

Measurement of $F_2^{c\bar{c}}$ and F_2^{bb} at Low and High Q^2 using H1 Vertex Detector

Tatsiana Klimkovich

H1 Collaboration, DESY

Content:

- Theory and Motivation
- DCA (Impact Parameter) Method
- ullet Results for $F_2^{car{c}}$ and $F_2^{bar{b}}$
- Conclusion

DIS Theory

$$Q^2 \sim M_{HQ}^2$$

"Massive scheme" Fixed Flavour Number Scheme (FFNS)

$$Q^2 \gg M_{HQ}^2$$

"Massless scheme" Zero Mass Variable Flavour Number Scheme (ZM-VFNS)

Main LO Process: Photon Gluon Fusion

Main LO Process: Quark Parton Model

Variable FNS: Interpolate between massive and massless avoiding double counting etc. ACOT(CTEQ), MRST

Motivation

- Aim: to make a measurement of charm and beauty in transition region: $3.75 < Q^2 < 60 \text{ GeV}^2$
- Existing Methods:
 - $-D^*$ exclusive methods

Statistically limited!

- explicit reconstruction of secondary vertex
- Model dependent extrapolations for D^* method
- \implies Inclusive method: use CST-improved impact parameter for all tracks method comes from high Q^2 measurements: recenty published analysis for $Q^2 > 110 \text{ GeV}^2$ (hep-ex/0411046 accepted Eur. Phys. J)
- Aim to be as inclusive as possible and keep size of extrapolations in p_T , η to minimum
- Method is based on lifetime information of heavy quarks
- Fraction of b falls at low $\mathbf{Q}^2 \Longrightarrow$ experimentally challenging
- We work with e^+p neutral current events, 99/00 HERA-I Data, $\mathcal{L}\simeq 57.4~{
 m pb}^{-1}$

H1 Central Silicon Tracker

- Consists of two cylindrical layers of double-sided silicon strip detectors surrounding the beam pipe at radii of 5.7 cm and 9.7 cm
- Covers angular range $30^{\circ} < \theta < 150^{\circ}$
- Hit resolution: 12 μm in $r\phi$ 25 μm in z
- For CTD tracks with CST hist in both layers DCA resolution in xy plane: $33\mu m \oplus \frac{90\mu m}{p_T}$ [GeV]
- The efficiency to link 2 CST hits to a CTD track: 76%

Acceptance

Acceptance for a charged track from c, b hadrons to be in CST acceptance ($30^{\circ} < \theta < 150^{\circ}$, $p_T > 0.5$ GeV) and generated z-vertex within ± 20 cm c quarks b quarks

- Acceptance for $c \ {\rm is} \ 68\% 89\%$
- Bin centres from measured F_2

- Acceptance for $b ext{ is } 93\% 99\%$
- $y_{max} = 0.625$ for $Q^2 < 17.78 \text{ GeV}^2$ $y_{max} = 0.7$ for $Q^2 > 17.78 \text{ GeV}^2$

Technique

Look at signed DCA (Distance of Closest Approach \equiv Impact Parameter δ) for all tracks with precise measurement from Central Silicon Tracker (CST)

- The sign is inferred from a reference axis approximating the flight direction of the decaying hadron
- Events with secondary vertex decays from heavy flavour particles will have large positive impact parameter w.r.t. primary vertex
- Light flavour primary decays will have small negative and positive impact parameter due to resolution effects

Jets vs HFS

Reference axis is given by:

- **•** Highest p_T jet axis
 - \triangleright inclusive k_T algorithm in the lab. frame
 - $\vartriangleright p_T > 4~{
 m GeV}$
 - Dert 25° < heta < 155°

33% of matched track-jet events for \boldsymbol{c}

55% of matched track-jet events for \boldsymbol{b}

(> 97% at high Q^2)

► If we don't have jets: use Hadronic Final States (HFS) Reference axis is approximated by $\phi_{ref.axis}$ measured from the electron

DCA and Significance at Low Q^2

- Tracks matched to reference axis within $\Delta \phi_{
 m ref.axis} < \pi/2$
- For matched tracks, plot DCA to primary vertex in $r\phi$ plane (δ) Tracks required to have $|\delta| < 1 \, {
 m mm}$ (remove e.g. K0s).
- Significance of each track given by $S_i = rac{\delta}{\sigma(\delta)}$

Se 10⁶ 10⁵ 10⁴ 10² 10² 10² 10⁴ 10² 10² 10⁴ 10² 10⁴ 10² 10⁴ 10⁵ 10⁵ 10⁴ 10⁵ 10⁵

-5

0

10

15

-10

DCA

Significance

20

Si

Significance (S_i) at Low Q^2

At low $Q^2, \, {\rm beauty} \, {\rm fraction} \, {\rm is} \, {\rm smaller}.$ Need to do more to separate b and c

Define three distributions:

- S_1 highest significance track
- S_2 2nd highest significance track with same sign as S_1
- S_3 3rd highest significance track with same sign as S_1 and S_2

Subtracted Significance (S_i) at Low Q^2

Subtract the negative S_i bins from the positive for both data and MC to reduce sensitivity to resolution of light quarks

For each $x - Q^2$ bin make a simultaneous fit to S_i and total number of inclusive events before CST track selection with 3 parameters:

- MC scale factor $c P_c$
- MC scale factor $b P_b$
- MC scale factor uds P_l

Structure Function Extraction

Fit results:
$$P_c = 1.34 \pm 0.06$$
,
 $P_b = 1.43 \pm 0.17$,
 $P_l = 1.16 \pm 0.01$
 $\tilde{\sigma}^{c\bar{c}}(x, Q^2) = \tilde{\sigma}(x, Q^2) \frac{P_c N_c^{\text{MCgen}}}{P_c N_c^{\text{MCgen}} + P_b N_b^{\text{MCgen}} + P_l N_l^{\text{MCgen}}}$
The differential c cross section is calculated from $\tilde{\sigma}^{c\bar{c}}(x, Q^2)$ as
 $\frac{d^2 \sigma^{c\bar{c}}}{dx \, dQ^2} = \tilde{\sigma}^{c\bar{c}}(x, Q^2) \frac{2\pi \alpha^2 (1 + (1 - y)^2)}{xQ^4} \Longrightarrow f^{c\bar{c}} = \frac{d\sigma^{c\bar{c}}/dx dQ}}{d\sigma/dx dQ}$
The structure function $F_2^{c\bar{c}}$ is then evaluated from the expression
 $\frac{d^2 \sigma^{c\bar{c}}}{dx \, dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [(1 + (1 - y)^2)F_2^{c\bar{c}} - y^2F_L^{c\bar{c}}]$
 $F_L^{c\bar{c}}$ is estimated from the NLO QCD expectation

Tatsiana Klimkovich (H1 Collaboration)

 $F_2^{car{c}}$:

- Consistent results with H1 and ZEUS D^* measurements
- Consistent with pQCD predictions
- Highest $Q^2 F_2^{c\bar{c}}$ measurement for H1 (hep-ex/0411046 accepted Eur. Phys. J)

MRST04 - Variable FNS CTEQ6HQ - Variable FNS

 $F_2^{bar b}$:

- First measurement of $F_2^{b\bar{b}}$
- Consistent with pQCD predictions
- MRST04 describes the data best
- Limit on the lowest Q^2 point comes from the fact that the fit to S_i is consistent with zero

MRST04 - Variable FNS

CTEQ6HQ - Variable FNS

DIS 2005, Madison, Wiscon

 $F_2^{car{c}}$ vs Q^2

 $F_2^{bar b}$ vs Q^2

Tatsiana Klimkovich (H1 Collaboration)

DIS 2005, Madison, Wiscor

 $F_2^{qar q}$ vs Q^2 MRST NNLO

 $F_2^{car{c}}\,{
m vs}\,Q^2$

Tatsiana Klimkovich (H1 Collaboration)

DIS 2005, Madison, Wiscor

Data vs Theory for $F_2^{bar{b}}$

HVQDIS (NLO)

MRST (NLO)

Conclusion

- Inclusive measurements of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ at Low and High Q^2 region using impact parameter method
- The cross sections and structure functions are found to be well described by predictions of perturbative QCD
- ullet The first measurement of $F_2^{bar b}$ in the low Q^2 kinematic regime
- $F_2^{c\bar{c}}$: Model dependent extrapolations to the full cross section are small
- 22% of charm and 0.8% of beauty contribution to the total ep cross section at low Q^2

 $F_2^{c\bar{c}}$

H1 PDF 2000 - Massless scheme

MRST04 - Variable FNS

CTEQ6HQ - Variable FNS

Tatsiana Klimkovich (H1 Collaboration)

 $F_2^{c\bar{c}}$

CCFM - Massive BGF

MRST04 - Variable FNS

CTEQ6HQ - Variable FNS

Tatsiana Klimkovich (H1 Collaboration)

MRST04 - Variable FNS

CTEQ6HQ - Variable FNS

CCFM - Massive BGF