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1 Why density fluctuations?

Primordial inhomogeneities served as the seeds for structure formation. In-
flation can explain the origin and predict their spectrum. Primordial pertur-
bations originated from quantum fluctuation. Their size is blown up from
Planckian length to superhorizon scales during inflation. Of the inflaton
field φ = φcl + δφ, only the perturbation δφ will be quantised. The field
itself stays classical. The resulting scalar and tensor perturbations enable
us to test inflation, thus it is important to calculate the spectra correctly
and more precisely. These perturbations split up into three different groups:
scalar, vector and tensor perturbations.

Scalar perturbations are induced by energy density inhomogenities.
These perturbations are most important because they exhibit gravitational
instability and may lead to the formation of structure in the universe.

Vector perturbations decay quickly and are not very interesting for us
here.
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Tensor perturbations describe gravitational waves, which are the de-
grees of freedom of the gravitational field itself. In the linear approximation
the gravitational waves do not induce any perturbations in the perfect fluid.

Scalar, vector and tensor perturbations are decoupled and thus can be
studied seperately.

Important for the calculations is ratio of the physical wavelength of the
perturbations λph a/k and the Hubble horizon 1/H . The Hubble scale does
not change much during inflation, while λph grows strongly.

Standard results to first order in the slow roll approximation are
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for the gravitational wave spectrum.
We will use as slow roll parameters

ǫ =
−Ḣ

H2
, η =

φ̈

HḢ
. (3)

τ is the conformal time, the background metric is given by

ds2 = a(τ)2(dτ 2 − dx2). (4)

The effective action during inflation is
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d4x
√
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(∂φ)2 − V (φ)

]

. (5)

2 Scalar Perturbations

First, we will look at the scalar linear perturbations. The most general
expression for this metric is

ds2 = a(τ)2
{

(1 + 2A)dτ 2 − 2∂iBdxidτ − [(1 + 2R)δij + 2∂i∂jE] dxidxj
}

(6)

were A, B, R, E are real scalars representing the four scalar degrees of free-
dom. After fixing the gauge, we insert the perturbed quantities into the
action leading to

Sscalar
pert =
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dτd3x
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z
u2

]

, (7)
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prime denoting the derivation with respect to conformal time, using also

u = −zR = −z

(

R − H

φ̇
δφ

)

, z ≡ a
φ̇

H
. (8)

R is the intrinsic curvature perturbation of comoving hypersurfaces. Its
spectrum is defined by

R =

∫

d3k

(2π)
3

2

Rk(τ)eik.x, 〈RkR∗
l
〉 =

2π2

k3
PSδ3(k − l) (9)

Now we quantise the perturbations

û(τ, ~x) =

∫

d3k

(2π)
3

2

{

uk(τ)âke
ik.x + u∗

k(τ)â†
k
e−ik.x

}

(10)

imposing the standard relations for the creation and annihilation operators

[

âk, â
†
l

]

= δ3(k − l) , âk|0〉 = 0, . . . . (11)

The Fourier componets of momentum k are decoupled from other momenta
and the equation of motion for uk is simply

u′′
k +

(

k2 − z′′

z

)

uk = 0 (12)

As aH/k → 0 (wavelength of fluctuations much smaller than horizon), we
can approximate the modes by the free field solution in flat space

uk =
1√
2k

e−ikτ . (13)

For aH/k ≫ 1 (wavelength much larger than horizon), uk ∝ z. Now we can
use the slow roll parameters to express the z”/z term

z′′

z
= 2a2H2
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3

2
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2
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2
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1
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)

. (14)

Assuming ǫ and η are constant, (12) can be solved by

z′′

z
=

1

τ 2

(

ν2 − 1

4

)

, ν =
1 + δ + ǫ

1 − ǫ
+

1

2
(15)
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with
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Approximating uk for a wavelength much larger than the horizon
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(17)

we finally find from (9) for the scalar perturbation spectrum
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3 Tensor perturbations

Now we turn to tensor perturbations corresponding to gravity waves. Tensor
linear perturbations can be most generally expressed as

ds2 = a(τ)2
[

dτ 2 − (δij + 2hij) dxidxj
]

, (19)

notice that here we do not have gauge degrees of freedom as in the scalar
case, since tensor perturbations are gauge invariant. The tensor hij is sym-
metric hij = hji, traceless δijhij = 0 and transverse ∂ihij = 0. Inserting the
perturbed metric in the Einstein-Hilbert action yields the perturbed action

Stensor
pert =

1

8

∫

dτd3xa2
[

(h′
ij)

2 − (∂lhij)
2
]

. (20)

Defining vij ≡ a
2
hij leads to

Stensor
pert =

1

2

∫

dτd3x

[

(v′
λ)

2 − ∂lv
ij∂lvij −

a′′

a
v2

λ

]

(21)

The two point correlation function is

∑

λ

〈

hk,λh
∗
k′,λ

〉

=
2π2

k3
PT (k)δ(3)(k − k′) (22)
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with λ ∈ (+,×) being the two polarisations. Quantizing vij similar to the
previous chapter gives

v̂ij(τ,x) =

∫

d3k

(2π)
3

2

{

(vk)ij(τ)âke
ik.x + (vk)

∗
ij(τ)â†

k
e−ik.x

}

. (23)

with

(vk)ij = v+
k e+

ij(k) + v×
k e×ij(k) (24)

and the polarisation tensors satisfying

eij = eji, kieij = 0, eii = 0,

eij(−k, λ) = e∗ij(k, λ)

e∗ij(k, λ)eij(k, λ′) = δλ
λ′ .

(25)

Again we derive the equation of motion from the action

v′′
k +

(

k2 − a′′

a

)

vk = 0 (26)

and we make the approximations

vk =
1√
2k

e−ikτ as aH/k → 0

vk ∝ a for aH/k ≫ 1.

(27)

Again we express the mass term in terms of slow roll parameters (again
assuming ǫ to be constant) to solve the equation of motion

a′′

a
=2a2H2

(

1 − 1

2
ǫ

)

=
1

τ 2

(

µ2 − 1

4

)

, µ =
1

1 − ǫ
+

1

2
.

(28)

Similar to the scalar spectrum we find

P
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2

T (k) = 21+µ− 3

2
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Γ(3
2
)
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H

2π
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∣

∣
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. (29)

5



4 Power law inflation

As already mentioned in Pascal’s talk two weeks ago the model of power
law inflation is particularly nice for these calculations since both spectra are
exactly solvable. In power law inflation we have a ∝ tp. For the slow roll
parameters this gives

ǫ = −η =
1

p
= constant (30)

and further

ν = µ =
3

2
+

1

p − 1
. (31)

Inserting this in (18) gives us the exact curvature spectrum

P
1/2
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(
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(32)

where H1 = H|aH=k1
is the Hubble parameter at the epoch when the scale

k/a leaves the horizon. For the gravitation waves we find the relation

P
1

2

T (k) =
2√
p
P

1/2
S (k). (33)

5 Slow-roll inflation in general to second or-

der

Now I will extend the results for slow-roll (1), (2) to second order. To obtain
the results to first order, we had neglected ǫ and η, now we will only assume
them to be small and neglect the quadratic terms. From

1

H
ǫ̇ = ǫ(2ǫ + η),

1

H
η̇ = η(ǫ − η − η̇) (34)

we see that ǫ and η are approximately constant under this assumption. We
can thus use the results from Section 3.

ν ≃ 3

2
+ 2ǫ + η and µ ≃ 3

2
− ǫ (35)
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To second order the spectra are

P
1/2
S (k) ≃ [1 + (2 − ln 2 − b)(2ǫ + η) − ǫ]

H2
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H

2π

∣

∣

∣

∣

aH=k

.

(36)

where b is the Euler-Mascheroni constant with 2 − ln 2 − b ≃ 0.7296 and
ln 2 + b − 1 ≃ 0.2704.

6 Everything and more

Tensor to Scalar ratio An interesting parameter is the tensor to scalar
ratio r

r =
PT(k0)

PS(k0)
. (37)

The scale dependence of the spectra is given by the spectral indices nS and
nT . Since probably nS 6= nT , r will be scale dependent. nS is in most models
expected to be slightly smaller than 1. For Ḣ = 0, P is independent of k
and is called Harrison-Zeldovich-spectrum.

With (1), (2) and φ̇2 = −2Ḣ we have

r = 16ǫ|k0=aH , (38)

so the tensor perturbations are expected to be much smaller than the scalar
perturbations. r could also be defined at a given multipole l for a more
observer-friendly approach (see next talk). WMAP 7 data give r < 0.22.

Consistency relation

If gravitational waves were detected, a strong evidence for inflation could be
given by the so called consistency relation. The spectral index for the tensor
modes can be written as

nT = −2ǫ. (39)

Expressed through the spectra, we find

nT = − PT

8PS

= −r

8
. (40)

This means, if we manage to measure PT at least for two values good enough
for a proper estimation of the slope, we can check the consistency relation.
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If it holds, it would strongly suggest inflation.

Lyth bound

Lyth derived a lower bound on the variation in the inflaton field during in-
flation in terms of the ratio r, known as the Lyth bound. In terms of ǫ the
derivative of φ with respect to the number of e-foldings to the end of inflation
is given by

dφ

dN
=

mpl

2
√

π

√
ǫ. (41)

Inserting (38) with ǫ roughly constant gives

∆φ =
mpl

8
√

π

√
r|∆N |. (42)

In his original paper, Lyth considered ∆φ as scales exiting the horizon were
corresponding to 1 < l ≃ 100 (see next talk). This happens at |∆N | ≈ 4. So
the lower limit on the total field variation, called the Lyth bound, is

∆φ & mpl

√

r

4π
. (43)

Lyth and others argue that inflation cannot be described by a low energy
effective field theory if ∆φ & mpl and so high values of r ∼ 1 are possible
only in models for which no rigorous theoretical framework exists. For models
of inflation based on well-motivated particle physics it has been argued, that
the Lyth bound requires r ≪ 1.
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