Ergebnisse aus Beobachtungen von 35 Aktiven Galaktischen Kernen mit den HEGRA-Cherenkov-Teleskopen

Überblick

- Datensatz
- Datenanalyse
- Signifikanzbestimmung
- Ergebnisse
- Ausblick

Martin Tluczykont
für die HEGRA-Kollaboration
Institut für Experimentalphysik
Universität Hamburg
Datensatz

35 im Zeitraum 1996 - 2001 durch HEGRA beobachtete Aktive Galaktische Kerne ohne Mrk-421 und Mrk-501 (927 h)

<table>
<thead>
<tr>
<th>Objekt</th>
<th>z</th>
<th>Zeit (h)</th>
<th>$\Phi_{99%}$ [Crab Einheiten]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC0315</td>
<td>0.017</td>
<td>15.1</td>
<td>0.06</td>
</tr>
<tr>
<td>NGC1275</td>
<td>0.018</td>
<td>92.2</td>
<td>0.02</td>
</tr>
<tr>
<td>1H1720+11</td>
<td>0.018</td>
<td>7.4</td>
<td>0.10</td>
</tr>
<tr>
<td>HB89 2201+044</td>
<td>0.027</td>
<td>18.6</td>
<td>0.10</td>
</tr>
<tr>
<td>3C 120</td>
<td>0.033</td>
<td>25.7</td>
<td>0.05</td>
</tr>
<tr>
<td>UGC 01651</td>
<td>0.037</td>
<td>15.3</td>
<td>0.05</td>
</tr>
<tr>
<td>UGC 03927</td>
<td>0.041</td>
<td>7.1</td>
<td>0.10</td>
</tr>
<tr>
<td>1ES 2344+514</td>
<td>0.044</td>
<td>62.4</td>
<td>0.05</td>
</tr>
<tr>
<td>1ES 1959+650</td>
<td>0.048</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>4C+37.11</td>
<td>0.055</td>
<td>8.1</td>
<td>0.10</td>
</tr>
<tr>
<td>I Zw 187</td>
<td>0.059</td>
<td>17.3</td>
<td>0.06</td>
</tr>
<tr>
<td>1ES 2321+419</td>
<td>0.059</td>
<td>36.5</td>
<td>0.04</td>
</tr>
<tr>
<td>4C+31.04</td>
<td>0.060</td>
<td>3.4</td>
<td>0.10</td>
</tr>
<tr>
<td>BL-LACERTAE</td>
<td>0.069</td>
<td>29.6</td>
<td>0.07</td>
</tr>
<tr>
<td>1ES 1741+196</td>
<td>0.083</td>
<td>10.6</td>
<td>0.09</td>
</tr>
<tr>
<td>1ES 1118+424</td>
<td>0.124</td>
<td>4.0</td>
<td>0.07</td>
</tr>
<tr>
<td>1ES 0145+134</td>
<td>0.125</td>
<td>5.3</td>
<td>0.10</td>
</tr>
<tr>
<td>EXO 0706.1+5913</td>
<td>0.125</td>
<td>34.3</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objekt</th>
<th>z</th>
<th>Zeit (h)</th>
<th>$\Phi_{99%}$ [Crab Einheiten]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C 197.1</td>
<td>0.128</td>
<td>16.3</td>
<td>0.04</td>
</tr>
<tr>
<td>H 1426+428</td>
<td>0.129</td>
<td>57.3</td>
<td></td>
</tr>
<tr>
<td>PMN J1215+0732</td>
<td>0.130</td>
<td>3.1</td>
<td>0.10</td>
</tr>
<tr>
<td>GB 022959.3</td>
<td>0.140</td>
<td>3.4</td>
<td>0.16</td>
</tr>
<tr>
<td>MS 1019.0+5139</td>
<td>0.141</td>
<td>18.1</td>
<td>0.06</td>
</tr>
<tr>
<td>1ES 1255+244</td>
<td>0.141</td>
<td>5.0</td>
<td>0.07</td>
</tr>
<tr>
<td>1ES 0323+022</td>
<td>0.147</td>
<td>12.9</td>
<td>0.10</td>
</tr>
<tr>
<td>HB89 1418+546</td>
<td>0.151</td>
<td>19.1</td>
<td>0.04</td>
</tr>
<tr>
<td>3C 273</td>
<td>0.158</td>
<td>13.2</td>
<td>0.10</td>
</tr>
<tr>
<td>1ES 1440+122</td>
<td>0.162</td>
<td>12.7</td>
<td>0.05</td>
</tr>
<tr>
<td>HB89 0829+046</td>
<td>0.180</td>
<td>24.3</td>
<td>0.05</td>
</tr>
<tr>
<td>1ES 1218+304</td>
<td>0.182</td>
<td>4.1</td>
<td>0.20</td>
</tr>
<tr>
<td>1ES 0927+500</td>
<td>0.188</td>
<td>14.0</td>
<td>0.05</td>
</tr>
<tr>
<td>MS 0317.0+1834</td>
<td>0.190</td>
<td>2.7</td>
<td>0.10</td>
</tr>
<tr>
<td>HB89 2254+074</td>
<td>0.190</td>
<td>20.3</td>
<td>0.07</td>
</tr>
<tr>
<td>1ES 1011+496</td>
<td>0.200</td>
<td>2.7</td>
<td>0.10</td>
</tr>
<tr>
<td>1ES 0120+340</td>
<td>0.272</td>
<td>30.4</td>
<td>0.03</td>
</tr>
</tbody>
</table>

$\sum = 710 \text{ h}$
Datenanalyse

- Qualitäts-Schnitte (Wetter, Bildeigenschaften)
- Optimierte Schnitte zur Signalsuche, zenitwinkelabhängig:

![Zenitwinkelverteilung des HEGRA AGN-Datensatzes](image)

Optimierung an Mrk-421 → Schnitte zur Signalsuche:

<table>
<thead>
<tr>
<th>Schnitt</th>
<th>Zenitwinkelintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernortabstand</td>
<td>0° - 33°</td>
</tr>
<tr>
<td>Teleskopmultiplizität</td>
<td>≥ 3</td>
</tr>
<tr>
<td>γ-Hadron Trennung: mscw</td>
<td>< 1.1</td>
</tr>
<tr>
<td>$\Delta \theta^2$</td>
<td>< 0.012 Grad2</td>
</tr>
</tbody>
</table>

- Variabilitätsanalyse mit Kolmogorov und exp-test (J. Prahl)
- Feldsuche mit alternativer Untergrundbestimmung (G. Rowell)
Signifikanzberechnung

Mrk-421-Daten:
Kumulative Signifikanz
Verteilungen mit
Anpassungen

\[\Delta \Theta^2, \text{ (Grad}^2) \]

\[\text{Signifikanz} \]

\[\text{Quadrierter Winkelabstand} \]

HEGRA Mrk-421 Daten

\[\text{Standard Schnitt} \]

\[\text{HEGRA Mrk-421 Daten} \]

\[\text{Standard Schnitt} \]

3D-Anpassung in der (mscw, } \Delta \theta^2)\)-Ebene

Näherung: Mittelwert der Bins im Bereich flacher Signifikanz

\[\langle S \rangle = \frac{1}{N} \sum_i \sum_j \sigma_{ij} \]
Ergebnisübersicht

- Suche nach DC-Signal

Standard-Signifikanz S

HEGRA-Daten: (Prelimär)
35 Aktive Galaktische Kerne

Abweichung von Untergrund-Erwartung: die Kandidaten

- H 1426+428 $6.2 \, \sigma$
- 1ES 1959+650 $4.9 \, \sigma$
- 1ES 2344+510 $3.3 \, \sigma$
- BL-LACERTAE $3.3 \, \sigma$

Kandidaten: $S \approx <S>$ → robustes Ergebnis

- Suche nach Variabilität: kein signifikantes Signal
HEGRA-Daten: (Preliminär)
35 Aktive Galaktische Kerne

Anzahl der Objekte
H 1426+428
1ES 1959+650

- **Quadrierter Winkelabstand** \(\Delta \Theta^2\), (Grad^2)
- **Ereignisse**
- **Quell-Region Daten**
- **Untergrund Daten**

H 1426+428:
\(z = 0.129\)
entfernteste nachgewiesene \(\gamma\)-Strahlen-Quelle
\(<S> = 6.3 \sigma\)
\(S_{Prah} = 2.0 \sigma\)
\(S_{Kolm} = 1.3 \sigma\)
→ Vortrag: Gerd Pühlhofer

1ES 1959+650:
\(z = 0.048\)
\(<S> = 4.9 \sigma\)
\(S_{Prah} = 0.0 \sigma\)
\(S_{Kolm} = 0.4 \sigma\)
Wahrscheinlich 4. \(\gamma\)-Quelle
dieser Klasse
am Nordhimmel
→ Vortrag: Niels Götting
- Energieschwelle $E_{\text{Schw.}} = 0.7 \text{ GeV}$
- Beobachtungszeit: 62.4 h
- Rotverschiebung $z = 0.044$
- Whipple ($E > 350 \text{ GeV}$):
 - 0.63 Crab Einheiten mit 6 σ in nur einer Nacht
 - \rightarrow kurzzeitige starke Flares zu erwarten
 - Nachfolgende Beobachtungen erlaubten bisher keine Bestätigung

HEGRA Daten - 1ES 2344+514

$S_{\text{var}} = 3.0 \sigma$
$\langle S \rangle = 3.3 \sigma$
$S_{\text{var}}^{\text{Prahl}} = 1.3 \sigma$
$S_{\text{var}}^{\text{Kolm.}} = 0.0 \sigma$

- HEGRA-Beobachtungszeitraum: schwache Anzeichen für Aktivität im TeV Energiebereich
BL-LACERTAE

- Energieschwelle $E_{Schw.} = 0.7$ GeV
- Beobachtungszeit: 29.6 h
- Rotverschiebung $z = 0.069$

HEGRA Daten - BL-LACERTAE

- Ereignisse
- Quell-Region Daten
- Untergrund Daten

![Histogramm](HEGRA-Daten-Bl-Lacertae.png)

$S = 2.8 \sigma$

$\langle S \rangle = 3.3 \sigma$

$S_{Prahl} = 0.2 \sigma$

$S_{Kolm.} = 0.3 \sigma$

- Schwache Anzeichen für Aktivität im TeV–Energiebereich
Zusammenfassung

- 710 h HEGRA-Daten von 35 Aktiven Galaktischen Kernen wurden untersucht

- **Objekte mit höchster Signifikanz:**
 - H 1426+428 6.3 σ etabliert
 - 1ES1959+650 4.9 σ
 - 1ES2344+514 3.3 σ ($< 1/10$ Crabfluß)
 - BL-LACERTAE 3.3 σ ($< 1/10$ Crabfluß)

- Obere Grenzen auf den integralen Fluß im $1/10$ Crabfluß Bereich wurden für alle anderen Objekte berechnet

- Variabilitäts-Tests ergaben kein signifikantes Signal