Visual Physics Analysis VISPA

Tatsiana Klimkovich for the VISPA group

Physics Institute 3a, RWTH Aachen University, 52056 Aachen, Germany
email contact: klimkovich@physik.rwth-aachen.de

Analysis Designer
- Use GUI to design analysis
- Multi-path analysis flows
- Build analyses combined from C++ and Python modules
- Interactive creation of modules

The PXL Toolkit
- C++ toolkit for high level physics analysis [3].
 - Has been developed since 2006
 - Version 2.1 (2009)
 - It is the successor of the PAX (Physics Analysis Expert) toolkit, which was developed from 2002 to 2007
 - PXL provides all necessary features for an experiment-independent high level physics analysis with emphasis on an easy user syntax

General Features of VISPA
- Aim: support design, execution and verification of HEP analysis [1,2]
- Multi-purpose window
- Visualization of analysis data and analysis flow in one Graphical User Interface
- PXL C++ toolkit as an underlying analysis software

Downloads and Literature

PXL Components
- Event Container pxl::Event
 - Particles (pxl::Particle)
 - Vertices (pxl::Vertex)
 - Collisions (pxl::Collision)
 - User data (pxl::UserRecord)
 - Their relations and roles
- pxl::Event represents an entire physics event
- pxl::Event can hold several pxl::EventViews
- pxl::EventView is a special view of this event
- Copies of these classes preserve all contained information such as the relations between particles
- User Record pxl::UserRecord
 - All major PXL objects provide UserRecord for storage of arbitrary user data
- Input/Output System pxl::Serializable
 - Fast, flexible, small file size (uses ZLIB library)

Python Interface
To enable the usage of all PXL objects and their methods within Python programs, a Python extension PyPXL is provided:
- Python code is easy to read
- Less code compared to C++
- Dynamic typing
- Automatic memory management

Novel Concept of making physics analysis:
- Combination of graphical and textual programming
- Module steering
- For application in any HEP experiment

Run Analysis
- Run analysis interactively:
 - Or export the analysis as XML or Python steering and run it on the laptop, desktop or GRID

Autoprocess
- In various physics analyses (Top, Higgs, SUSY) a reconstruction of the whole decay chain is needed
- Several possible configurations need to be built
- Autoprocess is a module for automated reconstruction of particle cascades [4]

Event Browser
- Browsing physics data on an event-by-event basis
- Visualization of decay trees
- Inspecting properties of each object