The H.E.S.S. experiment - Recent Results and Future

Martin Tluczykont for the H.E.S.S.Collaboration LLR Ecole Polytechnique

IWFM, Habère-Poche, February 2005

Sources seen by H.E.S.S. $(S > 5 \sigma)$

Object	Flux level	First detection	Conf.	Contradiction
	[Crab]			
Crab Nebula	1.00	Whipple	Many	-
RXJ 1713.7-3946	0.70	CANGAROO	HESS	Spectrum
Vela Junior	?	CANGAROO	HESS	??
G0.9-0.1	0.02	HESS		
Sgr A*	0.1-0.4	CANGAROO	HESS	
HESS J1303-63	-0.10	HESS	-	-
PSR B1259-63/SS2823	0.05	HESS	-	-
Mkn 421	0.2->1	Whipple	Many	-
PKS 2155-304	0.1-0.6	Durham	HESS	

... more to come soon ...

no detection of : SN 1006, Vela, PSRB1706-44

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 2/57

The H.E.S.S.Detector

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 3/57

HESS 1: Stereoscopic System of 4 Cherenkov Telescopes

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 4/57

HESS I – Phase 1 Completed

First light telescope 1 Two telescopes Stereoscopy Three telescopes Four telescopes June 2002 March 2003 July 2003 September 2003 December 2003

Phase 1 completed & fully operational !

- 0.01 Crab in 25 h
- $E_{thr} = 100 \text{ GeV} \text{ (max. diff. E-spec.)}$

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 5/57

Imaging Air Shower Cherenkov Technique (Pioneered by Whipple)

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 6/57

The Basic Stereoscopic Reconstruction Principles

Scaling the image width: Mean Scaled Width Parameter

- Reconstruct: *core* + amplitude + zenith angle
- MC lookup tables for width
 —> scaling of the width

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 7/57

Stereoscopic Observation Technique - Pioneered by HEGRA

\geq 2 images \rightarrow superposition:

- ... in the camera \rightarrow direction (θ)
- ... at observation level
 - \rightarrow core impact position

Hadron rejection: core + amplitude + zenith angle $\rightarrow mean \ scaled \ width \ (mscw)$

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 8/57

Simulation, Calibration & Analysis

Monte Carlo simulations

- CORSIKA + sim_hessarray
- KASKADE + smash
- 2 Calibration chains
 - Heidelberg
 - Paris

Background subtraction

- Geometric models
- Template-model
- Likelihood-based model

Different Calibration methods

- Single ph.e.
- Muon rings
- Laser System

Shower reconstruction methods

- Standard Hillas reconstruction
- Semi-analytical model
- 3D-Model

Redundance gives confidence: Robust results

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 9/57

Galactic Sources

Physics: Origin/acceleration of Cosmic Rays, new sources, Dark matter ...

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 10/57

The Crab Nebula as seen by HESS (preliminary)

- High zenith angle ($E_{thr} \approx 325 \text{ GeV}$)
- Independent analyses give consistent results
- Spectral index: $\alpha = 2.62 \pm 0.02$
- Compatible with previous results

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 12/57

The Shell-Type Supernova Remnant RXJ1713-3946

Discovery in X-rays

- ROSAT All-Sky survey source
- Non-thermal X-rays
- Distance: 1 kpc (CO survey)
- Angular extension: 1 deg

First TeV-detection: CANGAROOII (Muraishi, A. et al. 2000; Enomoto, R. et al. 2002)

- $\approx 0.7 \, \text{Crab}$
- Question of Cosmic ray acceleration → controversial discussions (Pohl et al. 2002)

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 13/57

RXJ 1713.7-3946 as seen by HESS

Recent GeV/TeV-confirmation: HESS 2004 (D. Berge, Gamma 2004 & Nature acc. f. publ.)

- High quality data 18.1 h
- $>20 \sigma$ total remnant
- The first ever astronomical TeV-image
- Shown here: High resolution data subsample (E>800GeV)

Superposition: ASCA X-ray data contours

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 14/57

RXJ1713.7-3946 – The spectrum

- $\alpha = 2.19 \pm 0.09 \pm 0.15$
- consistent results in independent analyses

CANGAROO II:

• $\alpha = 2.84 \pm 0.15 \pm 0.20$

 \longrightarrow soon: results of 2004 observations by HESS \longrightarrow GLAST observations of 70 MeV bump ?

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 15/57

Vela Junior

- shell-type SNR, diameter 2 deg
- superimposed with Vela
- distance 200 pc 2 kpc ?
- non-thermal component of X-ray emission (ROSAT, ASCA, XMM)
- detection by CANGAROO

H.E.S.S.-observations

- 3.2 h 4-telescope data at 25 deg
- hard cuts : 675 GeV threshold
- bg : 6.8 h off source data

Texas Symposium, N. Komin, D. Berge, M. Lemoine-Goumard, M. de Naurois

- overall spectrum : $\gamma = 2.3 \pm 0.2$
- $\Phi(> 1TeV) = (2.0 \pm 0.5)10^{-11}$

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 16/57

G0.9-0.1

- composite SNR
- \approx 0.13 deg diameter shell
- ≈ 0.03 deg core region: pulsar wind nebula

H.E.S.S.-observations

- 50 h at 18 deg Z.A.
- $E_{thr} = 170 \, \text{GeV}, \, 13 \, \sigma$
- $\Phi(> 200 \, GeV) =$ (5.7 ± 0.7 ± 1.2)10⁻¹² cm⁻²s⁻¹
- power law index $\gamma = 2.4 \pm 0.11 \pm 0.20$

A&A submitted origin of gamma-rays in core well explained by IC

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 17/57

A unique GeV/TeV emitter

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 18/57

The Galactic Center (Sgr A*): HESS data

The Signal:

- 2-Telescope data
- Average zenith angle: 20°
- Two detector configurations
 - 4.7 h at $E_{thr} = 255 \text{ GeV}$ - 11 h at $E_{thr} = 165 \text{ GeV}$
- Total significance: 9.2σ

Spectrum:

- Power-law, $\alpha = 2.21 \pm 0.09 \pm 0.15$
- Steady state 0.05% (E>165 GeV)
- Strong contradiction to CANGAROO II

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 19/57

The Galactic Center (Sgr A*)

Chandra X-ray image

HESS superimposed:

- 68 % & 95 % confidence regions for source position
- 95 % upper limit on rms source size
- Position compatible within errors (30") with SgrA*
- Ω_{err} reduced by 100 (as cmp to previous measurements)

Dark Matter hypothesis: HESS spectrum + angular distribution $\implies M\chi > 12 \text{ TeV}$ (90 % C.L.) (Horns, astro-ph/0408192, also: Aharonian & Neronov, astro-ph/0408303)

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 20/57

A new unique GeV/TeV emitter

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 21/57

PSRB 1259-63 / SS 2883

The Binary Pulsar system PSRB 1259-63 / SS 2883 at 1.5 kpc

- 10 M_{\odot} Be star L = $3 \times 10^{30} \text{ W}$ dense stellar disk, high mass outflow
- 48 ms radio Pulsar $L_{spindown} = 8 \times 10^{28} W$
- Pulsar orbit around Be star
 - 3.4 years
 - Periastron : $23 R_{\odot}$
 - Apastron : 331 R_{\odot}
 - Inclination : 35 deg
 - Diameter: $350 R_{\odot}$ (Point-like)

CANGAROO 3.8 m: 4.8 σ (1994), 10 m: Upper limits (2000), after periastron HESS-observations at last periastron passage : 7th of March 2004

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 22/57

PSRB 1259-63 / SS 2883 – HESS Results (S. Schlenker, Gamma 2004)

Pre-Periastron

- High quality data : 7.8 h
- Significance : 9.1σ
- Excess rate : \approx 0.4 γ /min

Post-Periastron

- High quality data : 17.4 h
- Significance : 6.3σ
- Excess rate : $\approx 0.2 \gamma / \text{min}$

Overall $> 10\sigma$ detection by HESS

Flux E>400 GeV \approx 5 % Crab

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 23/57

PSRB 1259-63 / SS 2883 – HESS Results (S. Schlenker Gamma 2004)

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 24/57

Unidentified GeV/TeV emitters

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 25/57

HESS J1303-63 (M. Beilicke, Gamma 2004)

Surprise in PSRB 1259-63 observations:

- Second signal in FoV !
- 0.7 deg from Pulsar position
- Steady state signal (18σ)

Calibration or Physics ?

- High data quality
- Consistent results for different algorithms

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 26/57

HESS J1303-63 (M. Beilicke, Gamma 2004)

Surprise in PSRB 1259-63 observations:

- Second signal in FoV !
- 0.7 deg from Pulsar position
- Steady state signal (18σ)

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 27/57

HESS J1303-63: The 2nd unidentified TeV-source

Populated corner of the sky but ... No obvious radio / optical / X-ray counterpart found

 \longrightarrow Further HESS & Future GLAST observations

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 28/57

Extragalactic Sources

Physics: Production mechanisms, understanding the AGN family, Extragalactic Background, ...

Distances of GeV/TeV-AGN

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 29/57

Mrk 421: HESS Detection

First Detection: Whipple (Punch et al. 1992), subsequently confirmed by many

HESS observations

- 13.6 h observation full 4-telescope-system
- Average zenith angle: 63 deg
- Low state: 01/2004 6σ (2.1 h)
- High state: $04/2004 \approx 100 \sigma$ 11.5 h, 11γ /minute
- More than 8000 γ -ray events

See contributions to GAMMA 2004 by D. Horns & A. Lemière

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 30/57

Mrk 421: Energy Spectrum

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 31/57

PKS 2155-304

- High Frequency Peaked BL-Lac Object
- First detection: Durham Mark 6 Telescope
- $z = 0.116 \longrightarrow$ second most distant GeV/TeV emitter so far

HESS Data

- Observation time \approx 60 h
- Different data sets: varying Energy threshold 165 GeV - 305 GeV
- Significance: $>50 \sigma$
- Many photons collected (>4000)
- Flux level consistent with Durham Mark6 detection
- No strong flux variations observed

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 32/57

PKS 2155-304: Energy Spectrum & Flux Variation

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 33/57

PKS 2155-304: SSC model

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 34/57

PKS 2155-304 & EBL Absorption

Absorption by the Extragalactic Background Light: $\gamma_{TeV} \gamma_{EBL} \longrightarrow e^+e^-$

$\leftarrow \mathsf{PKS}\,\mathsf{2155}\text{-}\mathsf{304} \text{ by HESS}$

- *z* = 0.116
- Several EBL models tried
- No cutoff seen yet
- Wait for higher statistics (2004) at high energies (?)

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 35/57

The Radio Galaxy M87

- distance 16 Mpc (z≈0.004)
- central BH : $2-3 \times 10^9 M_{\odot}$

- first evidence for TeV emission : HEGRA, 4σ -level ($\approx 80 \text{ h}$)
- 45 h H.E.S.S.-data : $> 4\sigma$

weakest GeV/TeV-source so far

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 36/57

The Near Future: H.E.S.S.Phase 2

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 37/57

HESS Phase 2 = HESS 1 + Very Large Cherenkov Telescope

- Very Large Cherenkov Telescope:
- Reflector : 28 m (\approx 600 m²)
- Focal distance \approx 35 m
- Camera: diam. 2.5 m (\approx 2000 kg)
- 2048 PMTs (0.07°/pixel)
- FoV : 3.5°
- Trigger rate 2-20 kHz
- Faster ARS memories needed
- Minimize data flow: 2nd level trigger

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 38/57

HESS Phase 2 = HESS 1 + Very Large Cherenkov Telescope

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 39/57

HESS Phase 2 in Namibia

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 40/57

Dish installation

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 41/57

Motivation

• Lower energy threshold / cover wider energy range

- \longrightarrow Pulsars : cutoff at low energies / soft sectra
- \longrightarrow AGNs at large z : less absorbtion at low energies
- \rightarrow other sources EGRET (...GLAST) : cutoff

complementarity with GLAST

 \rightarrow time resolution of H.E.S.S.

 \longrightarrow large field of view of GLAST

Objective : operation in best possible conditions \rightarrow lowest threshold & highest γ count rates

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 42/57

Future collaboration with **GLAST**

- Overlapping energy regime : Observations of the same particle population
 - GLAST trigger for HESS-observations
 - HESS will produce sensitive variability studies
- Simultaneous observations of a steady source \longrightarrow Intercalibration

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 43/57

Performance of the stand alone VLCT without L2 Trigger

MC simulation : 4 LCTs + VLCT

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 44/57

Summary

- HESS Phase I completed and fully operational Planned performance achieved
- Outstanding new results
 - -1^{st} astronomical GeV/TeV image (RX J1713.7)
 - New object class (Psr B1259-63)
 - -1^{st} time two sources in one FoV
 - -1^{st} observation of BL Lac at low state? (PKS 2155-304)
- \rightarrow soon more...
- HESS Phase II is being planned:
 - Objective: low energies & improvement of current system
 - Method: additional Very Large Central Telescope
 - Towards 10-30 GeV

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 45/57

Backup Transparencies

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 46/57

HESS 1 Performance: Angular resolution

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 48/57

HESS 1 Performance: Energy Reconstruction

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 49/57

The shell-type Supernova Remnant SN 1006: Inconsistency

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 50/57

PSR B1706-44 by HESS

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 51/57

Vela by HESS

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 52/57

PKS 2155-304: Multi Wavelength Campaigns

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 53/57

What kind of objects to observe for inter calibration?

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 54/57

The Mirror Alignment

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 55/57

The Mirror Alignment

Martin Tluczykont for the H.E.S.S. Collaboration - Martin.Tluczykont@poly.in2p3.fr 56/57

The Mirror Alignment

Martin Tluczykont for the H.E.S.S. Collaboration – Martin.Tluczykont@poly.in2p3.fr 57/57