

Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at Low and High Q^2 at H1

Tatsiana Klimkovich DESY, FLC, H1

Tatsiana Klimkovich

Kraków Seminar, 11 May 2006

1

Contents

- Heavy Flavour Production in Perturbative QCD
- H1 Experiment at HERA
- Motivation for the Analysis
- Inclusive Method of Heavy Quark Measurement using simple c- and b-tagging
- ullet Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$ at Low and High Q^2

Kinematics of ep Collisions

Neutral Current

Lorentz-Invariant Variables:

 Gauge Boson's Virtuality: transfered momontum from e to p

 $Q^2:=-\mathbf{q^2}=-(\mathbf{k}-\mathbf{k}')^2, \ Q^2 \geqslant 0$

 Bjørken Scaling Variable: fraction of proton's momentum carried by the interacting parton

$$x := \frac{Q^2}{2\mathbf{P} \cdot \mathbf{q}} \qquad \qquad \mathbf{0} \leqslant x \leqslant \mathbf{1}$$

• Relative energy transfer at the positronboson vertex in the proton rest frame:

$$y := rac{\mathbf{P} \cdot \mathbf{q}}{\mathbf{P} \cdot \mathbf{k}}$$
 $0 \leqslant y \leqslant 1$
 $\mathbf{Q^2} = \mathbf{xys}$

Tatsiana Klimkovich

Kinematics of ep Collisions

Kinematic Regions

- 1. Photoproduction (γp): $Q^2 < 1 \text{ GeV}^2$ Dominant process - exchange of quasireal photons
- 2. Low Q^2 Deep Inelastic Scattering (DIS): 1 GeV² < Q^2 < 100 GeV²

Main kinematic regime at HERA for the investigation of the structure of the proton. Dominant process - photon exchange

3. High Q^2 DIS: $Q^2 > 100 \text{ GeV}^2$ Contribution of Z and W^{\pm} exchange Important measurements of proton structure functions for the LHC

Heavy Flavour Production in Deep Inelastic Scattering

 $Q^2 \ll M_{HQ}^2$

"Massive scheme" Fixed Flavour Number Scheme (FFNS) $Q^2 \gg M_{HQ}^2$

"Massless scheme"

Zero Mass Variable Flavour Number

Scheme (ZM-VFNS)

LO Process: QPM process (flavour excitation)

209

b

LO Process: PGF process

Quarks are treated like massive

 \implies do not contribute to proton structure

function

Quarks are treated like massless partons \implies contribute to proton structure function

С

Do not give reliable description over the whole Q^2 range

 \implies Variable FNS: Interpolate between massive and massless

а

schemes avoiding double counting etc. ACOT(CTEQ), MRST

Treat properly threshold effects $Q^2 \sim M_{HO}^2$

d

HERA luminosity 1992-2000

Tatsiana Klimkovich

Kraków Seminar, 11 May 2006

H1 Central Silicon Tracker

- Consists of two cylindrical layers of double-sided silicon strip detectors surrounding the beam pipe at radii of 5.7 cm and 9.7 cm
- Covers angular range $30^{\circ} < \theta < 150^{\circ}$
- Hit resolution: 12 μm in $r\phi$ 25 μm in z
- For CJC tracks with CST hist in both layers DCA resolution in xy plane: $33\mu m \oplus \frac{90\mu m}{p_T}$ [GeV]
- The efficiency to link 2 CST hits to a CTD track: 76%

Motivation for Analysis

- Aim: to make a measurement of charm and beauty
 - in transition region $Q^2 \sim M_{HO}^2$: $6.3 < Q^2 < 120~{
 m GeV}^2$
 - in high Q^2 region: $Q^2 > 110~{
 m GeV}^2$
- Existing Methods:
 - $\left.\begin{array}{c} -D^* \\ -\mu \end{array}\right\} \quad \text{exclusive methods}$

Statistically limited!

- explicit reconstruction of secondary vertex
- Model dependent extrapolations of exclusive methods: in D^* analysis extrapolation factors vary from 4.7 to 1.5 in p_T and η decreasing with increasing Q^2
- => Inclusive method: use CST-improved impact parameter for all tracks
- Method is based on lifetime information of heavy hadrons
- Aim to be as inclusive as possible and keep size of extrapolations in p_T , η to minimum
- Fraction of b falls at low $\mathbf{Q}^2 \Longrightarrow$ experimentally challenging

8

Motivation for the Analysis

Higgs Production via Quark Fusion at the LHC

SM cross section is small due to low Yukawa coupling

Can be enhanced in MSSM (h, H, A, H^{\pm})

 \implies knowledge of beauty PDF at the scale $Q=m_H/2$ or $Q=m_H/4$ is important! This is high Q^2 region at HERA

• Low Q^2 : measurement of c and b PDFs are important to check the validity of the theoretical descriptions of heavy quark production around the threshold region $Q^2 \sim M_{HQ}^2$

Technique

Look at signed DCA (Distance of Closest Approach \equiv Impact Parameter δ) for all tracks with precise measurement from Central Silicon Tracker (CST)

- The sign is inferred from a quark axis approximating the flight direction of the decaying hadron
- Events with secondary vertex decays from heavy flavour particles will have large positive impact parameter w.r.t. primary vertex
- Light flavour primary decays will have small negative and positive impact parameter due to resolution effects

10

Data and Monte Carlo Samples (low Q^2)

We work with e^+p neutral current events, 99/2000 HERA-I Data, $\mathcal{L} \simeq 57.4 \text{ pb}^{-1}$, 1.5M events after selection, factor 10 larger than High Q²! Monte Carlo:

Sample	Program	Fragmentation	L [pb^{-1}]
uds	DJANGO	LUND	90
$c\overline{c}$	RAPGAP	LUND	162.9
$b\overline{b}$	RAPGAP	LUND	981.3
$c\overline{c}$	RAPGAP	Peterson	124.54
$b\overline{b}$	RAPGAP	Peterson	969.05
$c\bar{c}$	CASCADE	LUND	124.6
$b\overline{b}$	CASCADE	LUND	671.53
γ p	PHOJET	LUND	2.576

Event Selection

We require:

- e^+ in SpaCal
- $6.3 < Q^2 < 120 \,\mathrm{GeV^2}$
- $y_{e\Sigma} > 0.07$ $y_e < 0.63$ for $Q^2 < 18 \text{ GeV}^2$ $y_e < 0.7$ for $Q^2 > 18 \text{ GeV}^2$
- \bullet -20 cm $< z_{vertex} <$ 20 cm
- $\sum_{i} (E_i p_{z,i}) > 35 \text{ GeV}$ (against γp and ISR)
- R_e < 4 cm
- 0 < $R_{BDC-SPACAL}$ < 2.5 cm
- Inclusive Triggers

High $Q^2 {:}\; Q^2 > 110~{\rm GeV^2}$, e^+ in LAr

Low Q^2 Event in H1 detector

12

Track Acceptance (low Q^2)

Acceptance for a charged track from c, b hadrons to be in CST acceptance $(30^{\circ} < \theta < 150^{\circ}, p_T > 0.5 \text{ GeV})$ and generated z-vertex within $\pm 20 \text{ cm}$

c quarks

b quarks

- Acceptance for $c \mbox{ is } 68\% 89\%$
- Bin centres from measured F_2

- Acceptance for $b ext{ is } 93\% 99\%$
- $y_{max} = 0.625$ for $Q^2 < 17.78 \text{ GeV}^2$ $y_{max} = 0.7$ for $Q^2 > 17.78 \text{ GeV}^2$

CST Track Selection

p_T of Tracks

Track reconstruction imrovement: CJC tracks are linked to CST hits (CST tracks)

- $N_{CST} > 1$
- **Prob** $_{link}$ > 0.1
- $p_T >$ 500 MeV
- $R_{start} <$ 50 cm
- $L_{track} > 10 \text{ cm}$
- -18 < $z_{CST hits}$ < 18 cm

 $\boldsymbol{\theta}$ of Tracks

Quark Axis Description

Quark axis is given by:

- **•** Highest p_T jet axis
 - \triangleright inclusive k_T algorithm in the lab. frame
 - $\triangleright p_T >$ 2.5 GeV
 - hinstriangle 15° < heta < 155°

81% of matched track-jet events for *c*

95% of matched track-jet events for \boldsymbol{b}

(> 97% at high Q^2)

► If we don't have jets:

Quark axis is approximated by $180^\circ - \phi_{
m elec}$

DCA and Significance

- ullet Tracks matched to quark axis within $|\Delta \phi| < \pi/2$
- For matched tracks, plot DCA to primary vertex in $r\phi$ plane (δ) Tracks required to have $|\delta| < 1 \text{ mm}$ (remove e.g. K^0 contribution).
- Significance of each track given by $S_i = rac{\delta}{\sigma(\delta)}$

DCA

Scale factors to the MC distributions are applied

Significance

Significance (S_i) Definition

At low $Q^2, \, {\rm beauty} \, {\rm fraction} \, {\rm is} \, {\rm smaller}.$ Need to do more to separate b and c

Define three distributions:

- S_1 highest significance track
- S_2 2nd highest significance track with same sign as S_1
- S_3 3rd highest significance track with same sign as S_1 and S_2

Subtracted Significance (S_i)

Subtract the negative S_i bins from the positive for both data and MC to reduce sensitivity to resolution of light quarks

For each $x - Q^2$ bin make a simultaneous fit to S_i and total number of inclusive events before CST track selection with 3 parameters:

- MC scale factor $c P_c$
- MC scale factor $b P_b$
- MC scale factor uds P_l

Structure Function Extraction

Fit results: P_c = 1.28 ± 0.04, P_b = 1.55 ± 0.16, P_l = 0.95 ± 0.01

Reduced cross section:

$$ilde{\sigma}^{car{c}}(x,Q^2) = ilde{\sigma}(x,Q^2) rac{P_c N_c^{ ext{MCgen}}}{P_c N_c^{ ext{MCgen}} + P_b N_b^{ ext{MCgen}} + P_l N_l^{ ext{MCgen}}}$$

The differential c cross section is calculated from $ilde{\sigma}^{car{c}}(x,Q^2)$ as

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \,\mathrm{d}Q^2} = \tilde{\sigma}^{c\bar{c}}(x,Q^2) \frac{2\pi \alpha^2 (1+(1-y)^2)}{xQ^4} \Longrightarrow f^{c\bar{c}} = \frac{\mathrm{d}\sigma^{c\bar{c}}/\mathrm{d}x \mathrm{d}Q^2}{\mathrm{d}\sigma/\mathrm{d}x \mathrm{d}Q^2}$$

The structure function $F_2^{c\bar{c}}$ is then evaluated from the expression

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} [(1+(1-y)^2) F_2^{c\bar{c}} - y^2 F_L^{c\bar{c}}]$$

 $F_L^{c\bar{c}}$ is estimated from the NLO QCD expectation

Tatsiana Klimkovich

Systematic Errors (low Q^2)

source	uncertainty	error	error
		<mark>c</mark> c / %	<mark>bb</mark> /%
Track efficiency	± 2.23 (2% CJC, 1% CST)	1.4-1.7	8-10
DCA resolution	$\pm 25 \mu m$ ($\pm 200 \mu m$ tails)	2.5-3.2	13-21
s asymmetry	50% uncertainty	5.0-5.2	4.7-7.7
Fragmentation	LUND / Peterson	0.4-0.7	4.6-6.9
QCD model	Rapgap/CASCADE	1.9-2.2	8.8-15
Structure function	Reweight	0.3-0.8	0.6-4.6
B Multiplicity	LEP / SLD	0.2-0.3	3.0-3.1
D Multiplicity	MARKIII	3.1-3.2	2.9-5.4
Hadronic Energy Scale	4%	1.1-1.8	1.1-1.9
Quark Axis	2° (5°) shift	2.0	1.3-1.7
Total		8-13	20-33

DCA resolution for S_1

Most effects in DCA come from the description of the MC of the internal alignment/resolution of the CST

95% of events smeared by 25 μ m, 5% of events smeared by 200 μ m

Normalised MC before (after) smearing black (red)

DCA resolution for S_2

DCA resolution for S_3

Description of Light Quark Multiplicity

Can contribute to systematic errors

CST Tracks per Event (events after track-jet association) High Q^2 Low Q^2

 $car{c}$, $bar{b}$ MC: Rapgap

 $c\overline{c}, b\overline{b}$ MC: Rapgap

Light quark asymmetry

Enhance strangeness by looking at events with 2 tracks both with 0.1 < |DCA| < 0.5 cm. Clear K_0 peak. Reasonable agreement after background subtraction.

Uncertainty of $\pm 50\%$

- Consistent results with H1 and ZEUS D^* measurements
- Consistent with pQCD predictions

MRST04 - Variable FNS

CCFM (Cascade) - Massive scheme

Х

Х

 $F_2^{car{c}}$ vs Q^2

 $F_2^{bar b}$ vs Q^2

Tatsiana Klimkovich

Kraków Seminar, 11 May 2006

Contribution to σ :

 $f^{qar q} = rac{{\mathrm d}\sigma^{qar q}/{\mathrm d}x{\mathrm d}Q^2}{{\mathrm d}\sigma/{\mathrm d}x{\mathrm d}Q^2}$

 $c \mbox{ and } b \mbox{ fractions fall towards low } Q^2$ $b \mbox{ fraction falls by a larger amount}$

MRST04 - Variable FNS

Data vs Theory for $\sigma^{bar{b}}$

Tatsiana Klimkovich

Conclusions

- The first measurement of $F_2^{b\bar{b}}$ in the low and high Q^2 kinematic regime
- Good description by predictions of perturbative QCD calculations
- ullet First measurement of F_2^{bb}
- 24% of charm and 0.8% of beauty contribution to the total ep cross section at low Q^2
- 18% of charm and 2.7% of beauty contribution to the total ep cross section at high Q^2

Outlook

- Increased statistics using HERA II data
- Single and di-jet cross section measurements using b-tagged jets with increased statistics. Basis to test models relevant for heavy quark jet production at the LHC

HERA is taking lumi... till 2007

INTEGRATED LUMINOSITY (03.05.06)

Tatsiana Klimkovich

Kraków Seminar, 11 May 2006