

Analysis of the process $e^+e^- \rightarrow H_iH_j \rightarrow b\bar{b}b\bar{b}$ at TESLA

Tatsiana Klimkovich DESY, Hamburg

Tatsiana Klimkovich

ECFA/DESY LC Workshop, Amsterdam, April 2

TESLA

Future e^+e^- Linear Collider Luminosity: 500 fb^{-1} \sqrt{s} = 500 GeV

Contents:

- MSSM scenario
- Analysis of the process $e^+e^- \rightarrow H_i H_j \rightarrow b\bar{b}b\bar{b}$
- Higgs mass reconstruction:
 - Applied cuts
 - Energy rescaling
 - Kinematic fit
- Scan over the Higgs mass grid
- Indirect measurement of parameters of CP-violating MSSM scenario

CP-Conserving Scenario:

5 physical Higgs Bosons: 2 neutral CP-even: H^0 , h^0 1 neutral CP-odd: A^0 2 charged: H^+ , H^-

mass eigenstates = CP eigenstates

CP-Violating Scenario:

3 neutral Higgs Bosons:

 H_1, H_2, H_3 $M_{H_1} \le M_{H_2} \le M_{H_3}$

have mixed CP parities

mass eigenstates \neq CP eigenstates

CP-Violation:

 $m_{ ilde{g}}$ - Complex

 $A_{t,b}$ - soft SUSY-breaking trilinear coupling of the Higgs boson to top (bottom) squarks.

$h_{t,b}$ - Yukawa couplings.

Higgsstrahlung:

Parametrization of the Higgs sector:

 M_{H^+} and $tan\beta = \frac{v_2}{v_1}$

Analysis of $e^+e^- ightarrow H_2H_3 ightarrow bar{b}bar{b}$ at TESLA.

Signal (example point):

Parameter	Value
$\tan\beta$	19
M_{H^+}	164 GeV
$Re(A_t)$	285 GeV
$Im(A_t)$	771 GeV

$$M_{H_1}$$
 = 112.0 GeV
 M_{H_2} = 140.5 GeV
 M_{H_3} = 154.7 GeV

$$N_{events}(H_2H_3 \rightarrow b\overline{b}b\overline{b}) = 6305$$

Background: 9.4 million events

Signal and BG samples:

Process	σ [fb]
$H_1H_2 \to b\bar{b}b\bar{b}$	0.4196
$H_2H_3 \rightarrow b\bar{b}b\bar{b}$	12.61
$H_1H_3 \to b\bar{b}b\bar{b}$	3.428
$Z^0\gamma^* \to 2q$	13580
$W^+W^- \to 4q$	4134
$Z^0 Z^0 \to 4q$	314.3
$H_1 Z^0 \to b \bar{b} q \bar{q}$	34.63
$H_2 Z^0 \to b \bar{b} q \bar{q}$	6.043
$t\bar{t} \to W^+ W^- b\bar{b}$	669.3

Against 2-fermion background:

• Hadronic 4-jet events with full energy

Against 4-fermion background:

 Nonforward peaked and spherical events

For $t\bar{t}$ background reduction:

- Number of tracks and clusters cut
- Jet resolution parameter cut

Against light flavour quarks:

• b-Tag

Visible energy cut

Cuts against $t\overline{t}$ background

Number of "enflow" objects cut

Jet resolution parameter cut

Cuts

Reconstructed Mass Sum after Cuts

Cutflow

Cut	Signal	Eff.	Total BG
no cuts	6305	100.0	9401167
N_{jets}	6305	100.0	9330067
P_{vis}	6247	99.1	6055178
N_{tr}/jet	5943	94.3	2692089
$\cos(thrust)$	5549	88.0	1371713
thrust	5189	82.3	339074
$\log(y_{34})$	5074	80.5	309670
N_{eflow}	4608	73.1	268184
$\log(y_{56})$	3853	61.1	150522
B_{12}	3777	59.9	43905
B_{34}	3042	48.3	2485

Mass reconstruction improvement

The reconstructed mass sum is shifted:

Missing energy from decay neutrinos.

 \Rightarrow Energy rescaling:

$$E_{jet}, \vec{p}_{jet} * \frac{\sqrt{s}}{E_{vis}}$$

 \Rightarrow Kinematic Fit:

Use of constraints.

$$4cfit: \begin{cases} \sum E_i = \sqrt{s} \\ \sum p_{xi} = 0 \\ \sum p_{yi} = 0 \\ \sum p_{zi} = 0 \end{cases}$$

Kinematic fit:

$$Q(\vec{y}, \vec{\lambda}) = (\vec{y} - \vec{y_0})^T V^{-1} (\vec{y} - \vec{y_0}) + 2\vec{\lambda} \vec{f}(\vec{y})$$

 $\vec{f}(\vec{y})$ - constraints

- \vec{y} jet parameters
- $\vec{\lambda}$ Lagrange multipliers
- V error matrix

Error matrix: resolution functions

$$\sigma(\frac{p_{quark} - p_{jet}}{p_{quark}})(p_{quark})$$

$$\sigma(\phi_{quark} - \phi_{jet})(p_{quark})$$

$$\sigma(\theta_{quark} - \theta_{jet})(p_{quark})$$

Resolution functions

Momentum resolution

Mass reconstruction after fit

Reconstructed Mass Sum

Reconstructed Mass Difference

Improved mass reconstruction

Mass Sum

Mass Difference

Mass distinction

Mass Sum

Mass Difference

Mass grid

N	(M_{H_2}, M_{H_3}) [GeV]	N_{events}	Eff. [%]	$\delta\sigma/\sigma$ [%]
1	(90,100)	15000	4.09	26.93
2	(100,150)	12100	45.13	1.66
3	(100,200)	9140	43.17	2.11
4	(100,250)	6000	37.16	3.04
5	(140,150)	10300	47.88	1.78
6	(150,200)	6810	43.78	2.55
7	(150,250)	3850	37.70	4.21
8	(190,200)	4650	39.23	3.27
9	(200,250)	1550	31.58	8.52
10	(240,250)	150	25.44	44.19
an.point	(141,155)	6305	48.30	2.28

$$\sqrt{s}$$
 = 500 GeV
L = 500 fb^{-1}
BR($H
ightarrow b\overline{b}$) = 0.85
 $\sin^2(eta - lpha) = 1$

Cross section relative error:

$$\frac{\sqrt{N_{Signal} + N_{BG}}}{N_{Signal}}$$

Mass grid

Reconstructed Mass Sum

ΣM_{point}	ΣM_{rec} [GeV]	Width [GeV]
250	$\textbf{251.52} \pm \textbf{0.18}$	5.11
(295)	$\textbf{296.10} \pm \textbf{0.30}$	4.00
350	$\textbf{351.31} \pm \textbf{0.30}$	4.43
450	$\textbf{451.70} \pm \textbf{0.92}$	7.11

Mass grid

Reconstructed Mass Difference

ΔM_{point}	ΔM_{rec} [GeV]	Width [GeV]
10	9.37 ± 0.31	7.91
50	$\textbf{51.42} \pm \textbf{0.17}$	6.73
100	$\textbf{101.57} \pm \textbf{0.30}$	8.65
150	$\textbf{152.42} \pm \textbf{0.59}$	11.51

Measurement of parameters of CP-violating MSSM scenario

CP-Violating Scenario:

 $A_{t,b}$ - Complex

$$m_{ ilde{g}}$$
 - Complex

We measured: $\sigma * BR$, ΣM , ΔM

$$\Rightarrow$$
 We know: $\sigma * BR M_{H_i} M_{H_j}$

Example:

We know: $\sigma(e^+e^- \rightarrow H_1H_2) *$ $BR(H_1 \rightarrow b\bar{b}) * BR(H_2 \rightarrow b\bar{b})$ with precision 10 % M_{H_1}, M_{H_2} with precision 1 GeV

Summary

- Cut analysis for the process $e^+e^- \rightarrow H_iH_j \rightarrow b\bar{b}b\bar{b}$ at TESLA is made.
- Kinematic fit for the mass spectra is promising. Accuracy for the Higgs mass determination is several hudred MeV.
- Analysis is extended into the Higgs mass grid.
- Relative errors for the cross section are estimated.
- The prospects for CP-violating MSSM parameters measurements at TESLA are good.

Outlook

- Analysis improvement:
 - Implementation of the lepton veto against $t\bar{t}$ background.
 - -s' tag.
 - Proper treatment of the HZ background for the mass grid.
- Interpretation:
 - Combined 4b, $b\bar{b}\tau^+\tau^-$ and HZ analysis.
 - Interpretation for the **Snowmass points** in MSSM.
 - Analysis in the frame of **CP-violating** scenario.
 - Model independent interpretation.

Cuts

 $min(N_{tracks}/jet)$

