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We use the same notation as Mukhanov’s textbook!

Topic of this talk: How can we understand the physics of the CMB and how is obser-
vation related to the inflationary paradigm?

1 CMB on the sky

What we actually measure are the photons that escaped the last scattering surface at the
time of recombination when protons and electrons combined to build up neutral hydrogen.
Thus these thermal photons obey the Plackian distribution:

f
(ω
T

)
≡ 2

exp(ω/T )− 1
, with ω = p0/

√
g00 (1)

The resulting black body spectrum is fully characterized by a single number, the temper-
ature T . So, measuring the CMB means to measure the temperature in any accessible
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direction of the sky. This temperature turns out to be nearly isotropic throughout the
whole sky with an average temperature of T0(today) ' 2.7 K.

But there are anisotropies at the level of 10−5, thus we apply linear perturbation theory:

T (xα, li) = T0 (η)

(
1 +

δT

T0

(η, xi, li)

)
, (2)

where η = x0, xi are conformal coordinates and

li ≡ −pi
p

, with p ≡
√

Σip2
i (3)

is the direction of motion of the photon with momentum pα. Thus,

today :
δT

T0

(η0, x
i
0, l

i) ∼ 10−5 . (4)

To display the anisotropies it is common to consider the two-point correlation function
and expand it in the multipole moments Cl via Legendre polynomials Pl(cos θ):〈

δT

T0

(l1)
δT

T0

(l2)

〉
θ

≡ C (θ) =
1

4π

∞∑
l=2

(2l + 1)ClPl (cos θ) (5)

The brackets 〈〉θ denote the averaging over all l1 and l2, satisfying the condition l1 · l2 =
cos (θ). The sum starts at l = 2 since the monopole and dipole is not of big use to us.
The dipole only reveals our relative motion with respect to the CMB background. The
monopole is in principle not measurable, due to the lack of a reference C(0). There is
no observer at a well separated point in space from whom we can obtain an additional
measurement. All the same, there is a fundamental uncertainty in the measurement of Cl
that gets big for small l where there are only a few samples on the sky to average over.
This uncertainty is called the cosmic variance:

∆Cl
Cl
∼ (2l + 1)−1/2 . (6)
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2 Horizons

The fact that the temperature fluctuations on small scales are at the level of 10−5 is already
a strong hint of an inflationary phase. At recombination the causally connected regions
would be a lot smaller than our horizon today.
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Figure 1: Behavior of the Hubble horizons H−1 at the different epochs of the universe:
Inflationary, radiation dominated and matter dominated phase. The thin straight lines
represent physical scales. The scales that have entered the horizon until today correspond
to the multipoles in the CMB measurement. The middle line of the three exemplary
physical scales corresponds to a position somewhere around the first peak: It enters the
horizon before recombination leaving just about enough time to collapse once.

Inflationary phase: Horizon is constant H−1 = const. Quantum fluctuations that are
born during inflationary phase blow up and leave the horizon. After inflation: In the
radiation- and matter-dominated phase H−1 grows faster than a ∼ physical scales. Thus,
scales re-enter the horizon. The scales at which we observe fluctuations today correspond
to the l of the multipole expansion.
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It is very important for the observed phenomena at a certain scale whether it enters
before or after recombination! Why? Because recombination is the ”birth” of the CMB-
photons:

• After recombination: direct impact on the photon geodesics via the metric.

• Before recombination: impact on the plasma, photons inherit some properties of
the plasma (they escape their potential). Harder to describe but one gets access to
observables like Ωb,Ωm at the time of plasma oscillations.

A crucial thing is that recombination takes a ”snapshot” of the plasma at the time of
recombination and therefore picks up certain modes that have a certain amount of time
to evolve between the entering of the scale and recombination. Inflation guarantees that
for a certain mode this time is the same for all the patches on todays sky that have a size
which corresponds to the horizon at the time of recombination. This is a requirement of
constructive interference which in turn gives you the peaks in the Cl-spectrum.

3 Sachs-Wolfe effect

If there is a fluctuation in the metric, what is the effect on the photons and furthermore
how can this be seen in the temperature fluctuations? We consider the metric

ds2 = a2
{

(1 + 2Φ) dη2 − (1− 2Φ) δikdx
idxk

}
(7)

where Φ� 1 is the gravitational potential of the scalar metric pertubations.

The momentum of a photon is defined as

dxα

dλ
= pα , λ : affine parameter. (8)

Photons travel along geodesics which fulfill (be aware of lowering/raising indices in the
case of derivatives):

dpα
dλ

=
1

2

∂gγδ
∂xα

pγpδ, (9)

What does this mean for the temperature fluctuations? Here we take the Boltzmann
equation

Df (xi (η) , pi (η) , η)

Dη
≡ ∂f

∂η
+
dxi

dη

∂f

∂xi
+
dpi
dη

∂f

∂pi
= 0 (10)

Let’s first compute the total derivatives with respect to η. From pαpα = 0 we obtain

p0 =
p

a2
, and thus p0 = (1 + 2Φ)p (11)
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Therefore we obtain

dxi

dη
=
pi

p0
=
−a−2(1 + 2Φ)pi

p0
= li(1 + 2Φ) (12)

And from eq.(9) we obtain

dpi
dη

=
1

2

∂gγδ
∂xα

pγpδ

p0
= 2p

∂Φ

∂xα
. (13)

Thus the Boltzmann equation takes the form

∂f

∂η
+ li (1 + 2Φ)

∂f

∂xi
+ 2p

∂Φ

∂xj
∂f

∂pj
= 0. (14)

Taking f from eq. (1) and using the fact that the derivative of f with respect to the
variable

y ≡ ω

T
=

p0

T
√
g00

' p

T0a

(
1 + Φ− δT

T0

)
(15)

is nonzero, the Boltzmann equation to zeroth order in pertubation reduces to the well
known fact that

(T0a)′ = 0, (16)

while the first order terms lead to(
∂

∂η
+ li

∂

∂xi

)(
δT

T0

+ Φ

)
= 2

∂Φ

∂η
. (17)

Thus, since the main contribution to Φ is constant in a matter dominated universe, we can
drop the right hand side and obtain(

δT

T0

+ Φ

)
= const. (18)

along null geodesics.

Using that the fluctuation in the temperature plus gravitational potential is constant
we get a relation between the temperature fluctuations today and at recombination

δT

T0

(η0, x
i
0, l

i) =
δT

T0

(ηr, x
i
r(ηr), l

i) + Φ(ηr, x
i
r(ηr))− Φ(η0, x

i
0). (19)

The last term is independent of the direction in the sky and therefore only contributes to
the monopole, so we drop this term. The temperature fluctuations today depend on the
temperature fluctuations and gravitational potential at recombination.
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4 Temperature Density Relation

The fluctuations in the temperature at recombination can be related to the fluctuations
in the energy density of the photons at large scattering, δγ ≡ δεγ/ε. This is achieved by
matching the energy-momentum tensor (EMT) for the radiation at the time of recombi-
nation. The EMT for the free photons have the form

Tαβ =
1√
−g

∫
f
pαpβ
p0

d3p (20)

For the 00 component this gives us

T 0
0 =

1√
−g

∫
fp0d

3p ' (1 + 2Φ)

a4

∫
d3pf(ω/T )p0 (21)

Changing variables to y = ω
T

, and using p ' yT0a“
1+Φ− δT

T0

” and p0 = (1 + 2Φ)p, eq. (15) gives

T 0
0 '(1 + 2Φ)

∫
(1 + 2Φ)

(
1− 4Φ + 4

δT

T0

)
T 4

0 y
3f(y)dyd2l

'T 4
0

∫ (
1 + 4

δT

T0

)
f (y) y3dyd2l.

(22)

Matching this to the EMT before recombination, expressed as

T 0
0 = εγ(1 + δγ) (23)

give the first relation between the fluctuations in the photon density and temperature.

δγ = 4

∫
δT

T0

d2l

4π
. (24)

Using also the matching condition for T i0,i give

δ′γ = −4

∫
li∇i

(
δT

T0

)
d2l

4π
(25)

Taking the Fourier transformations and dropping the γ index give

δk = 4

∫ (
δT

T0

)
k

d2l

4π
(26)

δ′k = −4i

∫
kil

i

(
δT

T0

)
k

d2l

4π
(27)

Both of these equations are satisfied by(
δT

T0

)
k

(ηr) =
1

4

(
δk +

3i

k2

(
kil

i
)
δ′k

)
(28)
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5 Power Spectrum

Combining the solution with eq. (19), Fourier transforming the gravitational potential as
well gives

δT

T0

(η0,x0, l) =

∫ ((
Φ +

δ

4

)
k

+
3iδ′kk · l

4k2

)
ηr

eik·x(ηr)
d3k

(2π)3/2
(29)

The first term corresponds to redshift due to the gravitational potential when the photons
travel out of potential wells. The second term describes the increase of temperature with
density, while the third term is an effect of the doppler shift caused by the radial velocity
in the plasma.

The photons coming to us from direction l have traveled along the geodesic since re-
combination

x(ηr) ' x0 + l(ηr − η0) (30)

This enables us to substitute the x in the exponential and also exchange the ik · l for a
derivative with respect to the present time.

δT

T0

(η0,x0, l) =

∫ ((
Φ +

δ

4

)
k

− 3δ′k
4k2

∂

∂η0

)
ηr

eik·(x0+l(ηr−η0)) d3k

(2π)3/2
(31)

Plugging this into eq. (5) it is possible to obtain

Cl =
2

π

∫ ∣∣∣∣(Φk (ηr) +
δk (ηr)

4

)
jl (kη0)− 3δ′k (ηr)

4k

djl (kη0)

d (kη0)

∣∣∣∣2 e−2(σkηr)
2

k2dk. (32)

for the coefficients of the multipole moments, applying a damping factor due to the fi-
nite width of recombination. jl (kη0) are spherical Bessel functions of order l. At large
scales, l < 200, i.e. larger than horizon at recombination, perturbations have been frozen
since they left the horizon during inflation, therefore the fluctuations in density should be
proportional to the gravitational potential and the derivative approximately zero.

δk (ηr) ' −
8

3
Φk, δ′k (ηr) ' 0. (33)

These perturbations are directly related to the spectrum generated from inflation, |(Φ0
k)

2k3| =
Bk(1−ns). B gives the amplitude for the primordial perturbations and ns ' 1 a scale in-
variant spectrum, which we can observe in the power spectrum.

For modes that enter the horizon just before recombination the solution is more com-
plicated and can not be obtained analytically. We will merely state them and discuss their
content.

Φk +
δk
4
'
[
Tp

(
1− 1

3c2
s

)
+ To
√
cs cos

(
k

∫ ηr

0

csdη

)
e−(k/kD)2

]
Φ0
k (34)
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and

δ′k ' −4Tokc
3/2
s sin

(
k

∫ ηr

0

csdη

)
e−(k/kD)2Φ0

k. (35)

The two transfer functions cannot be solved analytically but depend on kηeq and baryon
density.

c2
s =

1

3(1 + ξ)

ξ ' 17(ωbh
2
75∫ ηr

0

csdη ' 0.014(1 + 0.13ξ)−1(ωmh
3.1
75 )0.16

(36)

There is both an oscillating and a non-oscillating part of the fluctuations. The oscillations
create the peaks in the power spectrum. The Doppler effect oscillates exactly out of phase
with the density perturbations. The exponential factor is damping due to dissipation in
the plasma.

Trying to understand the different features, the oscillation can be seen as an oscillation
of the plasma in a gravitational potential well created by the dark matter. The gravity
of plasma enhances contraction peaks and lower rarification peaks. An increase in the
total matter density will decrease the entire spectrum, while an increase in baryon density
will increase odd peaks and decrease even peaks. Curvature will move the peaks towards
smaller/larger l and the amplitude of the primordial perturbations will give height of the
first plateau, while the spectral index will give the slope. This strength of the CMB
fluctuations is that this rich dependence enables the determination of many cosmological
parameters from the power spectrum alone.
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