

Experimental Study of Higgs Bosons in Minimal Supersymmetric Extension of Standard Model at TESLA

Tatsiana Klimkovich

DESY, Hamburg

Tatsiana Klimkovich

DPG, Aachen, March 2

TESLA

Future e^+e^- Linear Collider Energies: 90 - 800+ GeV Integrated Luminosity: 350 $fb^{-1}/year$ at 500 GeV 500 $fb^{-1}/year$ at 800 GeV

Contents:

- MSSM scenario
- Analysis of the process $e^+e^- \rightarrow H_i H_j \rightarrow b \bar{b} b \bar{b}$
- Indirect measurement of parameters of CP-violating MSSM scenario

CP-Conserving Scenario:

5 physical Higgs Bosons: 2 neutral CP-even: H^0 , h^0 1 neutral CP-odd: A^0 2 charged: H^+ , H^-

mass eigenstates = CP eigenstates

CP-Violating Scenario:

3 neutral Higgs Bosons:

 H_1, H_2, H_3 $M_{H_1} \le M_{H_2} \le M_{H_3}$

have mixed CP parities

mass eigenstates \neq CP eigenstates

CP-Violation:

 $m_{ ilde{g}}$ - Complex

 $A_{t,b}$ - soft SUSY-breaking trilinear coupling of the Higgs boson to top (bottom) squarks.

$h_{t,b}$ - Yukawa couplings.

Higgsstrahlung:

Parametrization of the Higgs sector:

 M_{H^+} and $tan\beta = \frac{v_2}{v_1}$

Analysis of $e^+e^- ightarrow H_2H_3 ightarrow bar{b}bar{b}$ at TESLA.

Signal (example point):

Parameter	Value	
$\tan\beta$	19	
M_{H^+}	164 GeV	
$Re(A_t)$	285 GeV	
$Im(A_t)$	771 GeV	

$$M_{H_1}$$
 = 112 GeV
 M_{H_2} = 141 GeV
 M_{H_3} = 155 GeV

$$N_{events}(H_2H_3 \rightarrow b\overline{b}b\overline{b}) = 7000$$

Signal and BG samples:

Process	σ [fb]
$H_1H_2 \to b\bar{b}b\bar{b}$	0.4196
$H_2H_3 \rightarrow b\bar{b}b\bar{b}$	12.61
$H_1H_3 \to b\bar{b}b\bar{b}$	3.428
$Z^0\gamma^* \to 2q$	13580
$W^+W^- \to 4q$	4134
$Z^0 Z^0 \to 4q$	314.3
$H_1 Z^0 \to b \bar{b} q \bar{q}$	34.63
$H_2 Z^0 \to b \bar{b} q \bar{q}$	6.043
$t\bar{t} \to W^+ W^- b\bar{b}$	669.3

Against 2-fermion background:

• Hadronic 4-jet events with full energy

Against 4-fermion background:

 Nonforward peaked and spherical events

For $t\overline{t}$ background reduction:

- Number of tracks and clusters cut
- Jet resolution parameter cut

Against light flavour quarks:

• b-Tag

Visible energy cut

Cuts against $t\overline{t}$ background

Number of tracks and clusters cut

Jet resolution parameter cut

Reconstructed Mass Sum

Cutflow

3 combinations of 4 jets for 2 masses

Cut	Signal	Eff.	Total BG
no cuts	6305	100.0	9428007
N_{jets}	6305	100.0	9355106
P_{vis}	6217	98.6	6020137
N_{tr}/jet	5706	90.5	2669602
$\cos(thrust)$	5253	83.3	1383264
thrust	5126	81.3	399239
$\log(y_{34})$	4979	79.0	356903
N_{eflow}	4554	72.2	314351
$\log(y_{56})$	3930	62.3	207202
B_{12}	3719	59.0	48611
B_{34}	2845	45.1	3159

ΣM = (296.8 \pm 0.6) GeV

Improved Mass Reconstruction

Energy rescaling: $E_{jet}, \vec{p}_{jet} * \frac{\sqrt{s}}{E_{vis}}$

Mass Sum

4c fit: \vec{p} , E constraints

Mass Difference

 ΔM = (13.3 \pm 0.3) GeV

Improved Mass Reconstruction

Mass Sum Mass Difference $\Sigma M = 288 \text{ GeV}$ $\Delta M = 6 \text{ GeV}$ $\Sigma M = 296 \text{ GeV}$ $\Delta M = 14 \text{ GeV}$ $\Sigma M = 304 \text{ GeV}$ $\Delta M = 22 \text{ GeV}$ number of entries number of entries Photo Barrer 150 reconstructed mass sum[GeV] reconstructed mass difference[GeV] Distinguishable mass sum: 4 GeV Distinguishable mass difference: 8 GeV

We measured: $\sigma * BR, \Sigma M, \Delta M$ \Rightarrow We know: $\sigma * BR$ M_{H_i} M_{H_j}

Example:

We measured: $\sigma(e^+e^- \rightarrow H_1H_2)*$ $BR(H_1 \rightarrow b\bar{b}) * BR(H_2 \rightarrow b\bar{b})$ with precision 10 % Input from Higgsstrahlung: M_{H_1}, M_{H_2} with precision 1 GeV

It is found: we can measure

 $\arg(A_{t,b})$ (indirect)

Summary

- Cut analysis for the process $e^+e^- \rightarrow H_iH_j \rightarrow b\bar{b}b\bar{b}$ at TESLA is made.
- Kinematical fit for the mass spectra is promising. Accuracies for the Higgs mass determination without background are:

 $\sigma(\Sigma M) = \mathbf{200} \; \mathrm{MeV}$ $\sigma(\Delta M) = \mathbf{300} \; \mathrm{MeV}$

• The prospects for CP-violating MSSM parameters measurements at TESLA are good.

Outlook

- Kinematical fit: to include background.
- Scan over the Higgs mass grid.
- Full CP-violating MSSM parameters scan.