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These notes are intended to give a global picture of the general mechanism responsible for the

creation of the hot Big Bang Universe as we are observing it. They are mainly based on Mukhanov’s

book [1], as well as on the Kofman et al. articles [2, 3], from which the plots have also been taken.

I. REHEATING

A. Evolution of the inflaton field

The dynamics of the inflaton field is described by a

Klein-Gordon equation coupled to a Friedmann equation

0 = φ̈+ 3Hφ̇+m2φ , (1)

H2 =
8π

3M2
P

(
1

2
φ̇2 + V (φ)

)
. (2)

For chaotic inflation V (φ) = 1
2mφ

2, Eq. (2) can be conve-

niently parametrized using the Hubble parameter H and

the angular variable θ defined via

φ̇ =

√
3

4π
HMP sin θ , mφ =

√
3

4π
HMP cos θ . (3)

Using Eq. (1), the dynamics of these two independent

variables is described by

Ḣ = −3H2 sin2 θ , (4)

θ̇ = −m− 3
2H sin 2θ . (5)

For mt � 1, the second term in the r.h.s of Eq. (5) can

be neglected ; the scalar field φ thus oscillates with a

frequency ω ' m. The Hubble rate can then be extracted

from Eq. (4)

H(t) ≡
(
ȧ

a

)
=

2

3t

(
1− sin(2mt)

2mt

)−1

, (6)

where the oscillating term is small compared to unity.

The behavior of φ(t) is obtained by solving Eq. (3) using

an expansion in (mt)−1

φ(t) ' Φ(t) cos(mt)

(
1 +

sin(2mt)

2mt

)
, (7)

where

Φ(t) =
MP√
3πmt

. (8)

This solution has a simple interpretation which is illus-

trated in Fig. 1: at the end of the inflationary era, the

friction term 3Hφ̇ becomes subdominant and Eq. (1) de-

scribes an oscillator, the amplitude of which gets damped

due to the universe expansion.

The behavior of the scale factor can be extracted from

Eq. (6) :

a(t) ∝ t2/3 . (9)

In consequence, the energy density of the field φ decreases

in the same way as the energy density of non relativistic

particles of mass m:

ρφ =
1

2
φ̇2 +

1

2
m2φ2 ∼ a−3 . (10)

The inflaton oscillations can be interpreted as a collection

of scalar particles, independent from each other, oscillat-

ing coherently at the same frequency m.

For time intervals larger than the oscillating period,

the energy and number densities are related to the am-

plitude Φ in a simple way

ρφ =
1

2
m2Φ2 , nφ =

1

2
mΦ2 . (11)

B. Decay of the scalar field

The reheating process occurs when the inflaton energy

density is transferred to the energy density of other fields,

leading to a decrease of the oscillating amplitude much

faster than the one described in Eq. (7).

Consider the interaction of the inflaton field φ with a
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scalar field χ and a fermion field ψ

L = 1
2φ,iφ

,i − V (φ) + 1
2χ,iχ

,i − 1
2m

2
χ(0)χ2

+ ψ̄
(
iγi∂i −mψ(0)

)
ψ − 1

2g
2φ2χ2 − hψ̄ψφ . (12)

To be general, we suppose that the effective potential

possess a minimum at φ = σ, and is quadratic in φ

V (φ) ∼ 1
2m

2 (φ− σ)
2
. (13)

Doing the usual shift φ−σ → φ after symmetry breaking,

the potential gets interaction terms linear in φ

∆L = −g2σφχ2 − hψ̄ψφ , (14)

which eventually lead to inflaton tree-body decays

Γ(φ→ χχ) =
g4σ2

8πm
, Γ(φ→ ψ̄ψ) =

h2m

8π
. (15)

In order to consider the effects related to particle pro-

duction, let us consider the following Klein Gordon equa-

tion describing the homogeneous scalar field

φ̈+ 3H(t) φ̇+
(
m2 + Π(ω)

)
φ = 0 . (16)

where Π(ω) is the inflaton polarisation operator with 4-

momentum k = (ω, 0, 0, 0). Neglecting for simplicity the

time dependance of H and Im Π, Eq. (16) has the follow-

ing solution

φ(t) ≈ Φ(t) sin(mt) , (17)

where

Φ(t) ≈ Φ0 exp

[
−1

2

(
3H +

Im Π(m)

m

)
t

]
. (18)

For m � min(2mχ, 2mψ), Π(ω) has an imaginary part

which can be identify with the decay width thanks to the

optical theorem through unitarity:

Im Π(ω) = mΓφ . (19)

The amplitude of the oscillations of the field φ decreases

as

Φ(t) = Φ0 exp

[
−1

2
(3H + Γ)t

]
(20)

due to the universe expansion as well as due to particle

production. The field Φ(t) obeys the equation

1

a3

d

dt
(a3Φ2) = −ΓΦ2 . (21)

Multiplying the latter by m and using Eq. (11), one ob-

tains the following equation for the number density

d

dt
(a3nφ) = −a3 nφ Γ . (22)

This is nothing else than a so-called Boltzmann equation,

showing that the comoving number density of φ particles

exponentially decreases with the decay rate Γ.

C. The reheating temperature

During the oscillating phase the Universe behaves in

the same way as if it was dominated by non-relativistic

particles of mass m : H(t) ∼ 2/(3t). The inflaton energy

density is then transferred to the relativistic decay prod-

ucts, the energy density of which decreasing much faster

than the energy of the oscillating field φ. The reheating

process eventually ends when H < Γφ. The reheating

time is defined as the time at which the transition be-

tween these two regimes occurs : treh ' 2/(3Γφ). By

equating the inflaton energy density

ρφ =
M2
P

6π t2reh

, (23)

with the one of a thermal bath

ρrad =
π2

30
g? T

4
R , (24)

containing g? DOFs, one gets the reheating temperature

TR ' 0.2 (200/g?)
1/4√

ΓφMP (25)

It is remarquable that TR does only depend on the par-

ticle theory parameters and not on the initial value of

φ.

For h ∼ 10−2, Γφ ∼ 108 GeV and TR ∼ 108 GeV. For

g2 ∼ 10−2 and v ∼ 1011 GeV, Γ ∼ 103 GeV and TR ∼
1010 GeV.

Imposing Γφ � m ∼ 10−6MP and g? ∼ O(100), TR �
1015 GeV, thus rendering GUT baryogenesis impossible

in such kind of scenarios. Also, TR ≤ 109 − 1010 GeV in
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order to avoid the overproduction of gravitinos, an upper

bound which turns out to be in tension with thermal

leptogenesis scenarios [5].

D. Remarks

1. If one would have considered the interaction ∆L =

− g
2

2 φ
2χ2, then the rate in that case is Γ(φφ →

χχ) ∼ g2φ2

8πm , which is a function of φ. Since φ ∼ t−1

and H ∼ t−1, this interaction rate never overcomes

the Hubble expansion rate, thus rendering reheat-

ing through such an interaction impossible.

2. We have perturbative reheating if and only if Γφ

can decrease more slowly than t−1.

3. Typically, for reheating to complete, one either has

to have symmetry breaking or coupling to fermions.

Reheating thus implies constraints on the structure of

the theory and on the couplings of φ to the other fields.

II. PREHEATING

A. Intuitive Picture

Up to know, particle production has been addressed

disregarding the previously created χ particles. It turns

out that Γeff, the effective φ decay width, can be much

larger than Γφ due to Bose enhancement effects.

If m � mχ, most of the χ particles produced in φ

decays carry momentum k ' m/2, and lead to a Bose

enhancement of the φ decay. This can be seen at first if

we consider the matrix element of such a process:

|〈nφ − 1, nk + 1, n−k + 1|â+
k â

+
−kâ

−
φ |nφ, nk, n−k〉|

2

= (nk + 1)(n−k + 1)nφ (26)

where n±k are the occupation numbers of the χ particles.

One can thus define an effective decay width

Γeff ' Γφ→χχ (1 + 2nk) (27)

The φ particles decay at rest into two χ particles, and if

gφ� m2/8, each of them carries a momentum k located

in the thin shell ∆k around k0

k = k0 ±∆k , (28)

where we assumed m2 � m2
χ + 2gφ and where

k0 =
m

2
, ∆k =

2gΦ

m
. (29)

The occupation number nk can then be expressed

nk=m/2 =
nχ

(4πk2
0∆k)/(2π3)

' π2Φ

g

nχ
nφ

. (30)

In consequence, we have Bose enhancement as soon as

nχ >
π2Φ

g
nφ , (31)

i.e. as soon as a fraction ∼ g of φ particles has been con-

verted into χ ones. The elementary theory of reheating

fails quickly after the beginning of reheating.

The Boltzmann equation Eq. (15) can then be rewrit-

ten

1

a3

d(a3nχ)

dN
=

g2

2m2

(
1 +

2π2Φ

g

nχ
nφ

)
nφ , (32)

where N ≡ mt/2π is the number of inflation oscillations

up to t. Neglecting the expansion, and assuming Φ to be

constant disregarding the particle production, one gets

nχ ∝ exp (4π µN) , (33)

where µ ≡ πgΦMP /(4m
2) is the parameter of instability.

B. EOM for quantum fluctuations

Collective effects such as Bose enhancement limit the

range of applicability of the elementary theory of reheat-

ing. Therefore, a rigorous description of the first stage

of reheating, commonly referred to as preheating, can

only be based on non-perturbative techniques. In par-

ticular, we will show in this second part of the talk how

the phenomenon of parametric resonance may result in

explosive particle production. The physical picture one

should keep in mind is the following: Due to their cou-

pling to the coherently oscillating classical inflaton field

φ quantum fluctuations of the scalar field χ experience a

resonant amplication. This causes an exponential growth

of the corresponding occupation numbers.

The details of reheating in combination with sponta-

neous symmetry breaking will be the subject of the next
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seminar talk. For now, we thus restrict ourselves to a

toy model-like scenario of chaotic inflation in which the

scalar potential is given as:

V (φ, χ) =
1

2
m2φ2 +

1

2
m2
χ(0)χ2 +

1

2
g2φ2χ2 (34)

The time evolution of the quantum fluctuations of the

field χ is ruled by the classical equation of motion – the

Klein-Gordan equation in an expanding flat Friedmann-

Lemâıtre-Robertson-Walker Universe:

χ̈+ 3Hχ̇− 1

a2
∇2
xχ+ V,χ = 0 (35)

Writing χ in the Heisenberg representation allows us to

proceed to Fourier space. With ~x and ~k denoting the

comoving position and momentum vectors:

χ (t, ~x) =

∫
d3k

(2π)
3/2

[
akχk(t)e−i

~k·~x + a†kχ
∗
k(t)ei

~k·~x
]
(36)

The temporal part of the momentum eigenfunction with

momentum k = |~k| (field mode) χk hence satisfies:

χ̈k + 3Hχ̇k +

(
k2

a2
+m2

χ(0) + g2φ2(t)

)
χk = 0 (37)

where φ(t) = Φ(t) sin (mt). Eq. (37) describes a har-

monic oscillator with variable frequency (parametric os-

cillator) that is damped by the expansion of the Universe,

viz. the friction term 3Hχ̇k. As is well known from clas-

sical mechanics a concerted choice of parameters may

cause parametric oscillators to resonantly excite them-

selves, a feature which goes by the name of parametric

resonance. In our context this means that depending on

k we expect some of the modes χk to get parametrically

excited.

To alleviate our further calculations we neglect the ex-

pansion of the Universe, set the bare χ mass mχ(0) to

zero and assume a slow variation in Φ(t) compared to the

oscillation frequencies of the fields φ and χ:

H = 0 ; a = 1 ; mχ(0) = 0 ; Φ(t) ≈ const. (38)

This leaves us with an effective χ mass meff.
χ = gφ. The

scenario mχ(0) � m would allow for the production of

particles above the scale of inflation which could rescue

GUT baryogenesis models.

Eq. (37) now turns into:

χ̈k + ω2
k(t)χk = 0 ; ω2

k(t) = k2 + g2Φ2 sin2 (mt) (39)

Substituting z = mt and using sin2(z) = 1
2 (1− cos(2z))

we may rewrite Eq. (39) as Mathieu’s differential equa-

tion:

χ′′k + (Ak − 2q cos(2z))χk = 0 (40)

with the parameters Ak and q being defined as:

Ak =
k2

m2
+ 2q ; q =

g2Φ2

4m2
(41)

In solid state physics when describing charge carri-

ers in certain periodic crystalline solids the stationary

Schrödinger equation may be cast as an Mathieu equa-

tion as well. That the unique solution of Eq. (40) for

vacuum initial conditions closely resembles Bloch waves:

ψn~k (~r) = ei
~k·~rP (~k, n, ~r) (42)

where P is invariant under translations by a lattice vec-

tor. Standard references now tell us [4]:

χk(z) = emkzP (Ak, q, z) (43)

where P is periodic in z with period π. The real part µk

of the Mathieu exponent mk is always non-negative:

µk(q) = 0 ⇒ |χk| is stable. (44)

µk(q) > 0 ⇒ |χk| grows exponentially. (45)

A primitive contour plot of µk as function of q and Ak,

the so-called stability-instability chart of the Mathieu

equation, is shown in Fig. 2. According to Eq. (41) we

identify the different ranges of physical momenta that ex-

perience parametric resonance as the white regions above

the line A0 = 2q. The width of the resonance bands

∆A
(l)
k , l ∈ N, and the preheating effeciency are solely

controlled by the parameter q which is related to the in-

flaton amplitude Φ:

q < 1 ⇒ Narrow resonance; 2πµk � 1 (46)

q > 1 ⇒ Broad resonance; 2πµk ∼ O(1) (47)

The occupation numbers nk count by how many
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quanta the respective modes χk are populated. Matching

the quantum with the classical expression for the energy

eigenvalue of a harmonic oscillator we find:

nk =
εk
ωk
− 1

2
=

1

ωk

(
1

2
|χ̇k|2 +

1

2
ω2
k |χk|

2

)
− 1

2
(48)

Instable modes χk ∼ exp (µkz) hence entail exponentially

growing occupation numbers nk:

nk ∼ exp (2µkz) = exp (2µkmt) (49)

That is, the growth rate of those nk is proportional to

the present occupation number:

ṅk ∼ ΓPRnk ; ΓPR = 2µkm (50)

whereby we have rediscovered the effect of Bose enhance-

ment in our non-perturbative calculation. Finally notice

that Eq. (49) implies that also the number density of χ

particles nk increases explosively:

nχ(t) =

∫
d3p

(2π)
3nk(t) ; p = k/a (51)

Having outlined the generic features of preheating we

will now turn to a more detailed discussion of the two

regimes of narrow and broad resonance.

C. Narrow resonance regime (q < 1)

Fig. 3 displays numerical solutions for χk(t) and nk(t)

with k ' m in the narrow resonance regime (q = 0.1). As

ωk ' m for k ' m and q � 1 the mode χk oscillates ap-

proximately with the same frequency as the inflaton field

φ. The occupation number nk increases ally in agreement

with Eq. (49).

The structure of the instability bands is dictated by

the theory of Mathieu’s equation:

A
(l)
k ' l

2 ; ∆A
(l)
k ' q

l ⇒ k2 ' m2
(
l2 − 2q ± ql

)
(52)

We recognize the first band as the widest and most im-

portant one. It is centered around k ' m, has a width of

mq and exhibits an instability parameter µ
(1)
k of:

µ
(1)
k '

√
(q/2)

2 − (k/m− 1)
2 ' q/2 (53)

Combining Eqs. (50) and (53) we find ΓPR = mq. Given

k ∼ lm in the lth instability band preheating has a natu-

ral interpretation in the particle picture as the collective

process 2l × φ→ χχ.

There are three main reasons why preheating is so

much more efficient than ordinary inflaton decays: First,

in preheating the growth rate of nk is proportional to nk

itself, not to the number density of inflatons nφ as in de-

cays. Second, the perturbative decay rate of inflatons Γφ

is suppressed by g4/m whereas ΓPR can be quite sizable

if q is not too small (see below). Third, preheating can

also produce χ particles off the mass shell which opens

new channels for the energy transfer from the φ to the χ

field.

Decays: ω2
k − k2 = 0 (54)

Preheating: ω2
k − k2 = g2Φ2 sin2 (mt) (55)

A necessary condition for successful preheating is that

it proceeds at a faster rate than decays:

ΓPR = qm =
g2Φ2

4m
& Γφ (56)

Once decays take over, Γφ > ΓPR, the inflaton amplitude

decreases exponentially and any resonance disappears. In

more visual terms a violation of condition (56) also means

that the intrinsic width of the inflaton mass eigenstate

has become broader than the first resonance band around

k ' m.

A realistic treatment of preheating beyond our toy

model faces further complications. The expansion of

the Universe, for instance, augments the inflaton de-

cay rate with the friction term 3H and, within a time

∆t ∼ qH−1, redshifts the χ modes out of the reso-

nance layers. This provides us with two conditions for

ΓPR = qm the stronger of which is the second:

qm & Γφ + 3H ; qm & ∆t−1 ⇒ q2m & H (57)

The χ bosons may also be removed from the resonance

bands as they change their momenta or decay into other

particles due to secondary interactions (rescatterings).

Finally, one must not neglect the backreactions of the

χ particles on the inflaton field. Not only does the in-

flaton amplitude decrease due to χ production, also its

effective mass receives ever-growing and eventually dom-
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inating contributions from the χ fluctuations:

(
meff.
φ

)2
= m2 + g2

〈
χ2
〉
⇒ q → Φ2

4 〈χ2〉
(58)

Preheating typically ends at time tPR after NPR in-

flaton oscillations when condition (57) becomes violated.

This usually happens for:

q ∼O
(
10−1

)
⇒ Φ ∼ m/g (59)

⇒ tPR ∼
gMp

3m2
; NPR ∼

gMp

6πm
∼ few× 10 (60)

Subsequently, reheating is described by the elementary

theory of perturbative inflaton decays. As TR is mainly

sensitive to the last stages of reheating it should be cal-

culated within the elementary theory and not at the end

of preheating.

D. Broad resonance regime (q > 1)

Although we now know everything about preheating,

there is still more to say about it, viz. about its sensitiv-

ity to initial conditions. In particular in chaotic inflation

the initial amplitude of inflaton oscillations may be very

large, Φ0 & Mp, resulting in a very broad (q � 1) and

extremly efficient parametric resonance. It can be shown

that typically µk ' 0.18. From Eq. (49) we then deduce:

nk ∼ exp (2µkmt) = exp (4πµkN) ∼ 10N (61)

Fig. 4 displays numerical solutions for χk(t) and nk(t)

with k ' m in the broad resonance regime (q ' 200).

As we see, the χk mode oscillates much faster than the

inflaton field and particle production only occurs for very

small values of φ(t). The former observation is due to the

mostly large effective χ mass:

meff.
χ = gφ ' gΦ� m ; at most times (62)

explaining a ratio of order q1/2 between the χ and φ os-

cillation frequencies. Turning to our second observation

we note that in view of the comparably slow φ oscillation

the frequency ωk mostly only experiences an adiabatic

variation. Hence the quantum number nk of the para-

metric oscillator with variable frequency ωk is almost an

adiabatic invariant:

nk ∼
1

2
ω2
k |χk|

2
/ωk ' const. ⇒ |χk| ∼ ω−1/2

k (63)

It only varies when the adiabaticity condition imposed

on the change of ωk is violated:

Particle production when: ω̇ & ω2 (64)

which, as we will show, only happens around the time

when the inflaton passes through zero, |φ| . φ∗ � Φ. In

these acts of creation the effective χ mass vanishes, ωk

becomes very small and the amplitude of the χk mode

blows up, cf. Eq. (64).

For small φ we may approximate φ̇ = mΦ cos (mt) '
mΦ. With ω2

k = k2 + g2φ2 and ω̇k ' ω−1g2φmΦ we then

deduce the range of excited momenta k from Eq. (64):

0 ≤ k2 .
(
g2φmΦ

)2/3 − g2φ2 (65)

which forces φ to be smaller than (mΦ/g)
1/2

and becomes

maximal for:

φ = φ∗ '
1

2
(mΦ/g)

1/2 ' 1

3
Φq−1/4 (66)

The typical momenta k of particles that are produced in

the broad resonance regime may then be estimated as:

0 ≤ 2k . k∗ = (gmΦ)
1/2

=
√

2mq1/4 (67)

where k∗ is a measure for the maximal momentum scale

that can be reached during preheating. Eq.(67) tells us

that typically k � m which indicates the collective inter-

action of many φ quanta in the production of χ particles.

Finally, we compute the duration of each act of creation:

∆t∗ '
2φ∗

φ̇
' (mΦ/g)

1/2

mΦ
= k−1
∗ ∼ ω−1

∗ (68)

Particle production occurs within one period of oscilla-

tion ∼ ω−1
∗ =

(
k2
∗ + g2φ2

∗
)−1/2

of the mode χk which is

in agreement with the uncertainty principle:

∆t∗ω∗ ∼ 1 (69)

Due to the decrease in the inflaton amplitude the broad

resonance eventually becomes narrow. Ref. [2] estimates



7

that this will happen after a time tBR:

tBR ∼
1

m
ln

(
m

g5Mp

)
⇒ NBR ∼ O (10) (70)

At this time we approximately have:

q ' 1 ; Φ2 '
〈
χ2
〉

; ρφ ' ρχ ; p ' ρ/3 (71)

That is, preheating facilitates an almost instantaneous

transition from the epoch with vacuum-like equation of

state to the epoch of radiation domination. Contrary

to earlier expectations a prolonged intermediate stage of

matter domination does not exist.

Bringing back into play the expansion of the Universe,

the complexity in describing preheating in the broad res-

onance regime increases significantly. As a virtue of the

expansion we note that all excited modes, 0 ≤ k . k∗/2,

are redshifted away from k∗. This stabilizes preheating

and makes it less sensitive to rescattering and backreac-

tion effects. On the other hand, as a consequence of the

momentum redshift and the rapid decrease in the infla-

ton amplitude, the resonance turns into what has been

named a stochastic resonance.

ω2
k =

k2

a2
+ g2Φ2(t) sin2 (mt) (72)

Due to the non-periodical variation of the frequency ωk

the phases of the mode χk at successive zero-crossings of

the inflaton field, φ (ti) = 0, are completely uncorrelated

thereby leading to only stochastic changes in the occupa-

tion number nk. The number density of χ particles then

only grows on average exponentially. Intermediately it

may either increase or decrease. Such a process could

never be explained in the classical particle picture. We

thus realize that the creation of almost all particles that

populate our present Universe was a purely quantum me-

chanical effect.
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FIG. 1: Oscillations of the field φ after inflation in the theory 1
2
m2φ2. The value of the scalar field is measured in units of Mp,

time is measured in units of m−1. Figure taken from Ref. [3].

FIG. 2: Sketch of the stability-instability chart of the canonical Mathieu equation (40) taken from Ref. [2]. Gray bands indicate
regions of stability (µk = 0), white bands regions of instability (µk > 0). The line A0 = 2q shows the values of Ak and q for
k = 0. For k 6= 0 the corresponding function graphs Ak(q) are obtained by parallely shifting upwards the line A0 by k2/m2.
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FIG. 3: Narrow parametric resonance for the momentum k corresponding to the maximal speed of growth, k ' m. Time is
shown in units of m/2π, which is equal to the number of oscillations of the inflaton field φ. For each oscillation of the field φ
the mode of the field χ oscillates one time. Left: growth of the mode χk, Right: logarithm of the occupation number nk of
particles in this mode. In this particular example q = 0.1 and hence µk ' q/2 = 0.05. Figures taken from Ref. [3].

FIG. 4: Broad parametric resonance for k ' m. For each oscillation of the field φ the mode of the field χ oscillates many times.
The peaks in the χk oscillations corresponds to the time intervals when |φ| . φ∗. In this particular example q ' 200 and the
average rate of growth of nk is close to maximal in the context of our model, µk ' 0.3. Figures taken from Ref. [3].


