Lecture on limits: exercises
1. Bayes law
Frequentist limit and Gaussian approximation
Bayesian limit
Frequentist/Bayesian limits with background
Expected limit
CLs limit
Limits with systematic uncertainties

P N ok wN

Combining two channels

Note: most exercises require running Rool’ macros. For some exercises, the macros have to be
modified.

Preliminary versions of the macros are available on the statistics-school virtual machine:
/statistics-school/limts/

Improved versions of the macros (same functionality, but better/simpler implementation) are
available here:

http: // ww. desy. de/ ~sschm tt/Li mtLecture/ macros/
For downloading, You can use the two commands given below.
Load list of the macros:

wget -N -nd www. desy. de/ ~sschmtt/LimtlLecture/ macros. i st
Load the macros using the list:
wget -N -nd -i nacros.|ist

The macros included in this document are the improved versions.

http://www.desy.de/~sschmitt/LimitLecture/macros.list

Exercise 1: Bayes' law, test for a disease.

Test is positive in 99/100 cases if one has the disease

Test is positive in 1/100 cases if no disease

0.1% of the population have the disease

What is the probability to have the disease in case of a positive test?

A positive test
B have disease

P(B|A):—P<A1|DZ?L]))<B)

Exercise 2a: calculate the Frequentist limit on p for Ngp=0
Use the Poisson probability for N=0: P,(Nos=0) = exp[-p]

How does the calculation look like for No»=1,2,3,...

Exercise 2b: calculate the Frequentist limit p, for Nows=2,10,100 and compare to the Gaussian
approximation

For the Frequentist limit, use the macro Get Poi ssonLimt. C

voi d Get Poi ssonLimit(Double t cl,Int_t n0) {
/* calculates the |imt on the nunber of events
given n0 */
Doubl e_t nu=0. 5*TMat h: : Chi squareQuantile(cl,2*(n0+1));
cout<<"Limt on nmu at "<<100*c| <<"9%CL for nQbs="<<n0
<<" (Frequentist nethod) : "<<nmu<<"\n";

> exp(—Ho) Ky
N >N obs 0 0
N!

CL= has the inverse function

Ho= % TMath::ChisquareQuantile (CL,2 (N ,,,+1))

For the Gaussian approximation, use the macro Get GaussLimt. C

void Get GaussLimt(Double_t cl,Int_t n0) {
/* calculates the limt on the nunber of events
given n0 in the Gaussi an approxi mation. */
Doubl e_t mu=TMat h:: Erfclnverse(2.*(1.-cl))*TMath:: Sqrt (2. *n0)+n0;
cout<<"Limit on nmu at "<<100*cl <<"%CL for nObs="<<n0
<<" (Gaussi an approximation) : "<<mu<<"\n";
}

The approximation is 110=Nobs and c=sqrt(No»s). The macro uses the function
Tmat h: : Erfcl nver se

2 —
(1-CL)= qu exp(%)dx = TMath::ErfcInverse(2(1—CL))= x\/{;o

Collect the results in the table on page 12

Exercise 3a: calculate the Bayesian limit on p for No»=0 with ,flat prior*
Use Poisson’s law. How does the calculation look like for Ngs=1,2,3,...7

Compare to the Frequentist calculation from exercise 2.

Exercise 3b: Calculate the Bayesian limit on p for No,s=2,10,100 with ,flat prior” (macro
Get BayesCL. C). When using the macro, you have to test several values of i, to find the
CL=0.95.

Exercise 3c¢: modify the macro and use a prior distribution P(u)=pn

Exercise 3d: modify the macro and use a flat prior for O<p<umx=90, set the prior to zero for other
values of p

Collect the results in the table on page 12, together with the results of exercise 2.

The macro Get BayesCL. C

Doubl e_t Get BayesPri or (Doubl e_t mu) {
[l prior probability, used bel ow
Doubl e_t p=1.0;
return p;

}

voi d Get BayesCL(Double t mu0,Int_t nCbs) {
/* cal cul ates the Bayesian probability CL for nmy<=ny0
given nObs and the prior as defined above. */
TRandon8 rnd;
Int_t nTry=30000;
Doubl e_t suni 2], sun?[2];
sunf 0] =0.; sunj 1] =0.; sunR[0]=0.; sun?[1]=0.;
for(Int_t iTry=0;iTry<nTry;iTry++) {
/1 2*mu is drawn froma chi**2 distribution with ndf=2*(nobs+1)
Doubl e_t rmu=0. 5* TMat h: : Chi squareQuantil e(rnd. Uni form(), 2*(nChs+1));
/1 prior probability is used as wei ght
Doubl e t w = GetBayesPri or(mu);
Int_t i= (mu>=nmu0) ? 1 : O;
sunfi] +=w
sun[i] += ww;
}
Doubl e_t nornesuni 0] +sunf 1] ;
Doubl e_t p=suni 1]/ norm
Doubl e_t e=TMat h:: Sgrt (sunR[1] *sunf 0] *suni 0] +sun®[O] *suni 1] *sun{ 1]) / nor m/ nor m
cout <<"CL for nObs="<<nObs<<" and mu="<<nmul0<<" s "<<p<<" +/- "<<e<<"\n";

The integral is calculated using Monte Carlo techniques. Random numbers are generated in the
interval [0;1]: r nd. Uni f or n() . These are transformed to the distribution of the likelilhood, using
the function: Chi squar eQuant i | e . The prior distribution defines weights. These are summed
up for two regions: u<p, and p>po. The normalisation of the posterior is determined from the sum-
of-weights over both regions.

Exercise 4: calculate Frequentist/Bayesian limits for a given amount of background.
u=L(s+b) ,where L=1 and s=>0

For the background test the cases b={0.5,2,3.5}. For the number of observed events test the cases
Nops={0,2}.

Use the macros from exercise 2 and 3, Get Poi ssonLi mi t. C and Get BayesCL. C, modified
as needed.

For the Bayesian limit with background, modify the macro to use two arguments S, b instead of the
argument MUO. Use a (flat) prior taking into account the physically allowed region of s:

P(s)= 0 for s<0
1 fors>0

For the frequentist limit, divide by L and subtract b.

Collect the results in the table on page 12 together with the results from exercise 5,6,7.

For the Frequentist case: what is the meaning of the limit with s<0?

Exercise 5: calculate expected limits. Use the macro GetExpectedLimit.C. It calculates the expected
limit on the Poisson parameter p.

For the background test the cases b={0.5,2,3.5}.

Do You have to subtract b from the limit returned by the macro?

Collect the results in the table on page 12.

The macro Get ExpectedLimt. C

voi d CGet ExpectedLi mt(Double_t cl,Double_t mu) {
/* calculate the expected limt, given the confidence |eve
and t he Poi sson paranmeter mu. Note: does not work for very large mu */
Int_t nO=(int)nu;
Int_t nl=n0+1;
Doubl e_t p0=1.0;
i f(nmu>0.0) pO=TMat h:: Exp(nO*TMat h: : Log(nu) - nu- TMat h: : LnGamma(n0+1.));
Doubl e t pl=p0*nu/ni;
Doubl e_t sum=0. O;
whi | e((p0>0.) &&(n0>=0)) {
sum += p0*0. 5* TMat h: : Chi squareQuantil e(cl, 2*(n0+1));
p0 *= n0/ nu;
no- -;

}

whi | e(p1>0.0) {
sum += p1*0. 5* TMat h: : Chi squareQuantile(cl, 2*(nl+l));
nl++;
pl *= mu/nl;

}

cout<<"expected limt for CL="<<cl*100<<"% and mu="<<nu<<" is "<<sunk<"\n";

The average is calculated as a weighed sum of all limits for the possible observations, where the
weights are taken as the Poisson probabilities.

The sum is split into two parts. The splitting is done at the nearest integer to the Poisson parameter
mu.

First, the possible observations n0,n0-1,...,0 are summed up. Then the possible observations
n0+1,n0+2,... are summed up. In both cases the summing is stopped as soon as the weight is zero
(within the machine accuracy).

Exercise 6: calculate limits using the CLs method.

For the background test the cases b={0.5,2,3.5}. For the number of observed events test the cases
Nobs:{O,Z}.

Use the macro Get CLs. C. It calculates the modified Frequentist variable CLs, given Ny and
expected signal, background. You have to try different values of the signal, until the desired CL is
reached.

Collect the results in the table on page 12.

Why are the results so similar to the Bayesian case?

The macro Get CLs. C

void Get CLs(Doubl e t signal,Double_t bgr,Int_t nobs) {

}

/* calculate CLs for the given
si gnal, background , nobs. Does not work for high nobs. */
Doubl e t cl _s;
Doubl e_t cl _b=0. 0;
Doubl e_t cl _sb=0.0;
Doubl e t | nGanma=0. 0;
Doubl e_t 1 ogB=TMat h:: Log(bgr);
Doubl e_t | 0gSB=TMat h: : Log(si gnal +bgr);
for(lnt_t i=0;i<=nobs;i++) {
Doubl e t p_b=TMat h: : Exp(i *| ogB- bgr -1 nGamm) ;
Doubl e_t p_sb=TMat h: : Exp(i *1 ogSB- si gnal - bgr - | nGanm) ;
cl _b += p_b;
cl _sb += p_sb;
| nGamma +=TMat h: : Log(i +1);

cl _s=cl _sb/cl _b;
cout <<"For signal ="<<signal <<" and bgr="<<bgr<<" CLS is "<<cl_s<<"\n";

This macro sums the probabilities for all possible N<Ns, given background only or background
plus signal.

Exercise 7: limits with systematic uncertainties. Use a background error of 50% and a luminosity
error of 10%.

For the background test the cases b={0.5,3.5}. For the number of observed events test the cases
Nops=10,2}. Calculate each case with/without the errors on the background and/or luminosity.

Collect the results in the table on page 12.

What is the influence of the systematic errors? Which systematic error is most relevant for the
limit?

The macro Get CLsSys. C:

voi d Get CLsSys(Doubl e_t signal, Doubl e_t bgr, Double_t dBgr, Doubl e t dLum,Int_t
nobs) {
/* calculate CLs for the given signal, background, errors
and observed nunmber of events, using Monte Carlo nethods */
TRandon8 rnd;
Int_t nTry=30000;
Doubl e_t nexp_sb=0. 0;
Doubl e_t nexp_b=0. 0;
for(Int_t iTry=0;iTry<nTry;iTry++) {
/* get Luminosity fromtruncated Gaussian */
Double_t 1=1.0;
i f(dLum >0.0) {
do {
| =rnd. Gaus(1. 0, dLum);
} while(l<=0.0);
}
/* get Background fromtruncated Gaussian */
Doubl e_t b=bgr;
i f(dBgr>0.0) {
do {
b=r nd. Gaus(bgr, dBgr) ;
} whil e(b<=0.0);
}
Int_t n_b=rnd. Poi sson(l*b);
Int_t n_sb=rnd. Poisson(l*(signal +b));
i f(n_b<=nobs) nexp_b += 1.0;
i f(n_sb<=nobs) nexp_sb += 1.0;
}
Doubl e_t cl _s=nexp_sb/ nexp_b;
Doubl e_t dcl _s= TMath:: Sgrt (nexp_sb+nexp_b*cl _s*cl _s)/ nexp_b;
cout <<"CLSsys="<<cl| _s<<" +/- "<<dcl _s<<" for B="<<bgr<<" +/- "<<dBgr
<<", L=1 +/- "<<dLum <<", signal ="<<signal <<"\n";
}

The macro is discussed in the lecture.

10

Exercise 8: events are observed in two channels. Calculate limits (CLs method) on the number of
signal events, (a) for each of the two channels alone, (b) using the plain sum of both channels and
(c) for the combination of the two channels.

For (a) and (b) use Get CLs. C(take care of the efficiency!) or modify the macro below.
For (c), use the macro Get CLsConbi ned. C

Collect the results in the table on page 12.
The macro Get CLsConbi ned. C

Doubl e t GetX(Int_t nChan,Int_t *nobs, Double_t signal, Double_t *eff, Double_t *b)

Doubl e_t x=0.;

for(Int_t i=0;i<nChan;i++) {
Doubl e t s=signal *eff[i];
X += nobs[i]*s/b[i];

}

return Xx;

}
voi d Get CLsConbi ned(Doubl e_t signal) ({
TRandon8 rnd;
/] data to be tested
static Int_t nCbs[2] ={7 ., 20},
static Double_ t bgr[2]={6.5,1.8 };
static Double t eff[2]={0.5,0.5 };
Int _t firstChannel =0;
Int_t |astChannel =1
/1 nunber of toy experinents
Int_t nTry=100000;
/1 count toy wt data experinents
Doubl e_t ndata_sb=0. 0;
Doubl e_t ndat a_b=0. 0;
/1 observed X from data
Doubl e_t Xobs=Get X(firstChannel, | ast Channel , nQbs, si gnal , ef f, bgr);
/1 toy experinents
for(Int_t iTry=0;iTry<nTry;iTry++) {
Int_t n_b[2],n_sb[2];
for(Int_t i=firstChannel;i<=lastChannel;i++) {
n_b[i]=rnd. Poisson(bgr[i]);
n_sb[i]=rnd. Poi sson(signal *eff[i]+bgr[i]);

}

Doubl e t X b=Get X(first Channel, | ast Channel ,n_b, signal ,eff, bgr);
Doubl e t X sb=Get X(firstChannel, | ast Channel, n_sb, signal, eff, bgr);
i f (X_b<=Xobs) ndata_b++;

i f (X_sb<=Xobs) ndata_sb++;

Doubl e t cl s=ndata_sb/ ndat a_b;

Doubl e_t

s_err=TMat h: : Sgrt (ndata_sb)/ndata_b*TMat h:: Sgrt (1. +ndat a_sb/ ndata_b);
cout <<"CLS(dat a) ="<<cl s<<" +/- "<<cls_err<<"\n";

C

Probabilities are calculated using MC experiments, similar to the macros discussed earlier.

11

Results of Exercises 2/3

Nobs=0 Nobs=2 Nops=10 Nops=100
Exercise 2
Frequentist limit
Gauss approx
Exercise 3
a/b: Bayesian ,,flat prior
c: Bayesian prior=p
d: Bayesian flat prior 0<u<100
Results of exercises 4,5,6,7
b=0.5 b=2 b=3.5
Nobs=0 Nobs=2 Nops=0 Nobs=2 Nops=0 Nobs=2
Exercise 4
Bayesian
Frequentist
Exercise 5
expected
Exercise 6
CLs
Exercise 7
Gv/b=50%
o/L=10% The calculation for b=2 is
Gy/b=50%, not requested here
ou/L=10%
Results of exercise 8
Method | N bgr CLS Limit
(a) Channel 1 |7 6.5
Channel 2 |2 1.8
(b) Add 9 8.3
channels
(©) Combined |(7,2) (6.5,1.8)
w=s/b

12

