The HESS experiment - Status, Results and Future

Martin Tluczykont for the HESS Collaboration LLR Ecole Polytechnique

SCIPP-Seminar, October 1st 2004, Santa Cruz

- GeV/TeV-Astronomy
- The era of the Next Generation has begun
- The HESS detector (Phase 1)
- Galactic Sources
- Extragalactic Sources
- The future: Phase 2
- Summary

Overview: GeV/TeV-Astronomy

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 2/55

The Pioneering Era

Whipple, HEGRA, CAT, CANGAROO, Durham Mark 6, 7TA								
Object Flux	level (app	rox.) First detection	Confirmation					
[Crab]								
Crab Nebula	1.00	Whipple	Many					
Vela	0.50	CANGAROO						
PSRB 1706-44	0.50	CANGAROO						
SN 1006	0.50	CANGAROO						
Cas A	0.03	HEGRA						
RXJ 1713.7-3946	0.70	CANGAROO						
Cen X-3	0.40	Durham						
Sgr A*	0.1-0.4	CANGAROO	(Whipple)					
TeV J2035+415	0.03	HEGRA						
RCW 86	0.2	CANGAROO						
RX J0852.0-4622	?	CANGAROO						
Mkn 421	0.2->1	Whipple	Many					
Mkn 501	0.2->1	Whipple	Many					
1ES 1959+650	0.06-1	TA V	Vhipple/HEGRA/CAT					
H 1426+428	0.03-0.1	Whipple	HEGRA/CAT					
1ES 2344+514	0.2-0.6	Whipple	HEGRA					
PKS 2155-304	?	Durham						
NGC 253	?	CANGAROO	상님, 등 영화 등 ³ 양성 등 등 번 드것 등					

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 3/55

The Era of the Next Generation has begun

	HESS, V	ERITAS, MAG	IC, CANGARC		
Object	Flux level	First detection	Conf.	Contrad	liction (HESS)
	[Crab]				
Crab Nebula	1.00	Whipple	Many		—
	0.50	CANGAROO			
	0.50	CANGAROO			
	0.50	CANGAROO			
Cas A	0.03	HEGRA	-		
RXJ1713.7-3946	0.70	CANGAROO	HESS		
Cen X-3	0.40	Durham			
Sgr A*	0.1-0.4	CANGAROO	HESS		
TeV J2035+415	0.03	HEGRA			
HESS J1303-63	0.10	HESS	-		
PSR B1259-63/SS2823	0.05	HESS	A -		
RCW 86	0.2	CANGAROO			
RX J0852.0-4622	· · · · · / /	CANGAROO			
Mkn 421	0.2->1	Whipple	Many		
Mkn 501	0.2->1	Whipple	Many		
1ES 1959+650	0.06-1	7TA	Whipple/HEGR	A/CAT	
H 1426+428	0.03-0.1	Whipple	HEGRA/C	AÍ	
1ES 2344+514	0.2-0.6	Whipple	HEGRA		
PKS 2155-304	*** **?	Durham	HESS_	and the second second	
NGC 253	?	CANGAROO	-		Flux

currently: work to understand contradictions (simultaneous observations)

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 4/55

The HESS Detector

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 5/55

HESS 1: Stereoscopic System of 4 Cherenkov Telescopes

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 6/55

HESS I – Phase 1 Completed

First light telescope 1 Two telescopes Stereoscopy Three telescopes Four telescopes June 2002 March 2003 July 2003 September 2003 December 2003

Phase 1 completed & fully operational !

- 0.01 Crab in 25 h
- $E_{thr} = 100 \, \text{GeV}$

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 7/55

The Mirror Alignment

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 8/55

The Mirror Alignment

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 9/55

The Mirror Alignment

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 10/55

Imaging Air Shower Cherenkov Technique (Pioneered by Whipple)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 11/55

The Basic Stereoscopic Reconstruction Principles

Scaling the image width: Mean Scaled Width Parameter

- Reconstruct: core + amplitude + zenith angle
- MC lookup tables for width
 —> scaling of the width

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 12/55

Stereoscopic Observation Technique - Pioneered by HEGRA

\geq 2 images \rightarrow superposition:

- ... in the camera \rightarrow direction (θ)
- ... at observation level
 - \rightarrow core impact position

Hadron rejection: core + amplitude + zenith angle $\rightarrow mean \ scaled \ width \ (mscw)$

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 13/55

Simulation, Calibration & Analysis

Monte Carlo simulations

- CORSIKA + sim_hessarray
- KASKADE + smash
- 2 Calibration chains
 - Heidelberg
 - Paris

Background subtraction

- Geometric models
- Template-model
- Likelihood-based model

Different Calibration methods

- Single ph.e.
- Muon rings
- Laser System

Shower reconstruction methods

- Standard Hillas reconstruction
- Semi-analytical model
- 3D-Model

Redundance gives confidence: Robust results

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 14/55

Galactic Sources

Physics: Origin/acceleration of Cosmic Rays, new sources, Dark matter ...

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 15/55

The Crab Nebula as seen by HESS (preliminary)

- High zenith angle ($E_{thr} \approx 325 \text{ GeV}$)
- Independent analyses give consistent results
- Spectral index: $\alpha = 2.62 \pm 0.02$
- Compatible with previous results

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 16/55

Shell-type Supernova remnants

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 17/55

The Shell-Type Supernova Remnant RXJ1713-3946

Discovery in X-rays

- ROSAT All-Sky survey source
- Non-thermal X-rays
- Distance: 1 kpc (CO survey)
- Angular extension: 1 deg

First TeV-detection: CANGAROO II (Muraishi, A. et al. 2000; Enomoto, R. et al. 2002)

- $\approx 0.7 \, \text{Crab}$
- Question of Cosmic ray acceleration → controversial discussions (Pohl et al. 2002)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 18/55

RXJ 1713.7-3946 as seen by HESS

Recent GeV/TeV-confirmation: HESS 2004 (D. Berge, Gamma 2004 & Nature acc. f. publ.)

- High quality data 18.1 h
- $>20 \sigma$ total remnant
- The first ever astronomical TeV-image
- Shown here: High resolution data subsample (E>800GeV)

Superposition: ASCA X-ray data contours

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 19/55

RXJ1713.7-3946 – The spectrum

- $\alpha = 2.19 \pm 0.09 \pm 0.15$
- consistent results in independent analyses

CANGAROO II:

• $\alpha = 2.84 \pm 0.15 \pm 0.20$

 \longrightarrow Further observations by HESS and CANGAROO III \longrightarrow GLAST observations of 70 MeV bump ?

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 20/55

The shell-type Supernova Remnant SN 1006: Inconsistency

Hofmann, Gamma 2004

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 21/55

A unique type of GeV/TeV-emitter

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 22/55

The Galactic Center (Sgr A*): HESS data

The Signal:

- 2-Telescope data
- Average zenith angle: 20°
- Two detector configurations
 - 4.7 h at $E_{thr} = 255 \text{ GeV}$
 - 11 h at $E_{thr} = 165 \, \text{GeV}$
- Total significance: 9.2σ

Spectrum:

- Power-law, $\alpha = 2.21 \pm 0.09 \pm 0.15$
- Steady state 0.05% (E>165 GeV)
- Strong contradiction to CANGAROO II

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 23/55

The Galactic Center (Sgr A*)

Chandra X-ray image

HESS superimposed:

- 68 % & 95 % confidence regions for source position
- 95 % upper limit on rms source size
- Position compatible within errors (30") with SgrA*
- Ω_{err} reduced by 100 (as cmp to previous measurements)

Dark Matter hypothesis: HESS spectrum + angular distribution $\implies M\chi > 12 \text{ TeV}$ (90 % C.L.) (Horns, astro-ph/0408192, also: Aharonian & Neronov, astro-ph/0408303)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 24/55

A new unique type of GeV/TeV-emitter

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 25/55

PSRB 1259-63 / SS 2883

The Binary Pulsar system PSRB1259-63 / SS 2883 at 1.5 kpc

- 10 M_{\odot} Be star L = $3 \times 10^{30} \text{ W}$ dense stellar disk, high mass outflow
- 48 ms radio Pulsar $L_{spindown} = 8 \times 10^{28} W$
- Pulsar orbit around Be star
 - 3.4 years
 - Periastron : $23 R_{\odot}$
 - Apastron : 331 R_{\odot}
 - Inclination : 35 deg
 - Diameter: $350 R_{\odot}$ (Point-like)

CANGAROO 3.8 m: 4.8 σ (1994), 10 m: Upper limits (2000), after periastron HESS-observations at last periastron passage : 7th of March 2004

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 26/55

PSRB 1259-63 / SS 2883 – HESS Results (S. Schlenker, Gamma 2004)

Pre-Periastron

- High quality data : 7.8 h
- Significance : 9.1σ
- Excess rate : \approx 0.4 γ /min

Post-Periastron

- High quality data : 17.4 h
- Significance : 6.3σ
- Excess rate : $\approx 0.2 \gamma / \text{min}$

Overall $> 10\sigma$ detection by HESS

Flux E>400 GeV \approx 5 % Crab

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 27/55

PSRB 1259-63 / SS 2883 – HESS Results (S. Schlenker Gamma 2004)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 28/55

PSRB 1259-63 / SS 2883 - The Next Periastron passages

July/August 2007

Christmas 2010

Simultaneous observations with GLAST already in 2007 ? Or nice Christmas present in 2010 ?

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 29/55

Non-identified GeV/TeV-Sources

Physics: what? how? where?

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 30/55

HESS J1303-63 (M. Beilicke, Gamma 2004)

Surprise in PSRB 1259-63 observations:

- Second signal in FoV !
- 0.7 deg from Pulsar position
- Steady state signal (18σ)

Calibration or Physics ?

- High data quality
- Consistent results for different algorithms

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 31/55

HESS J1303-63 (M. Beilicke, Gamma 2004)

Surprise in PSRB 1259-63 observations:

- Second signal in FoV !
- 0.7 deg from Pulsar position
- Steady state signal (18σ)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 32/55

HESS J1303-63: The 2nd unidentified TeV-source

Extended object ($\approx 0.2^{\circ}$)

Populated corner of the sky but ... No obvious radio / optical / X-ray counterpart found

→ Further HESS & Future GLAST observations

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 33/55

Extragalactic Sources

Physics: Production mechanisms, understanding the AGN family, Extragalactic Background, ...

Distances of GeV/TeV-AGN

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 34/55

Mrk 421: HESS Detection

First Detection: Whipple (Punch et al. 1992), subsequently confirmed by many

HESS observations

- 13.6 h observation full 4-telescope-system
- Average zenith angle: 63 deg
- Low state: 01/2004 6σ (2.1 h)
- High state: $04/2004 \approx 100 \sigma$ 11.5 h, 11γ /minute
- More than 8000 γ -ray events

See contributions to GAMMA 2004 by D. Horns & A. Lemière

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 35/55

Mrk 421: Energy Spectrum

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 36/55

PKS 2155-304

- High Frequency Peaked BL-Lac Object
- First detection: Durham Mark 6 Telescope
- $z = 0.116 \longrightarrow$ second most distant GeV/TeV emitter so far

HESS Data

- Observation time \approx 60 h
- Different data sets: varying Energy threshold 165 GeV 305 GeV
- Significance: $>50 \sigma$
- Many photons collected (>4000)
- Flux level consistent with Durham Mark6 detection
- No strong flux variations observed

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 37/55

PKS 2155-304: Multi Wavelength Campaigns

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 38/55

PKS 2155-304: Energy Spectrum & Flux Variation

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 39/55

PKS 2155-304: SSC model

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 40/55

PKS 2155-304 & EBL Absorption

Absorption by the Extragalactic Background Light: $\gamma_{TeV} \gamma_{EBL} \longrightarrow e^+e^-$

$\leftarrow \mathsf{PKS}\,\mathsf{2155}\text{-}\mathsf{304} \text{ by HESS}$

- *z* = 0.116
- Several EBL models tried
- No cutoff seen yet
- Wait for higher statistics (2004) at high energies (?)

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 41/55

The Near Future: HESS Phase 2

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 42/55

HESS Phase 2 = **HESS** 1 + Very Large Telescope

- Very Large Cherenkov Telescope:
- Reflector : 28 m (\approx 600 m²)
- Focal distance \approx 35 m
- Camera: diam. 2.5 m (\approx 2000 kg)
- 2048 PMTs (0.07°/pixel)
- FoV : 3.5°
 - Trigger rate \approx 2.5-20 kHz
 - Faster memories needed (\approx 500 kHz)
 - Minimize data flow: 2nd level trigger

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 43/55

HESS Phase 2 = **HESS** 1 + Very Large Telescope

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 44/55

HESS Phase 2 in Namibia

Martin Tluczykont for the HESS Collaboration – Martin.Tluczykont@poly.in2p3.fr 45/55

HESS Phase 2 : Expectations

Energy threshold Sensitivity: Stereoscopic mode Differential Rate (GeV⁻¹s⁻¹) H.F.S.S. Phase II Stand-alone mode 10" 10 Crab Nebula 1936 Crab Flux 10' % Crab Flu: ntegral Flux (photons/cm²s) 10-10 -2 10 H.F.S.S. Phase II GLAST (steady sources) Coinc. mode 10-11 with since Phase -3 10-12 10 10-13 H.E.S.S. Phase 5 sigma, 50 hours > 10 events -4 10-14 10 10^{2} 101 10^{2} 103 104 10^{3} 10 Photon Energy (GeV) Energy (GeV)

• New HESS event class: E \approx 10-50 GeV

- Increase sensitivity for $E \approx 50-100 \text{ GeV}$
- Improve resolution for $E > 100 \,\text{GeV}$

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 46/55

Future collaboration with GLAST

- Overlapping energy regime : Observations of the same particle population
 - GLAST trigger for HESS-observations
 - HESS will produce sensitive variability studies
- Simultaneous observations of a steady source \longrightarrow Intercalibration

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 47/55

Summary

- HESS Phase I completed and fully operational
- Planned performance achieved ($E_{thr} = 100 \text{ GeV}$, Sensitivity 0.05 Crab in 1 h)
- Outstanding new results
 - -1^{st} astronomical GeV/TeV image (RX J1713.7)
 - New object class (Psr B1259-63)
 - -1^{st} time two sources in one FoV
 - -1^{st} observation of BL Lac at low state? (PKS 2155-304)
- Potential for more
- HESS Phase II is being planned:
 - Objective: close the gap to GLAST
 - Method: additional Very Large Central Telescope

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 48/55

Backup Transparencies

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 49/55

HESS 1 Performance: Angular resolution

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 51/55

HESS 1 Performance: Energy Reconstruction

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 52/55

PSR B1706-44 by HESS

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 53/55

Vela by HESS

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 54/55

What kind of objects to observe for inter calibration?

Martin Tluczykont for the HESS Collaboration - Martin.Tluczykont@poly.in2p3.fr 55/55