From HERA to LHC: Measurements of heavy flavour contribution to proton structure functions

Tatsiana Klimkovich DESY, FLC, H1

Tatsiana Klimkovich, Annecy Seminar, 1 December 2006 - p.1

 Introduction: Structure Functions and Parton Density Functions (PDF)

- Introduction: Structure Functions and Parton Density Functions (PDF)
- Heavy flavour production in Deep Inelastic
 Scattering (DIS)

- Introduction: Structure Functions and Parton Density Functions (PDF)
- Heavy flavour production in Deep Inelastic
 Scattering (DIS)
- Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at HERA

- Introduction: Structure Functions and Parton Density Functions (PDF)
- Heavy flavour production in Deep Inelastic
 Scattering (DIS)
- Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at HERA
- Measurements at Tevatron and LHC

Introduction:

Structure Functions and Parton Density Functions (PDF)

Kinematics of ep Collisions

Neutral Current

Charged Current

Lorentz-Invariant Variables:

 Gauge Boson's Virtuality: transfered momontum from e to p

 $Q^2:=-\mathrm{q}^2=-(\mathrm{k}-\mathrm{k}')^2,\;Q^2\geqslant 0$

 Bjørken Scaling Variable: fraction of proton's momentum carried by the interacting parton

$$x:=rac{Q^2}{2{
m P}\cdot{
m q}} \qquad egin{array}{c} 0\leqslant x\leqslant 1 \end{array}$$

 Relative energy transfer at the positron-boson vertex in the proton rest frame:

$$egin{aligned} y &:= rac{\mathrm{P} \cdot \mathrm{q}}{\mathrm{P} \cdot \mathrm{k}} & 0 \leqslant y \leqslant 1 \ & \mathrm{Q}^2 = \mathrm{xys} \end{aligned}$$

Kinematics of ep Collisions

Kinematic Regions

- 1. Photoproduction (γp): $Q^2 < 1 \, {\rm GeV}^2$ Dominant process - exchange of quasi-real photons
- 2. Low Q^2 Deep Inelastic Scattering (DIS): $1 \text{ GeV}^2 < Q^2 < 100 \text{ GeV}^2$ Main kinematic regime at HERA for the investigation of the structure of the proton. Dominant process photon exchange
- 3. High Q^2 DIS: $Q^2 > 100 \text{ GeV}^2$

Contribution of Z and W^{\pm} exchange

Important measurements of proton structure functions for the LHC

Inclusive DIS Cross Sections

Neutral current DIS reaction ep
ightarrow eX

Inclusive cross section depends on two independent kinematic variables, chosen to be ${\pmb x}$ and ${\pmb Q}^{\pmb 2}$

In one-photon exchange (Born approximation):

$$\frac{d^2 \sigma^{NC}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[(1 + (1 - y)^2) \frac{F_2(x, Q^2)}{F_2(x, Q^2)} - y^2 \underbrace{F_L(x, Q^2)}_{\text{small}} \right]$$

Longitudinal structure function $F_L = F_2 - 2xF_1$

In order to reduce the strong Q^2 dependence originating from the photon propagator NC reduced cross section is used:

$$ilde{\sigma}^{NC}(x,Q^2) = rac{xQ^4}{2\pi\alpha^2} \, rac{1}{1+(1-y)^2} \, rac{d^2\sigma^{NC}}{dxdQ^2}$$

Quantum Chronodynamics (QCD)

Proton Structure

Proton constituents:

- Valence quarks (uud for proton)
- gluons
- Sea quarks ($qar{q}$ pairs created by gluons)

QCD is a non-Abelian gauge theory of strong interactions

- Based on SU(3) colour symmetry group
- Each quark exist in 3 colours (red, green, blue)
- The interaction between quarks proceeds via exchange by gluons
- Gluons can strongly interact with each other

Factorization Theorem

 $d\hat{\sigma}_i(\mu_R,\mu_F)$ is

- partonic cross section or coefficient function
- describes the scattering of the positron on a parton i inside the proton
- perturbatively calculable

Parton evolution equations describe the dependence of PDFs on μ_F or Q e.g. DGLAP, BFKL, CCFM evolution equations

Factorization Theorem

non-perturbative

 $d\hat{\sigma}_i(\mu_R,\mu_F)$ is

- partonic cross section or coefficient function
- describes the scattering of the positron on a parton i inside the proton
- perturbatively calculable

Parton evolution equations describe the dependence of PDFs on μ_F or Q e.g. DGLAP, BFKL, CCFM evolution equations

Structure Functions and PDF

Parton Density Functions

Measurements of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at HERA

- Heavy favour production in Deep Inelastic Scattering (DIS)
- Inclusive Method of Heavy Quark Measurement using simple c- and b-tagging
- Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at Low and High Q^2

If heavy quarks are treated as partons:

LO process: <u>Flavour Excitation Process</u> $\gamma^* q o q$ NLO process: Photon Gluon Fusion (PGF)

$$\gamma^*g o qar q$$

 $Q^2 \ll M_{HQ}^2$

"Massive scheme" or Fixed Flavour Number Scheme (FFNS)

LO Process: PGF process

Quarks are treated like massive \implies do not contribute to proton structure function

 $Q^2 \gg M_{HQ}^2$

"Massless scheme" or Zero Mass Variable Flavour Number Scheme (ZM-VFNS)

LO Process: QPM process (favour excitation)

Quarks are treated like massless partons \implies contribute to proton structure function

$Q^2 \ll M_{HQ}^2$	$Q^2 \sim M_{HQ}^2$	$Q^2 \gg M_{HQ}^2$
low Q^2		high Q^2

 \mathcal{P}^2

$Q^2 \ll M_{HQ}^2$ low Q^2	$Q^2 \sim M_{HQ}^2$	$Q^2 \gg M_{HQ}^2$ high Q^2
massive scheme FFNS	?	Q^2 massless scheme ZM-VFNS

Aim of the Analysis

- Aim: to make a measurement of charm and beauty
 - $^{\circ}~$ in transition region $Q^2 \sim M_{HO}^2$: $6.3 < Q^2 < 120~{
 m GeV}^2$
 - $^{\circ}~$ in high Q^2 region: $\,Q^2>110~{
 m GeV}^2$

Low Q^2 : important to check the validity of the theoretical descriptions of heavy quark production around the threshold region $Q^2 \sim M_{HQ}^2$ High Q^2 : important input for LHC

Motivation for the Analysis I

Processes at the LHC which entail the use of bottom in the initial state:

Name	LO process	Interest	Accuracy
single-top t-channel	qb ightarrow q't	top EW couplings	NLO
single-top tW-associated	$gb ightarrow tW^-$	Higgs bckg, top EW couplings	NLO
Vector boson + 1 b-jet	$gb ightarrow (\gamma,Z)b$	b-PDF, SUSY Higgs benchmark	NLO
Vector boson + 1 b-jet + 1 jet	$qb ightarrow (\gamma, Z, W) bq$	single-top and Higgs bckgs	NLO
Higgs inclusive	$bar{b} ightarrow (h,H,A)$	SUSY Higgs discovery at large $ aneta$	NNLO
Higgs + 1 b-jet	gb ightarrow (h,H,A)b	SUSY Higgs discovery at large $ aneta$	NLO
Charged Higgs	$gb ightarrow tH^-$	SUSY Higgs discovery	NLO

Now b PDF is derived perturbatively from the gluon distribution function Need direct measurement of $F_2^{b\bar{b}} \Longrightarrow b$ PDF determination

Motivation for the Analysis II

Higg Boson Production at the LHC

Inclusive Higgs production: b-quark fusion First-order correction: Higgs + b-jet

SM cross section is small due to low Yukawa coupling ($\sim m_b/v$) Can be enhanced in MSSM for large $aneta \implies$ Important channel for Higgs production (h, H, A) at the LHC Higgs can be detected via decay to $\tau^+ \tau^-$, $\mu^+ \mu^-$

Knowledge of beauty PDF at the scale $Q = m_H/2$ or $Q = m_H/4$ is important! This is high Q^2 region at HERA

Motivation for the Analysis III

Single top-quark production

Standard Model: Direct measurement of CKM matrix element V_{tb}

Beyond the Standard Model: Sensitive to new physics associated with the chargedcurrent weak interaction of the top quark

H1 Detector

H1 Central Silicon Tracker (CST)

- Consists of two cylindrical layers of double-sided silicon strip detectors surrounding the beam pipe at radii of 5.7 cm and 9.7 cm
- Covers angular range $30^\circ < \theta < 150^\circ$
- Hit resolution: 12 μ m in $r\phi$ 25 μ m in z
- For CJC tracks with CST hist in both layers DCA resolution in xy plane: $33 \ \mu m \oplus \frac{90 \ \mu m}{p_T}$ [GeV]
- The efficiency to link 2 CST hits to a CTD track: 76%

Methods for c- and b-tagging at HERA

- Existing Methods:
 - $^{\circ}~D^{*}$

μ

0

exclusive methods

o explicit reconstruction of secondary vertex

Statistically limited!

- Model dependent extrapolations of exclusive methods: in D^* analysis extrapolation factors vary from 4.7 to 1.5 in $p_{\rm T}$ and η decreasing with increasing Q^2
- Inclusive method: use CST-improved impact parameter for all tracks
- Method is based on lifetime information of heavy hadrons
- Aim to be as inclusive as possible and keep size of extrapolations in $p_{\rm T}$, η to minimum
- Fraction of b falls at low $Q^2 \Longrightarrow$ experimentally challenging

Technique

Look at signed DCA (Distance of Closest Approach \equiv Impact Parameter δ) for all tracks with precise measurement from Central Silicon Tracker (CST)

- The sign is inferred from a quark axis approximating the fight direction of the decaying hadron
- Events with secondary vertex decays from heavy favour particles will have large positive impact parameter w.r.t. primary vertex
- Light favour primary decays will have small negative and positive impact parameter due to resolution effects

Data and Monte Carlo Samples (low Q^2)

We work with e^+p neutral current events, 99/2000 HERA-I Data, $\mathcal{L} \simeq 57.4 \, \mathrm{pb}^{-1}$, 1.5M events after selection, factor 10 larger than High Q^2 ! Monte Carlo:

Sample	Program	Fragmentation	L [pb ⁻¹]
uds	DJANGO	LUND	90
$c\overline{c}$	RAPGAP	LUND	162.9
$b\overline{b}$	RAPGAP	LUND	981.3
$c\overline{c}$	RAPGAP	Peterson	124.54
$b\overline{b}$	RAPGAP	Peterson	969.05
$c\overline{c}$	CASCADE	LUND	124.6
$b\overline{b}$	CASCADE	LUND	671.53
γ p	PHOJET	LUND	2.576

Event Selection

We require:

- Low Q^2
 - $^{\circ}~~6.3 < Q^2 < 120~{
 m GeV}^2$
 - $^{\circ}~e^+$ in SpaCal
- High Q^2
 - $^{\circ}~Q^2>110~{
 m GeV}^2$
 - $^{\circ}~e^+$ in LAr

Low Q^2 Event in H1 detector

Track Acceptance (low Q^2 analysis further)

Acceptance for a charged track from c, b hadrons to be in CST acceptance $(30^{\circ} < \theta < 150^{\circ}, p_T > 0.5 \text{ GeV})$ and generated z-vertex within $\pm 20 \text{ cm}$

c quarks

b quarks

- Acceptance for c is 68% 89%
- Bin centres from measured F_2

- Acceptance for $b ext{ is } 93\% 99\%$
- $y_{
 m max}$ = 0.625 for $Q^2 < 17.78~{
 m GeV}^2$ $y_{
 m max}$ = 0.7 for $Q^2 >$ 17.78 ${
 m GeV}^2$

CST Track Selection

Track reconstruction imrovement: CJC tracks are linked to CST hits (CST tracks)

- $N_{
 m CST}$ > 1
- $Prob_{ ext{link}} > 0.1$
- $p_{
 m T}>$ 500 MeV
- $R_{
 m start}$ < 50 cm
- $L_{
 m track}$ > 10 cm
- -18 $< z_{
 m CST\ hits}$ < 18 cm

p_{T} of tracks

Quark Axis Description

Quark axis is given by:

- Highest p_T jet axis
 - \triangleright inclusive k_T algorithm in the lab. frame
 - $arproptop p_T>$ 2.5 GeV
 - ho 15° < heta < 155°

81% of matched track-jet events for c 95% of matched track-jet events for b (> 97% at high Q^2)

► If we don't have jets: Quark axis is approximated by $180^\circ - \phi_{elec}$

DCA and Significance

• Tracks matched to quark axis within $|\Delta \phi| < \pi/2$

• For matched tracks, plot DCA to primary vertex in $r\phi$ plane (δ) Tracks required to have $|\delta| < 1 \text{ mm}$ (remove e.g. K^0 contribution)

• Significance of each track given by
$$S_{i}=rac{\delta}{\sigma(\delta)}$$

Scale factors to the MC distributions are applied

Significance (S_i) Definition

At low Q^2 , beauty fraction is smaller. Need to do more to separate b and cDefine three distributions:

- S_1 highest significance track
- S_2 2nd highest significance track with same sign as S_1
- S_3 3rd highest significance track with same sign as S_1 and S_2

Subtracted Significance (S_i)

Subtract the negative S_i bins from the positive for both data and MC to reduce sensitivity to resolution of light quarks

For each $x - Q^2$ bin make a simultaneous fit to S_i and total number of inclusive events before CST track selection with 3 parameters:

- MC scale factor c P_c
- MC scale factor b P_b
- MC scale factor uds P_l

Structure Function Extraction

Fit results: P_c = 1.28 \pm 0.04, P_b = 1.55 \pm 0.16, P_l = 0.95 \pm 0.01

Reduced cross section:

$$ilde{\sigma}^{car{c}}(x,Q^2) = ilde{\sigma}(x,Q^2) rac{P_c N_c^{ ext{MCgen}}}{P_c N_c^{ ext{MCgen}} + P_b N_b^{ ext{MCgen}} + P_l N_l^{ ext{MCgen}}}$$

The differential c cross section is calculated from $ilde{\sigma}^{car{c}}(x,Q^2)$ as

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \,\mathrm{d}Q^2} = \tilde{\sigma}^{c\bar{c}}(x,Q^2) \frac{2\pi \alpha^2 (1+(1-y)^2)}{xQ^4} \Longrightarrow f^{c\bar{c}} = \frac{\mathrm{d}\sigma^{c\bar{c}}/\mathrm{d}x \mathrm{d}Q^2}{\mathrm{d}\sigma/\mathrm{d}x \mathrm{d}Q^2}$$

The structure function $F_2^{car{c}}$ is then evaluated from the expression

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} [(1+(1-y)^2) F_2^{c\bar{c}} - y^2 F_L^{c\bar{c}}]$$

 $F_L^{car{c}}$ is estimated from the NLO QCD expectation

Systematic Errors (low Q^2)

source	uncertainty	error	error
		c c /%	b b/%
Track efficiency	± 2.23 (2% CJC, 1% CST)	1.4-1.7	8-10
DCA resolution	$\pm 25 \mu m$ ($\pm 200 \mu m$ tails)	2.5-3.2	13-21
s asymmetry	50% uncertainty	5.0-5.2	4.7-7.7
Fragmentation	LUND / Peterson	0.4-0.7	4.6-6.9
QCD model	Rapgap/CASCADE	1.9-2.2	8.8-15
Structure function	Reweight	0.3-0.8	0.6-4.6
B Multiplicity	LEP / SLD	0.2-0.3	3.0-3.1
D Multiplicity	MARKIII	3.1-3.2	2.9-5.4
Hadronic Energy Scale	4%	1.1-1.8	1.1-1.9
Quark Axis	$2^{ m o}(5^{ m o})$ shift	2.0	1.3-1.7
Total		8-13	20-33

DCA resolution for S_1

Most effects in DCA come from the description of the MC of the internal alignment/resolution of the CST

95% of events smeared by 25 μ m, 5% of events smeared by 200 μ m

Normalised MC before (after) smearing black (red)

Description of Light Quark Multiplicity

Can contribute to systematic errors

CST Tracks per Event (events after track-jet association)

Low Q^2

uds Monte Carlo: Rapgap $c\bar{c},\,b\bar{b}$ Monte Carlo: Rapgap

uds Monte Carlo: Django $c\bar{c}, b\bar{b}$ Monte Carlo: Rapgap

Light quark asymmetry

- Enhance strangeness by looking at events with 2 tracks both with 0.1 < |DCA| < 0.5 cm
- Clear K_0 peak. Reasonable agreement after background subtraction

Uncertainty of $\pm 50\%$

Reduced Cross Section $ilde{\sigma}^{car{c}}$

$ilde{\pmb{\sigma}}^{car{c}}$

- Consistent results with H1 and ZEUS D^* measurements
- Consistent with pQCD predictions

MRST04 - Variable FNS CTEQ6HQ - Variable FNS

CCFM (Cascade) - Massive scheme

Reduced Cross Section $ilde{\sigma}^{bar{b}}$

 $ilde{oldsymbol{\sigma}}^{bar{b}}$

- First measurement of $ilde{\sigma}^{bar{b}}$
- Consistent with pQCD predictions
- MRST04 describes the data best

MRST04 - Variable FNS CTEQ6HQ - Variable FNS CCFM (Cascade) - Massive scheme

Contribution to inclusive σ $^{-}_{\rm ff}$ 10 10 10 $f^{qar{q}} = rac{\mathrm{d}\sigma^{qar{q}}/\mathrm{d}x\mathrm{d}Q^2}{\mathrm{d}\sigma/\mathrm{d}x\mathrm{d}Q^2}$ 10 c and b fractions fall towards low Q^2 -2 10 b fraction falls by a larger amount **MRST04 - Variable FNS** 10 -1

Data vs Theory for $\sigma^{bar{b}}$

QCD NLO (VFNS): MRST QCD NLO (massive): HVQDIS

Measurements at Tevatron and LHC

Measurements at Tevatron

Tevatron: $p \bar{p}$ collisions; \sqrt{s} = 1.96 TeV

Cross section is sensitive to b PDF Analysis is performed by D0 and CDF: hep-ex/0410078; hep-ex/0605099

Method (CDF):

- Select events with $Z
 ightarrow e^+e^-$, $\mu^+\mu^-$
- Separate b-jets from others: based on template fit of the secondary vertex mass distributions
- E_T^{jet} >20 GeV, $|\eta^{jet}|$ <1.5

Mass at the secondary vertex

Measurements at Tevatron

CDF results (ICHEP 2006, K.Hatakeyama):

$E_T^{jet} > 20 \text{ GeV}, \eta^{jet} < 1.5$	CDF measurement	PYTHIA	NLO
$R_{jet}=0.7$	CD1 measurement		
$\sigma(Z+b-jet)$	$0.93 \pm 0.29 \pm 0.21$ (pb)		$0.45 \pm 0.07 \; (pb)$
$\sigma(Z+b-jet)/\sigma(Z)$	$0.37\pm0.11\pm0.08~\%$	0.35 %	0.19 ± 0.03 %
$\sigma(Z+b-jet)/\sigma(Z+jet)$	$2.36 \pm 0.74 \pm 0.53~\%$	2.18 %	1.81 ± 0.27 %

Consistent with NLO within errors, however statistically limited.

Future measurements at LHC

sensitive to c, b PDFs

sensitive to c, b PDFs

can constrain strange PDF

Conclusions

- HERA provides important input for LHC analyses
- The first measurement of $F_2^{bar{b}}$ in the low and high Q^2 kinematic regime
- $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ are well described by predictions of perturbative QCD calculations
- Average contribution to the inclusive ep cross section:

	Low Q^2	High Q^2
Charm	24%	18%
Beauty	0.8%	2.7%

Outlook

- Increased statistics using HERA II data
- ZEUS has vertex detector MVD since HERA II
- HERA is taking lumi till middle 2007

INTEGRATED LUMINOSITY (29.11.06)

