TeV to PeV Gamma-ray Astronomy with TAIGA

http://taiga-experiment.info/

M. Tluczykont for the TAIGA Collaboration Marcel-Grossmann-Meeting 2018, Roma

5.7.2018

Gamma-astronomy with TAIGA

TAIGA collaboration

- Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
- Institute of Applied Physics, ISU, Irkutsk, Russia
- Institute for Nuclear Research of RAN, Moscow, Russia
- Max-Planck-Institute for Physics, Munich, Germany
- Institut für Experimentalphysik, University of Hamburg, Germany
- IZMIRAN, Moscow Region, Russia
- DESY, Zeuthen, Germany
- National Research Nuclear University MEPhl, Moscow, Russia
- JINR, Dubna, Russia
- Novosibirsk State University, NSU, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
- ISS, Bucharest, Romania

Detection techniques

Astrophysics with TAIGA The TAIGA timing array (HiSCORE) status The TAIGA IACT status and hybrid events

TAIGA: Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy TAIGA-HiSCORE timing array TAIGA-IACT imaging telescopes

TAIGA muon counters

Timing array: 2015: 0.25 km² / 28 stations 2017: 0.5 km² / 43 stations 2019: 1.0km² / 100 stations

Imaging: 2016/17: 1 IACT 2019: 3 IACTs

Muon scintillation detectors Currently on-site: Tunka-Grande Plan: (C8H8)n / 2000 m²

Gamma-astronomy with TAIGA

Imaging Hybrid mode

Performance characteristics of detection techniques

Method	E _{thr}	Angular resolution	ΔE/E	γ / hadron sep.	Duty cycle
Particles	~3 TeV Water: 100 GeV	~1° <0.5°	30-50%	~ 1 ~6	100%
Cherenkov	IACTs: 5GeV NonI: 10 TeV	0.1-0.2°	10-15%	~4 ~1.5-2	10%
Fluoresc.	1017 eV	>1°	10-15%	?	10%
Radio	1017 eV	>1°	10-15%	?	100%

Gamma-astronomy with TAIGA

Detection techniques Astrophysics with TAIGA The TAIGA timing array (HiSCORE) status The TAIGA IACT status and hybrid events

Astrparticlephysics motivations

5.7.2018

Gamma-astronomy with TAIGA

Origin of cosmic rays

Galactic / extragalactic origin

Gamma-astronomy with TAIGA

Origin of cosmic rays

5.7.2018

Gamma-astronomy with TAIGA

VHE-UHE Gamma-ray astronomy

Gamma-astronomy with TAIGA

VHE-UHE Gamma-ray Astronomy

Gamma-astronomy with TAIGA

Limited transparency: ISRF / CMB

Enhanced transparency: ALPs

 Photon – ALP conversion: absorption-free propagation

• Also see: M. Roncadelli, this session

Enhanced transparency: ALPs

Photon – ALP conversion: absorption-free propagation

Detection techniques Astrophysics with TAIGA The TAIGA timing array (HiSCORE) status The TAIGA IACT status and hybrid events

TAIGA-HISCORE: timing stations TAIGA-HISCORE 28 stations

- average spacing 106 m
- Recently added stations:
- Planned extension
- 2018: instrumented area 0.5km²

TAIGA timing stations

- four 8" PMTs (partly 10")
- Winston cones light collection 0.5 m²
- FoV ~0.6 sr
- "Tilting" for extension of sky coverage
- GHz readout
- Sub-ns array-wide time synchronization
 - Crucial for angular resolution
 - 1st time successful implementation of km-scale sub-ns synchronization

Event reconstruction

- → Station amplitudes
 (LDF/ADF)
 - \rightarrow core impact
 - \rightarrow shower depth
 - \rightarrow primary energy
- Station timing: (cone fit / time-model)
 - \rightarrow primary direction

Data-MC comparison: rates

Gamma-astronomy with TAIGA

Background verification

Excess skymap Excess = Non $- \alpha$ Noff ($\alpha = 0.05$)

Significance distribution in foV (Li&Ma, Eq. 9)

Blinded data

186.5

186.0

187.0

R.A. [dea]

187.5

188.0

188.5

Cosmic ray spectrum

Gamma-astronomy with TAIGA

TAIGA IACT status

Detection techniques Astrophysics with TAIGA The TAIGA timing array (HiSCORE) status The TAIGA IACT status and hybrid events

The first TAIGA-IACT

• Camera:

- 547 XP1911 PMTs, 15mm diameter
- Winston cones: 30mm diameter
- Total FoV: 9.6°x9.6°
- Mount and mirrors:
 - 60 cm mirrors (30 per telescope)
 - Mirror facet control mechanics manual adjustment
- Status:
 - Telescope mount constructed, equipped with 29 mirrors
 - Camera deployed
 - Onsite testing: mirror alignment, mirror heating, first Cherenkov light
 - Comparisons to MC & first data analyses ongoing

Gamma-astronomy with TAIGA

Marcel-Grossmann, Roma

WEAW, WA

The first TAIGA-IACT

The first TAIGA IACT

MAROC3 board Fast shaper: trigger Slow shaper: 35ns charge integration

TAIGA IACT real data

Gamma-astronomy with TAIGA

TAIGA IACT real data

5.7.2018

Gamma-astronomy with TAIGA

TAIGA real data

Marcel-Grossmann, Roma

5.7.2018

TAIGA real data

- Coincident HiSCORE + IACT events
- Cross: Position of Crab Nebu
- Flat acceptance up to 3°
- High coincident efficiency up to 4.8°

TAIGA IACT real data

- Comparisons of real data to MC ongoing
- First results encouraging
- Coincident IACT/HiSCORE events
- First source analyses ongoing, promising

Extend analysis to low energies

- MC study: coincident hybrid events
 - Standard approach:
 >= 4 stations
 - 50% data at <4 stations
 - Method development ongoing
 - Possible improvement in few TeV regime

Muon detectors

- Measurement of the muon component
 - Gamma-hadron separation
 - Composition
- Scintillation counters
 + Wavelength shifters
 - + PMT
- 23 p.e. per µ
- 2000 m² planned

Summary

- UHE gamma-ray Astronomy with new hybrid imaging+timing approach

Goal: <10⁻¹³ erg cm⁻² s⁻¹ @ 100 TeV

- TAIGA-HiSCORE timing array 0.5 km² operational
- 2019: 1km² / 3 IACTs
- Coincident hybrid events are seen
- Data on known sources are consistent with expectations
- 10 km² extension with 16 IACTs submitted to Russian research infrastructure

Gamma-astronomy with TAIGA

BACKUP SLIDES

Gamma-astronomy with TAIGA

Angular resolution 28 station array

<u>Verified</u> MC resolution <0.2°, E>80TeV <0.1°, E ~ PeV

g/h separation

Uvbrid cooled width (CONN)

Other separation parameters based on shower depth and timing. When using event selection cuts (e.g. distance, etc.), possible to reach Q = 5

g/h separation Hybrid scaled width (HSCW)

Gamma-astronomy with TAIGA

Spectroscopy with TAIGA

