, and their dispersion relation becomes

〈σ2〉 =

∫ M2

0

dk2

8π2
e2t
√
M2−k2 , (59a)

=
e2Mt(2Mt− 1) + 1

16π2t2
, (59b)

〈σ2〉 ∼ M2

16π2
e2Mt . (59c)

This means that the average amplitude δσk of quantum

fluctuation with momenta k initially was δσk = k/2π and

then started to grow as et
√
M2−k2 .

To get a qualitative understanding, consider a single

sinusoidal wave σ = ∆(t) cos(kx) with k ∼ M , and with

an initial amplitude ∆(t) ∼ M/2π in 1D. The ampli-

tude of this wave grows until it becomes O(v) ∼M/
√
λ.

This leads to the division of the Universe in domains

of size O(M−1), in which the field changes from O(v)

to O(−v). The gradient energy density of domain walls

separating areas will be ∼ k2σ2 = O(M4/λ). This is of

the same order as the total initial potential energy of the

field V (0) = M4/4λ. Because the initial state contains

many fluctuations with different phases growing at dif-

ferent rates, the resuling field is a Gaussian random field.

It cannot coherently give all its gradient energy back and

return to its initial state σ = 0. This is one of the reason

why SSB occurs within a single oscillation of the field σ.

At σ ∼ v/
√

3, the curvature of the effective potential

vanishes, i.e. the Higgs mass becomes positive. In con-

sequence, the tachyonic growth of all fluctuations with

k < M continues until
√
〈δσ2〉 ∼ v/2. Subsequently, all

the modes oscillates.

The symmetry is broken when 〈σ2〉 ' v2. Using

Eq. (59c), one can estimate the time it takes for sym-

metry breaking to happen

t? '
1

2M
ln

(
32π2

λ

)
. (60)

The exponential growth of fluctuations can be inter-

preted as the growth of the occupation number, which is

defined by [8]

nk +
1

2
≡ 1

2
|σ∗k(t)σ̇k(t)| . (61)

Using Eq. (53), the occupation number

nk +
1

2
=

1

2

∣∣∣et√M2−k2
∣∣∣2 ≈ 1

2
e2Mt e−k

2/(2k2?) , (62)

becomes exponentially large very quickly for the long

wavelength modes, and drops abruptly for k > k? ≡
M(2Mt)−1/2.

Example : For λ = 10−3 and v = 10−4MP , the sym-

metry is broken within Mt? ∼ 6 and the typical cut-

off frequency is k? ∼ M/3. The occupation numbers of

modes with k < k? is exponentially large

nk(t?) ≈
1

2
e2Mt? ' 16π2

λ
∼ 2× 105 . (63)

Importantly, one remarks that for small λ, the fluctua-

tions with k < M have very large occupation numbers,

and therefore they can be interpreted as classical waves

of the field σ.

When the fields rolls down to the minimum of its ef-

fective potential, its fluctuations scatter off each other as

classical waves due to the λσ4 interaction. It is difficult

to study this process analitycally, but fortunately, it can

be studied using lattice simulations. In Fig. 3 is plotted

the result of the evolution of the Higgs vev, together with

the approximate expression

σ(t) ≡ 〈σ2(t)〉1/2 =
v

2

(
1 + tanh

M(t− t?)
2

)
. (64)

As can be seen, the vacuum expectation value never

comes close to the initial point σ = 0 again, which im-

plies that symmetry becomes broken within a single oscil-

lation of the distribution of the field σ. After SSB, space

becomes divided into domains with σ = ±v. The initial

size of each domain is O(M−1), and inside each domain,

the deviation from σ = |v| is much smaller than v. Grad-

ually, the size of each domain grows and the domain wall

structure becomes more and more stable.

B. Particle production

We now turn to the study of the production of scalars

χ and fermions ψ, coupled to the Higgs via the usual
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FIG. 3: Time evolution of the vacuum expectation value
〈σ2(t)〉1/2/v (here φ) compared with the approximate solu-
tion Eq. (64) with Mt? = 8. Figure taken from Ref. [7].

following interactions

Lint =
1

2
g2σ2χ2 + hσψ̄ψ . (65)

Since the backreactions of the produced χ and ψ modes

on the evolution of the Higgs expectation value, is negli-

gible, we can solve first the process of symmetry breaking

(see below), and then take the resulting evolution of the

Higgs as a background fields that induces particle pro-

duction.

The mode equations in terms of rescaled fields

Xk(t) = a3/2χk , Ψ(t) = a3/2ψ , (66)

are

∂2
tXk +

(
k2 +m2

B(t)a2(t)
)
Xk = 0 , (67a)

(iγµ∂µ −mF (t)a(t)) Ψ = 0 . (67b)

As we have seen previously, the quench approximation,

i.e. the sudden appearance of the mass term, is valid

in hybrid inflation models fulfilling the waterfall condi-

tions. In that case, the rate of expansion is typically

much smaller than the masses involved, so that we take

it constant here (a = 1) during SSB. The change of vac-

uum induces a sudden change in the masses of bosons

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0.1 1

O
cc

up
at

io
n 

nu
m

be
r: 

n k

 k/m

Bosons: Lattice
        Tanh

Fermions: Lattice
         Tanh

FIG. 4: Spectrum of occupation number for bosons and
fermions in the true vacua, in both lattice and analytical ap-
proximation. Here the parameters are fixed to λ = 0.01,
g = 0.5 and h = 0.5 Figure taken from Ref. [7].

and fermions through the Higgs mechanism

m2
B(t) = g2〈σ2〉 , m2

F (t) = h〈σ2〉 . (68)

It will be responsible for the non-adiabatic production

of particles which can be studied using the formalism of

quantum fields in strong background.

1. Number densities

At first, one can solve the mode equations Eqs. (67)

within the approximation Eq. (64). For bosons, the mode

functions Xk(t) are solutions of the oscillator Eq. (67a)

with time-dependent frequency ω2
k(t) = k2 + m2

B(t). It

can be rewritten

X ′′k +

(
ω2
−(k) +

α2m2
B

4
(1 + tanhx)2

)
Xk = 0 (69)

where x = M(t− t?)/2 and α ≡ g/
√
λ, while ω2

−(k) = k

and ω2
+(k) =

√
k2 + α2M2 are the in/out asymptotic fre-

quencies. Solving this equation in terms of hypergeomet-

ric functions [7], one can deduce the boson occupation

number

nBk (k) =
cosh[

√
4α2 − 1]− cosh[2π(ω+ − ω−)/M ]

sinh[2πω−/M ] sinh[2πω+/M ]]
(70)
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FIG. 5: Evolution of the λf(α, γ) function with the coupling
g (of equivalently h) for λ = 0.1, 0.01, 0.001 (from top to bot-
tom). The case of bosons (fermions) is represented by the
plain (dashed) lines.

A similar treatment can be done for the fermions, which

leads to

nFk (k) =
cosh[2πα]− cosh[2π(ω+ − ω−)/M ]

2 sinh[2πω−/M ] sinh[2πω+/M ]]
(71)

with α ≡ h/
√
λ in this case.

More precisely, the modes equations Eqs. (67) are

solved numerically, using the lattice Higgs vev evolution.

The two options are illustrated in Fig. 4 where one can

see that they agree very well, except at large momentum,

where parametric resonance effects are responsible for the

excitation of the low wavelength modes (remember : the

first band in the instability chart in the parametric reso-

nance case is sitting around the value k ∼M).

2. Energy densities

The ratio of energy densities of particles created to the

initial false vacuum energy density ρ0 ≡ M4/4λ is given

by

ρX
ρ0

=
2gsλ

π2

∫
dκκ2 nXk (α)ω+(κ, α) (72)

where κ ≡ k/M . Fitting functions to the final energy

densities are provided by

ρB
ρ0
' 2× 10−3 gs λ f(α, 1.3) , (73)

ρF
ρ0
' 1.5× 10−3 gs λ f(α, 0.8) , (74)

where f(α, γ) ≡
√
α2 + γ2 − γ and α = g/

√
λ(h/

√
λ)

for bosons (fermions). The production of bosons and

fermions from symmetry breaking is thus more efficient

when the Higgs mass and thus λ is large, as is also clear

from Fig. 5. Unless the couplings are unnaturally large,

the fractional energy density in bosons and fermions is

always small. As a consequence, no backreaction on the

evolution of the Higgs is thus expected, justifying a pos-

teriori our initial assumption of dividing the problem

into two stages. Importantly, this also implies that at

the end of tachyonic preheating the Universe energy den-

sity is dominated be the non-relativistic classical waves

of the Higgs bosons. One would thus have to wait for

the subsequent decays for the Universe to be reheated.

The reheating temperature is then given by the usual

expression

TR ' 0.2(200/g?)
1/4
√

ΓσMP . (75)

[1] A. D. Linde, “Hybrid inflation,” Phys. Rev. D 49 (1994)

748 [arXiv:astro-ph/9307002].

[2] J. Garcia-Bellido and A. D. Linde, “Preheating in hy-

brid inflation,” Phys. Rev. D 57 (1998) 6075 [arXiv:hep-

ph/9711360].

[3] A. D. Linde, “Particle Physics and Inflationary Cosmol-

ogy,” arXiv:hep-th/0503203.

[4] K. Schmitz and G. Vertongen, “Reheating and preheat-

ing,” Werkstattseminar WS 2010/11.

[5] G. N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kof-

man, A. D. Linde and I. Tkachev, “Dynamics of symmetry

breaking and tachyonic preheating,” Phys. Rev. Lett. 87

(2001) 011601 [arXiv:hep-ph/0012142].

[6] G. N. Felder, L. Kofman and A. D. Linde, “Tachy-

onic instability and dynamics of spontaneous symmetry

breaking,” Phys. Rev. D 64 (2001) 123517 [arXiv:hep-

th/0106179].

[7] J. Garcia-Bellido and E. Ruiz Morales, “Particle produc-



9

tion from symmetry breaking after inflation,” Phys. Lett.

B 536 (2002) 193 [arXiv:hep-ph/0109230].

[8] Here, the standard definition of the occupation number nk

cannot be used since ωk then becomes imaginary.


