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1 What is inflation?

Inflation is a period of accelerated expansion of the
universe. Historically, it was invented to solve several
problems:

• Homogeneity: a causal patch at the time of re-
combination (i.e. at about 3 × 105 years after
the big bang) subtends an angle of about 1◦ on
the sky today. How come the universe is so ho-
mogeneous and isotropic?

• Relicts: Where are the relicts of phase transi-
tions? Monopoles, domain walls, strings, etc?
(if you believe in GUTs)

• . . .

Inflation’s main selling point is the generation of fluc-
tuations (us!).

2 Equations of motions for a
homogeneous scalar field in
an FRW metric

We use units 8πG = M−2
p = 1 = h̄ = c. Take the

Einstein Hilbert action plus a scalar scalar field

S =
∫

d4x
√
|g|

(
1
2
R +

1
2
φ̇2 − V (φ)

)
, (1)

where |g| = |det gµν | and R = Rµ
µ(gµν) the Ricci

scalar. Vary the action with respect to the metric

δS

δgµν
= 0 (2)

⇒ Rµν −
1
2
gµνR = Tµν(φ) , (3)

where the lhs depends only on the metric and the rhs
only on the scalar field.

Now let’s plug in the homogeneous and isotropic
FRW metric

ds2 = dxµdxνgµν (4)

= dt2 − a(t)2
(

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
,(5)

where k determines the curvature

k =

 > 0, closed universe
< 0, open universe
= 0, (spatially) flat

. (6)

Let’s focus on the flat case (which is strongly
preferred by observations anyway). Letting
Maple/Mathematica/Maxima perform all the tensor
calculus we get

H2 =
1
3

(
1
2
φ̇2 + V (φ)

)
− k

a2
, (7)

Ḣ = −1
2
φ̇2 +

k

a2
, (8)

where H ≡ ȧ
a and the first equation is the Friedman

equation.
The equation of motion for the scalar field is

φ̈ + 3Hφ̇ + ∂φV (φ) = 0 , (9)
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where the φ̇ term is like a friction term in classical
mechanics. We have three equations, but only two of
them are independent.

If we want to solve them numerically, use the Fried-
man equation

• for consistency of initial conditions

• as consistency check of the integration routine

and evolve the other 2 dynamically.
Another useful form of the FRW metric is

ds2 = a(τ)2(dτ2 − d~x2) , (10)

written in conformal time

dτ =
1
a
dt , (11)

sometimes also called η, but don’t confuse this with
the slow roll parameter η. τ on the other hand is also
used to denote the optical depth to the surface of last
scattering...

A photon travels a coordinate distance τ during
conformal time τ . Its geodesic is determined by (as-
suming purely radial motion)

ds2 = 0 ⇒ dt2 = a(t)2dr2 ⇒ dr =
1
a
dt (12)

⇒ r =
∫

dt
1
a

= τ . (13)

3 Accelerated Expansion

Now that we have all basic definitions and the equa-
tions of motion, we can rigorously define what we
mean by inflation/ accelerated expansion:

ä

a
= Ḣ + H2 = H2

(
1 +

Ḣ

H2︸︷︷︸
≡−εH

)
= H2 (1− εH) . (14)

The subscript H is for Hubble. ε is one of (many) slow
roll parameters. There is an alternative definition εV

in terms of the potential (see below) which can be
a source of confusion. We shall drop the subscript
H and will refer to all slow roll parameters defined

in terms of H unless noted otherwise. Accelerated
expansion refers to

ä

a
> 0 ⇒ 0 < εH < 1 . (15)

A useful quantity is the number of efolds defined as

dN = −Hdt . (16)

It is counted backwards in time from the end of infla-
tion. In other words, N = 0 is at the end of inflation,
and N = 60 is before the end of inflation.

4 Inflation and slow roll param-
eters

How do we get inflation from a scalar field? This can
be seen – independently of a particular model – in
the following way. Take equation (9) for a very flat
potential. This should mean that we can neglect the
acceleration φ̈. For if the field φ starts off with a huge
acceleration φ̈ � 1, the friction term will take care of
it.

φ̇ = − 1
3H

∂φV ≈ 0 . (17)

Then from the Friedman equation (7) we see that

H2 =
1
3
V ≈ const (18)

⇒ εH ≈ 0 . (19)

For the scale factor this means that a = a0e
H(t−t0)

which explains why inflation is sometimes also re-
ferred to as exponential expansion.

Most inflationary models function like outlined
above. Introduce the slow roll parameter

ηH = − φ̈

Hφ̇
= −1

2
Ḧ

ḢH
. (20)

So the requirement that we can neglect the term φ̈
compared to 3Hφ̇ is just the requirement that η � 1.
(But note possible exceptions!)

2



In terms of the potential, εV and ηV are defined as

εV ≡ 1
2

(
∂φV

V

)2

, (21)

ηV ≡
∂2

φV

V
. (22)

They equal the Hubble slow roll parameters only
if they (and the higher order ones which I did not
bother defining here) are small:

εV ≈ εH , (23)
ηV ≈ εH + ηH , (24)

There is higher order slow roll parameters, defined
either as higher derivatives of the potential or Hubble.

Note that for successful inflation, the only criterion
is 0 < ε < 1. The magnitude of η does not matter
directly. Indirectly, large values of η are likely to
make ε grow as well

dε

dN
= 2ε (η − ε) , (25)

but there are exceptions.
Observable quantities like the scalar and tensor

power spectrum (see upcoming talk in two weeks) are
commonly expressed in terms of Hubble or potential
slow roll parameters.

5 Slow roll attractor for m2φ2

Generically, the models of scalar field inflation pos-
sess attractor solutions. We shall now examine these
in the case of m2φ2 inflation.

We start off with the Lagrangian

Lφ =
1
2
φ̇2 − m2

2
φ2 , (26)

to find the equations of motion

φ̈ + 3Hφ̇ + mφ = 0 , (27)

H2 =
1
6

(
φ̇2 + m2φ2

)
, (28)

Ḣ = −1
2
φ̇2 . (29)

Plugging (28) into (27) we obtain

φ̈ +

√
3
2

(
φ̇2 + m2φ2

)1/2

φ̇ + m2φ2 = 0 , (30)

(31)

or

dφ̇

dφ
= −

√
3
2

(
φ̇2 + m2φ2

)1/2

φ̇ + m2φ2

φ̇
, (32)

where we used φ̈ = φ̇ d
dφ φ̇. We shall explore its phase

diagram, see Figure 1.
In the limit φ̇2 � m2φ2, (32) becomes

dφ̇

dφ
=

√
3
2
φ̇ , (33)

⇒ φ̇ = φ̇0e
3
2 φ + φ̇1 , (34)

where we picked the right semi-plane φ > 0. In other
words, the field is rolling exponentially fast towards
the attractor φ̇ = φ̇1.

Towards the end of inflation, the friction term in
the eom for φ (9) becomes subdominant and we are
left with a harmonic oscillator.

φ̈ + m2φ = 0 . (35)

6 Power law inflation

Power law inflation is a very useful model to bench-
mark approximation schemes for the computation of
scalar power spectra as its spectrum is exactly solv-
able (see talk in two weeks). The potential is given
by

V = M4e
±

q
2
p (φ−φ0) . (36)

The scale factor in this model behaves as

a = tp . (37)

Let’s construct the potential from the knowledge of
the scale factor, thereby proving that this is the so-
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Figure 1: (a) Shape of the potential (b)Phase space for 1
2m2φ2 inflation. Notice the existence of the attractor

solution and the oscillations around the origin.

lution.

a = tp , (38)

⇒ H = H0
p

t
, (39)

Ḣ = −1
2
φ̇2 ⇒ − p

t2
H0 = −1

2
φ̇2 (40)

⇒ φ̇ =
√

2pH0

t
, (41)

⇒ φ =
√

2pH0 ln
t

t0
, (42)

⇒ t = t0e

q
1

2pH0
φ

, (43)

⇒ V = 3H2 − 1
2
φ̇2 = 3

p2

t2
H2

0 −
1
2

pH0

t2
(44)

=
pH0

t2

(
3pH0 −

1
2

)
= M4e

−
q

2
H0p φ

. (45)

It goes to show that knowledge of Hubble as a func-
tion of time is sufficient to reconstruct the potential
(modulo some integration constants).

7 Monomials

Let’s turn our attention to monomial potentials

V = λφn . (46)

In this case, it is best to work with the number of
efolds N as time variable. Notation is φ′ ≡ ∂Nφ =

− 1
H φ̇. Assume slow roll:

φ̇ = −∂φV

3H
⇒ φ′ =

nλφn−1

3H2
(47)

⇒ φ′ =
n

φ
⇒ φdφ = ndN (48)

⇒ φ =
√

2nN . (49)

Now does this inflate? Yes:

ε = − Ḣ

H2
=

φ̇2

2H2
=

1
2
φ′2 =

n

4
N−1 . (50)

8 General slow roll

For a generic potential, let us assume that the friction
term in (9) will dominate over φ̈ and the φ̇ term in
the Friedman equation (7) becomes small compared
to V as well. Then we have

H2 ≈ 1
3
V , (51)

3Hφ̇ + ∂φV ≈ 0 ⇒ φ̇ ≈ −∂φV

3H
≈ − ∂φV√

3V
,(52)
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from which we can get the time dependence of φ(t).
Then we use

H =
∂ ln a

∂t
= φ̇∂φ ln a ≈ −∂φV

3H
∂φ ln a (53)

⇒ H2 ≈ 1
3
V ≈ 1

3
∂φV ∂φ ln a (54)

⇒ ∂φ ln a ≈ V

∂φV
= (∂φ lnV )−1 , (55)

⇒ a = a0e
R
dφ (∂φ ln V )−1

(56)

where we plug in φ(t) to obtain the time dependence
of a. If we are only interested in H(t), simply use

H(t) ≈
√

1
3
V (φ(t)) . (57)

9 Classes of inflationary models

• old inflation: Inflation proceeds via tunneling
out of false vacuum

• new inflation: Coleman-Weinberg potentials
V ∝ (φ4 ln φ

φ0
− 1

4φ4 + 1
4φ4

0), fine-tuned initial
condition: inflaton field has to sit near maximum

• chaotic inflation: “chaotic” because of arbitrary
initial conditions

• k-inflation: non-canonical kinetic terms

• multifield inflation

• curvaton scenario

• f(R) theories (conformally equivalent to scalar
fields)

• . . .
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