RNTHAACHEN UNIVERSITY

VISPA: a Novel Concept for Visual Physics Analysis

Tatsiana Klimkovich for the VISPA group

(O.Actis, M.Erdmann, R.Fischer, A.Hinzmann, M.Kirsch, G.Müller, M.Plum, J.Steggemann)

ACAT2008, Erice, November 2008

Contents

- Physics Analysis in High Energy Physics experiment
- Novel Concept for HEP analyses: VISPA
- Look & feel with analysis example
- VISPA key ingredients:
 - PXL: underlying functionality
 - Python interface to C++ functionality
 - Module steering system
 - Autoprocess: automatic decay chain reconstruction

Tatsiana Klimkovich

High Energy Physics Analysis

Prototyping (design)

Execution (steering)

ACAT2008, Erice, Sicily

Verification

Tatsiana Klimkovich

High Energy Physics Analysis

- During last years big achievements have been done in developing analysis software for the experiments
- Experiments have different software frameworks e.g. H100 in H1, CMSSW in CMS, ATHENA in ATLAS etc.
- On top of them more analysis specific software has been developed and used:
 - Requires less time to start
 - The output files are smaller
 - Reduce time for making analysis

Allows to perform analysis on the laptop
 Acat2008, Erice, Sicily

The wish list of the analyser

- To have an easy way to develop analysis
- To start fast
- To dedicate minimal time for learning
- To have modular structure of the software
- To have many reusable components
- To have small summary data sets (ntuples)
- To have clear picture of what you are doing
- To transmit your knowledge to other people

VISPA: Visual Physics Analysis Novel Concept of making physics analysis

Tile Tools Help	PXL - File Browser, Event Editor & Process Modelling			Mixtur and te	e of g xtual	raphica work
<pre>✓ /.automount/home_home_home1/institut_3a/steggr Current Event: 1 Events in file: >= 1 < <<< < >>>> top decay new EventView</pre>	emann/vispa/pxl-analysis/top-decay.pxlio 🗵 /.automount/	fhome/h	e Input ata uutomount/home/i VisualPXL - File	(like La		w)
Tatsiana Klimkovi		Open Save Save As (/.automount/home/homeho File Input File Output ScriptFilter	me1/institut_3a/steggemann/vis	cross section calc	Itput File	Main: Pxl-Plugin Type File Input Name Data Options filename /.automount/home/f start 0
Tatsiana Klimkovi	icn					

VISPA: Main Features

Development environment for HEP analyses (first prototype)

- Combines graphical and textual steering
- Module steering
- Works for any experiment

Structure of Physics Analysis

Data

selection

Advanced

analysis

Data input

VisualPXL - File Browser, Ev	ent Editor & Process Mode	illing 🎐			_ 🗆 ×
ile Tools Help					
Dpen Save Save As					
/home/tklimk/soft/vispa/talk/Zmu	imu_out.pxlio 🕱		-	- 8	
urrent Event: 10				Main: EventVie	W
vents in file: >= 10				ld	aa5b50b9-652e-664b
< << > >> >		/		Name	Reconstructed
				UserRecords	
Reconstructed		Muon		NumEle	0
Generator		Muon		NumJet	2
				NumMET	1
				NumMuon	2
				Process	Zmumu
	let	let		Туре	Rec
		<u></u>		missing_px_in	-24.8997
				missing_py_in	21.79567

Tatsiana Klimkovich

Multipurpose Window

Closer consideration:

Very simple example analysis Z --> mu mu

Prototyping

Execution

Verification

Sample at LHC energies

Tatsiana Klimkovich

Z boson reconstruction from muons First step: inspect an input file

Prototyping

Run Analysis

More complex analysis

	VisualPXL - File Browser, Event Editor & Process Modelling		
<u>F</u> ile Tools Help			
Dpen Save Save As			
.automount/home/home_home_home_home_home_home_home_home_	ome1/institut_3a/steggemann/vispa/pxl-analysis/Data_analysis.xml 📧 🕨	+ 8	
File Input		🖻 Main:	Pxl-Plugin
File Output		Туре	File Input
ScriptFilter		Name	Data
	Data	Optio	ns / sutamount/hama/k
	Cross section calc	start	ne 7.automounynomen
			-
	MC signal		
	Output File		
	MC background		
			1111

Tatsiana Klimkovich

Single top quark analysis

 $q'(\bar{q}')$

 W^+

 $q\left(\hat{q}
ight)$

Summary: Analysis flow with VISPA

Prototyping: Graphical platform Analysis modules: Python or C++

PXL

Execution (XML or Python steering) (interactive or batch)

Verification (Event Browser) (ROOT histograms)

Tatsiana Klimkovich

VISPA: till now was look & feel Now: to the ingredients

Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As Image: Save Save As	t/home/h > + ¥	Mixture of graphical and textual work
Current Event: 1 Events in file: >= 1 < << < > >> > top decay new EventView q q	Main: PxI-Plugin Type File Input Name Data Options filename /.automount/home/file VisualPXL - File File Tools Help Open Save Save As	(like LabView)
	<pre>/.automount/home_home_l/institut_3a/steggemann/v File Output ScriptFilter Data MC signal MC background</pre>	rispa/pxl-analysis/Data_analysis.xml
Tatsiana Klimkovich		

VISPA Key Components

- PXL: C++ package providing underlying functionality
- PyPXL: Python interface to PXL
- Module steering system
- Autoprocess: automatic decay chain reconstruction

PXL (Physics eXtension Library)

- C++ toolkit for high-level physics analysis
- Provides underlying functionality for Visual Physics Analysis (VISPA)
- Version 2.0 (2008)
- Successor of PAX (Physics Analysis Expert) (2002-2007)

Tatsiana Klimkovich

PXL key components: Event Container

Physics

objects

- Particles (pxl::Particle)
- Vertices (pxl::Vertex)
- Collisions (pxl::Collision)
- User data (pxl::UserRecord)
- Their relations and roles

Event container pxl::Event can hold several pxl::EventViews

Allows deep copies (physics objects with redirected relations, data members, user records) Tatsiana Klimkovich ACAT2008, Erice, Sicily

Event View pxl::EventViews

PXL key components: UserRecord

- PXL physics object is not only a fourvector
- PXL physics object has also a UserRecord where user data are stored:

these are pairs of names and all basic C++
 types (int, double, string, ...)

 it can be e.g. data from the condition databases etc.

- Deploys Copy-On-Write mechanism
- Flexible and simple extension of objects

PXL key components: Relation Management

- "Hard" relations:
 - Mother, daughter, and flat relations
 - Between objects within the same event container
 - Safe removal in case of object deletion
- "Soft" relations:
 - Between any objects
 - Have an arbitrary name (string)

PXL key components: Input / Output

- Main class pxl::Serializable
- Fast, Flexible
- Small file size: use ZLIB library for data compression
- Information chunks to structure files
- Each object knows how to stream itself
 - methods "serialize" and "deserialize"
- Simple inclusion of user classes into I/O scheme

Python interface to PXL

- Why Python?
 - Python code is easy to read
 - Less code compared to C++
 - Dynamic typing
 - Automatic memory management
 - Python does not need compilation
 - Has an interactive mode for testing
 - Object oriented, works on multiple platforms, open source
- Use of SWIG for automatic transfer

Tatsiana Klimkovich

Python popularity in HEP

- Starts to be more popular for doing physics analyses
- Bender LHCb Python-based physics analysis application
- Possible to perform analysis with Python in CMS
- Some use in D0

Tatsiana Klimkovich

Module Steering System

Data flow

each module has a number of sources and sinks

- interface between modules: PXL event container
- Modules
 - → plug-in mechanism
 - ➔ interactive creation of PYTHON modules
- XML configuration
 - → exchange format

→ save and restore any state of the analysis

- PYTHON configuration
 - → high flexibility
 - → easy-to-read

Tatsiana Klimkovich

ACAT2008, Erice, Sicily

Interface: Event Container

Tatslana kiimkovicn

- In some physics analysis (Top, Higgs, SUSY) a reconstruction of the whole decay chain often needed
- Several possible configurations need to be built
- Autoprocess is an algorithm for automated reconstruction of particle cascades
- Avoid programming reconstruction code for every physics process individually

Autoprocess algorithm

- Steering by an event container* holding (part of a) Feynman diagram
- Intuitive for physicist

*PXL event container and particles (including relations)

Tatsiana Klimkovich

- Tool for automatic calculation of all event configurations (hypotheses)
- Well suited for e.g. top physics
- Good performance in CPU time and memory consumption

Tatsiana Klimkovich

Summary

 VISPA is a novel graphical analysis design package for high energy physics analyses

Combines visual and textual programming

 Allows fast prototyping, execution, and verification of an analysis

- Can work for any experiment
- First applications for CMS analysis
- Key components:
 - PXL: underlying functionalities for VISPA
 - Module steering system

 Autoprocess: automatic calculation of particle cascades Tatsiana Klimkovich ACAT2008, Erice, Sicily

Summary II

- All software is continuously maintained
- Fully documented:

- Manual for PXL:

http://pxl.sourceforge.net/manual.pdf

- Doxygen
- Available online at http://pxl.sourceforge.net
- Look & feel version for MAC is provided
- Publications:

http://arxiv.org/abs/0810.3609

http://arxiv.org/abs/0801.1302v2

Tatsiana Klimkovich

Backup

Tatsiana Klimkovich

Autoprocess: performance

Physics	number of	number of	number of	Time/event	Mem. alloc.
process	particles	vertices	configurations	[ms]	[MByte]
$W \rightarrow l \nu$	3	1	2	0.06	< 1
$H \to 4\mu$	7	3	3	0.4	< 1
$t\bar{t} \rightarrow \mu \nu 4j$	11	5	24	2.3	< 1
$Ht\bar{t} \rightarrow 8j$	13	5	5040	411	36

on a standard personal computer:

- ~20 µs per reconstructed decay vertex
- ~0.6 kByte per reconstructed particle in the decay trees

PXL Objects Structure

Inheritance and composition

I/O (pxl::Serializable)
 relations (pxl::Relative)
 User data (pxl::Object)
 Object container (pxl::ObjectManager)

Graphical platform: autolayout algorithm

Hard to read text output

Desired, easy to read decay tree

Autolayout algorithm based on model forces

Constant forces to all nodes Repelling forces between close node Spring forces to all daughter nodes Friction forces to all moving nodes

 After some iterations all nodes moved into the positions where all forces on the node cancel each other

• After this the system is in stable state Tatsiana Klimkovich ACAT2008, Erice, Sicily

Autolayout algorithm based on model forces: final result

