The Multi Messenger Approach and The MAGIC/IceCube Target of Opportunity Program

M. Tluczykont, E. Bernardini & K. Satalecka for the IceCube & MAGIC Collaborations Helmholtz Nachwuchsgruppe, DESY, Zeuthen

luniors

Venice, TeV III, 2007

- Multi messenger approach
 - principles
 - ongoing efforts
- Neutrino Triggered Target of Opportunity program
- Gamma-Ray data archive & lightcurve analysis

Motivation: Multi-Messenger Approach

- Multi-Wavelength:
 - different Wavelength bands (simultaneous / non-simulataneaous)
 - combination of multi-wavelength information: maximize e.m. phenomenology
 - better understanding of astrophysical objects
- Multi-Messenger:
 - other messengers + e.m. information: Neutrinos, Gravitational waves
 - complete phenomenology & better understanding
 - increase detection significance of new messengers (e.g. coincidence)
 - can build confidence in new messengers

2/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Acceleration of cosmic rays: Hadronic interactions lead to γ -ray & ν emission

 γ -rays can be produced via hadronic or leptonic processes

u emission is an unambiguous signature for hadronic acceleration

 Neutrino Telescopes
 Gamma-Ray Telescopes

 2π sky coverage
 0.02 sr sky coverage

 90% time coverage
 max. 12% time coverage

 angular res. O(1°)
 O(0.1°)

 low statistics / sensitivity
 high statistics / sensitivity

 bad spectral resolution
 excellent spectral resolution

3/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Multi-Messenger studies

Several ongoing Multi-Messenger studies including neutrinos

Can include Radio, Optical, X-rays, gamma-rays + neutrinos

- AMANDA / IceCube
 - MPI-K: E. Resconi et al.
 - UW Madison: T. Monaruli et al.
 - DESY: E. Bernardini et al.
 - Humboldt Uni: M. Kowalski et al.
- ANTARES / Km3NeT
 - Predictions based on galactic H.E.S.S. sources: Kappes, Hinton, Stegmann & Aharonian, astro-ph/0607286

4/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Multi-Messenger Approach

Focus of this work: Very High Energy (VHE) γ -Ray Data Scope: multi-messenger studies with time variable signals \rightarrow light curves Need: archivation & combination of VHE γ -Ray data from main experiments

5/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Multi-Messenger Approach: Offline analysis

principle: search for $\nu \gamma$ correlations from variable objects (e.g. 1ES 1959+650) need simultaneous data: sparse due to low γ -ray coverage

6/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Neutrino triggered Target of Opportunity program: NToO

ANY neutrino event: send alert to gamma-ray telescope

 ν from predefined list of objects: trigger $\gamma\text{-ray}$ observations within predefined time window

pure background neutrino sample: random coincidences with flares

signal neutrino content: enhanced coincidences

Goals

ensure simultaneous ν/γ data improve detection chance for ν telescopes improve phenomenological knowledge of sources

see, e.g. Bernardini et al., Palaiseau 2005, Ackermann et al., ICRC 2007

- 7/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

NToO test run: details

Implementation of NToO idea: cooperation between AMANDA & MAGIC

- 2 X-ray binaries: LSI+61 303, GRS 1915+105
- 3 Blazars: 1ES 2344+514, 1ES 1959+650, Mrk 421
- predefinition of γ -observation window: observation of object for 1 hour within a window of 1 day after neutrino trigger was issued
- predefinition of coincidence: γ -ray high-state within obs. window
- predefinition of γ -ray high-state: observed flux above predefined threshold
- Results: Ackermann et al., ICRC 2007, talk by E. Bernardini

8/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

NToO: possible interpretation scheme

$$P = \sum_{i=n_{\rm obs}}^{+\infty} \frac{(n_{\rm bck})^i}{i!} \mathbf{e}^{-\mathbf{n}_{\rm bck}} \sum_{j=n_{\gamma}}^{i} \frac{i!}{j!(i-j)!} p_{\gamma}^j (1-p_{\gamma})^{i-1} \mathbf{e}^{-\mathbf{n}_{\rm bck}} \sum_{j=n_{\gamma}}^{i} \frac{j!}{j!(i-j)!} p_{\gamma}^j (1-p_{\gamma})^{j-1} \mathbf{e}^{-\mathbf{n}_{\rm bck}} \mathbf{e}^{-\mathbf{n}_{\rm bc$$

observed neutrino events $n_{\rm obs}$ expected atmospheric neutrino events $n_{\rm bck}$ observed ν / γ coincidences Probability of a γ -ray high-state

Ranges of p_{γ} for which an observation of n_{γ} coincidences would yield a Significant detection, $P > 5 \sigma$

 n_{γ}

 p_{γ}

9/15 Martin Tluczykont, IceCube/MAGIC – Martin, Tluczykont@desy.de

NToO: possible interpretation scheme

Example neutrino observation: $n_{\rm obs}$ = 10, $n_{\rm bck}$ = 10

In itself this neutrino observation is not really significant... Adding information from coincident observations:

Need information on γ -ray variability: p_{γ}

Very little known so far

10/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

VHE lightcurve archive:

- central open archive
- definition of common lightcurve format
- lightcurve combination

11/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Gamma-Ray Data Archive

- Collect all available (public) data from VHE experiments
- Current focus: Active Galactic Nuclei
- Extension to other objects...
- Issues:
 - no common lightcurve format \longrightarrow definition of SLF lightcurve format
 - normalization difficult: different flux units, partly unknown calibration
 - old data are not available in electronic form
- open archive but... use with care!

http://www-zeuthen.desy.de/multi-messenger/GammaRayData/

12/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Gamma-Ray Data Archive – Screenshot

http://www-zeuthen.desy.de/multi-messenger/GammaRayData/

Objects

1ES1959+650 Mrk421 Mrk501 PKS2155-304

1ES 1959+650:

publications	available data										
	1999	2000	2001	2002	2003	2004	2005	2006			
7TA 99 HEGRA 00/01 Whipple 02 VERITAS 02 VERITAS 06 MAGIC 05 CAT		HEGRACTS * HEGRACT1	HEGRA CTS * HEGRA CT1	HEGRA CTS * HEGRA CT1 Whipple	Whipple ?	MAGIC Whipple ?	<u>VERITAS</u> MAGIC ?	<u>VERITAS</u> MAGIC ?			
slf format:		HEGRA CTS HEGRA CT1	HEGRA CTS HEGRA CT1	HEGRA CTS HEGRA CT1 Whipple		MAGIC	VERITAS	VERITAS			

1ES1959 combined v1.slf

Mrk421

and the state of a	available data														
publications	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
<u>publ.link</u>	Whipple	Whipple	Whipple	Whipple	HEGRA CT1	HEGRA CTS HEGRA CT1 CAT	HEGRA CTS HEGRA CT1 Whipple CAT	HEGRA CTS HEGRA CT1 CAT	HEGRA CTS HEGRA CT1 CAT MILAGRO	HEGRA CTS HEGRA CT1 MILAGRO STACEE	Whipple	Whipple	Whipple MAGIC <u>H.E.S.S.</u> MILAGRO	VERITAS	VERITAS
sif format:	Whipple	Whipple	Whipple	Whipple	HEGRA CT1 <u>CAT</u>	HEGRA_CTS HEGRA CT1 CAT	HEGRA_CTS HEGRA CT1 Whipple CAT	HEGRA_CTS HEGRA CT1 CAT	HEGRA_CTS HEGRA_CT1 CAT	HEGRA_CTS HEGRA_CT1	Whipple	Whipple	HESS MAGIC	MAGIC VERITAS	VERITAS

Mrk421, combined lightcurve: Mrk421_combined_v2 Current status of conversion/plotting :

13/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

The SLF format: Smarties Lightcurve Format

- 1. MJD of start of observations
- 2. MJD of end of observations
- 3. Measured flux
- 4. Statistical error of measured flux
- 5. Systematic error of measured flux
- 6. Spectral index
- 7. Spectral index statistical error
- 8. Spectral index systematic error
- 9. Energy threshold
- 10. Energy Cutoff
- 11. Experiment
- 12. Duration of observation
- 13. Additional entry 1
- 14. ...

simple ascii-table extendable (e.g. spectra with exponential cutoff)

14/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Light-Curve Combination

- Ingredients:
 - Common lightcurve format (SLF), threshold (1 TeV), Flux unit (Crab)
 - Spectral shapes as measured by experiments: power-law including possible cutoff

 $\bullet \ F(E > 1 \, TeV) = \left(\frac{E_{thr}}{1 \, TeV}\right)^{-\Gamma + 1} \frac{\Phi_{(>E_{thr})}}{\Phi_{Crab}(E > 1 \, TeV)}$

15/15 Martin Tluczykont, IceCube/MAGIC - Martin. Tluczykont@desy.de

Long-Term Lightcurve of Mrk 421

15 years · more than 1500 h of observations

Collected by M. Tluczykont, M. Shayduk, E. Bernardini 2006

MJD [days]

16/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

1ES 1959 Long-Term Lightcurve

. 17/15 Martin Tluczykont, IceCube/MAGIC – Martin. Tluczykont@desy.de

Mrk 501 Long-Term Lightcurve

. 18/15 Martin Tluczykont, IceCube/MAGIC – Martin. Tluczykont@desy.de

Lightcurve Analysis:

flux-state distributions
relative high-state rates
comparison to ASM X-ray data

19/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Mrk 421 Flux-State Distributions: Long-Term VHE Data

Flux distribution

- selected observations (no U.L.)
- bias at high flux states: high-state trigger

Zoom into low fluxes

- observation of low state ?
- ... but at low flux states: sensitivity threshold bias

Stochastic flux state distribution: $\frac{dN}{d\Phi} = a \cdot e^{b\Phi}$

20/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Estimation of Relative High-State Rate

Motivation: important ingredient in multi-messenger analyses (\mathcal{V} Correlation)

Hypothesis: stochastic flux-state distribution $\frac{dN}{d\Phi} = \mathbf{a} \cdot \mathbf{e}^{\mathbf{b}\Phi}$

High-State Rate: $\mathbf{R}_{\mathbf{HS}}(\mathbf{F}_{\mathbf{thr}}) = \frac{\mathbf{T}(\mathbf{F} > \mathbf{F}_{\mathbf{thr}})}{\mathbf{T}_{\mathbf{tot}}} = \frac{\int_{\mathbf{F}_{\mathbf{thr}}}^{\infty} e^{\mathbf{b} \cdot \mathbf{F}} d\mathbf{x}}{\int_{\mathbf{x}}^{\infty} e^{\mathbf{b} \cdot \mathbf{F}} d\mathbf{x}} = \frac{e^{\mathbf{b} \cdot \mathbf{F}_{\mathbf{thr}}}}{e^{\mathbf{b} \cdot \mathbf{F}}}$

21/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Back to NToO: highstate rates as input

	LSI+61 303	GRS 1915+105	1ES 2344+514	1ES 1959 +650	Mrk 421
$n_{ m bck}$	0.86	1.26	0.99	0.92	1.51
$n_{ m obs}$	0	1	1	0	3
Follow ups	0	0	1	0	1
n_{γ}	-	-	0	-	0
F_{thr} [C.U.]	0.2	0.2	0.5	1.0	4.0
p_{γ}	-	-		< 0.15	< 0.05
P_{ν}	1.0	0.7	0.6	1.0	0.2

. 22/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

VHE to X-Ray Correlation

- observations are not 100% simultaneous
- high VHE flux states: observational bias due to external- and self-triggering
- on average: linear correlation up to 4 Crab-level

. 23/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Comparison to ASM X-Ray Data

Flux-State Distributions from Contemporaneous data ASM X-ray data Component Interpretation

- http://xte.mit.edu/ASM_lc.html
- Noise: Gaussian

• only partly simultaneous !

• Signal: Gaussian + Exponential

Stochastic flux state distribution: $\frac{dN}{d\Phi} = \mathbf{a} \cdot \mathbf{e}^{\mathbf{b}\Phi}$

24/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Comparison to ASM Data: High-State Rate

expected and found

comparable R_{HS}:

15-year-VHE lightcurve + ASM archive data:
ASM data: same stochastic behaviour
only partly simultaneous data

• clear correlation seen

25/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Lightcurve simulation: proof of principle

simulation of exponential flux-state distribution (arb. units)

26/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

Lightcurve simulation: proof of principle

27/15 Martin Tluczykont, IceCube/MAGIC – Martin.Tluczykont@desy.de

- variability simulation
- propper treatment of upper limits

28/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de

Very High Energy Data Archive: http://www-zeuthen.desy.de/multi-messenger/GammaRayData/ archivation of lightcurves: AGN ++ combination of data: long-term lightcurves analysis: estimation of high state rates collecting data: archive growing ...

29/15 Martin Tluczykont, IceCube/MAGIC - Martin.Tluczykont@desy.de