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Unfolding is required, due to migration effects, for the measurement of distributions in HEP, where the quantity of interest is often measured indirectly. Unfolding
is an linear inverse problem with a coefficient matrix, which is usually ill-conditioned. Techniques of standard linear algebra no longer apply and the numerical
treatment becomes more difficult. Available additional information can be used to stabilize the solution, without introducing a significant bias. The use of these
regularization methods requires some insight into statistical behavior and mathematical operations.

1. Cross section determination

2. Unfolding by matrix inversion

3. Least squares methods

4. Regularization methods

Summary
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1. Cross section determination

The measurement of distributions, cross sections in Hep . . . is complicated by

• migration effects, limited acceptance, and limited statistical precision

Measurement/MC: true distribution =⇒ A =⇒ measured distribution

direct A = Kernel, response matrix

Unfolding: true distribution ⇐= A# ⇐= measured distribution

inverse A# = generalized inverse

Unfolding (deconvolution) with the inverse transition is a complex mathematical operation (ill-posed
problem, instability of solution) and requires a good understanding of the detector. Straightforward
methods can result in solutions which look chaotic. Alternative home-made methods usually produce
biased results.

The generalized inverse A# should depend only on the detector properties, it should not depend on
the expected result; it allows to propagate the input errors to the result. The product Ξ = A#A is
called resolution matrix.
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Counting events . . . and cross section determination 1 channel

Cross sections are measured by counting events for the specific process:

cross section =
number of events

integrated luminosity
=

n∫
L dt

Detector acceptance probabilities and [efficiencies], ε1, ε2 . . . have to be taken into account:

cross section =
n

ε1 · ε2 · · · εk
∫
L dt

=
n

A
∫
L dt

where A = total acceptance and
∫
L dt = integrated luminosity.

The candidate event sample may contain background, which has to be subtracted:

cross section =
ncand − τ · nbg

A
∫
L dt

For a small number of events this represents the classical problem of observing a signal in the presence of background (limit calculation).

Statistics:

• the number(s) n of events follows the Poisson distribution;

• the total acceptance factor A follows the log-normal distribution (i.e. logA is Gaussian);

• the factor τ and the integrated luminosity
[∫
L dt

]
follow a Gaussian distribution.
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Cross section in bins > 1 channel/bin

Cross section xi as a function of a variable is measured in bins (bin index i), in ideal case of perfect
resolution:

(cross section)i ≡ xi =
ni,cand − τ · ni,bg

Aii
[∫
L dt

]
In practice there are migration effects between bins: an event originating from bin j is measured in
another bin i, due to limited detector resolution. It becomes impossible to consider one bin without
the other bins: A→ A = matrix with elements Aij:[∫

L dt
]
·
∑
j

Aij xj + τ · ni,bg = ni,cand

using matrix formalism:
[∫
L dt

]
·Ax+ τnbg = ncand

In the following the equations are written without the factor
[∫
L dt

]
and without background τnbg,

and the measured histogram is the vector y:

Ax = y

to be solved for the cross section x, given A and y.

Basis is Fredholm integral equation of first kind:

∫
A(x, y) f(x) dx = g(y)

which is written in discrete form above.
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Inverse problems in other fields

Linear inversion: (measurement) y ⇒ x (unfolded distribution)

There is an extensive literature about unfolding, which is of great importance in many different fields:

• tomography in medicine, archaeology, biology, geophysics, oceanography, materials science, as-
trophysics . . . using several different physical phenomena including
X-rays, gamma rays, positron-electron annihilation reactions, nuclear magnetic resonance, ultra-
sound, electrons, ions . . . ;

• image restauration, picture deblurring;

Special conditions in HEP:

Statistical precision of measurement y often limited;

Response matrix A defined by MC sample of events;

Covariance matrix V x of unfolding result x required!

Literature:
Per Christian Hansen, Rank-Deficient and Discrete Ill-posed Problems, Siam (1998)
Jari Kaipio and Erkki Somersalo, Statistical and Computational Inverse Problems, Springer (2005)
Curtis R. Vogel, Computational Methods for Inverse Problems, Siam (2002)
Andreas Rieder, Keine Probleme mit Inversen Problemen, Vieweg (2003)
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Response/acceptance matrix determination . . . by MC simulation

Standard method for the determination of the response matrix A in HEP is Monte Carlo simulation.
Input to the simulation is a certain ”true“ distribution f(x), in the form of a histogram of event numbers
{N1, N2 . . .Nn}. In the simulation an event from bin j is generated, simulated in the detector and
reconstructed/observed in bin i.

Nj = number of events, generated in bin j = 1 . . . n

Nij = number of events, observed in bin i = 1 . . .m, generated in bin j

N0j = number of events, not observed, generated in bin j

Aij =
Nij

Nj
= probability to observe in bin i, if generated in bin j

Equation Ax ∼= y (Measured histogram y is m-vector, result histogram x is n-vector, m ≥ n)

A11x1 + A12x2 + A13x3 + . . . A1nxn ∼= y1

A21x1 + A22x2 + A23x3 + . . . A2nxn ∼= y2

A31x1 + A32x2 + A33x3 + . . . A3nxn ∼= y3

. . .

Am1x1 + Am2x2 + Am3x3 + . . . Amnxn ∼= ym

Note that the probabilities Aij do not depend on the MC distribution {N1, N2 . . .Nn}
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HEP acceptance correction Correction factor method (CFM)

If there is no migration between bins:

(cross section)i ≡ xi =
ni,cand − τ · ni,bg

Aii
[∫
L dt

] =⇒ ni,cand − τ · ni,bg

nMC
rec /n

MC
gen

[∫
L dt

]
using identical bins for the true and measured variable. The correction factor nMC

gen /n
MC
rec is the inverse

acceptance probability of the bin, if there is no migration between bins.

The same method is used in many experiments even if there are migration effects between bins, i.e.
using no matrix, and fixing migration to the input assumption.
Purity P and stability S determined from an adjusted/optimized Monte Carlo event sample

Purity P =
nMC

rec,gen

nMC
rec

Stability S =
nMC

rec,gen

nMC
gen

(
nMC

rec

nMC
gen

=
S

P

)

• An method without any matrix (operation), without the use of data covariance matrix V y;
• migration out of bin and into bin fixed by Monte Carlo input assumption;
• calculation of covariance matrix V x undefined;
• very popular in HEP.
• – for the estimate by CFM it is hard to calculate noise characteristics and bias in the estimate because of

nonlinearity of the procedure (V.B.Anykeyev et al.,NIM A 322 (1992) 280-285
• Correction factors – a disaster. . . . The data will tend to follow the MC that gave you the correction factors

. . . (Roger Barlow, SLUO Lecture 9 (2000) SLAC
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2. Unfolding by matrix inversion

Equation Ax ∼= y (Measured histogram y is m-vector, result histogram x is n-vector, m ≥ n)

Case n = m, matrix A is square, non-symmetric Case n < m, matrix A is rectangular

A × x = y A × x ∼= y

Case of m = n can be solved by matrix inversion, without least squares:

Ax = y

Direct solution: x = A−1y V x = A−1V y

(
A−1

)T

Note: the covariance matrix V y has no influence on the result x; residuals are zero.
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Example of unfolding problem . . . by inversion

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Unfolding by inversion

10 20 30

-2000

0

2000

4000 Parameter and cov.matrix (inversion)  [0]

Huge fluctuations, due to large negative corre-
lations: neighbour bin −95%, second +85%.

True curve f(x) is shown in red.
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General unfolding requirements . . . in HEP

The requirements for the solution of the unfolding equation

Ax ∼= y

• Complete usage of all available measurement information, including the (usually diagonal) co-
variance matrix V y of measured vector y.

• Unfolding should introduce no bias, with respect to a particular model of the physical process
and Monte Carlo simulation.

• Unfolding should introduce no or only a small bias, with respect to general requirements of
the solution (a general requirement is e.g. smoothness of the solution).

• Complete covariance matrix V x of solution (and weight matrix W x = inverse covariance matrix)
to be used in subsequent fits of parametrizations to the data.
For a linear solution x = A#y by standard error propagation:

V x = A# V yA
#T

.

• Solution should have small correlations between different x-bins. Correlation coefficients up to
±0.5 are acceptable, values |±ρ| > 0.9 should be avoided, i.e. the matrix V x should be almost
diagonal.

A correct determination of the response matrix A (e.g. by Monte Carlo) is essential.
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Response matrix . . . from Monte Carlo simulation

The response matrix A is generated from Monte Carlo x− y-pairs.
The resolution is deteriorated, if too few bins are used (m too small).

10 20 30
0

20

40

60

scatter plot x

10 20 30
0

20

40

60

raw 8× 8 bins x

10 20 30
0

20

40

60

fine 16× 32 bins x
Example: plots of x versus y, with small non-linearity in y = y(x) . . .

use number of y-binsm & 2n

Never use n = m with identical bins! – (“inverse crime”: . . . the numerical methods contain features
that effectively render the inverse problem less ill-posed than it actually is, thus yielding unrealistically
optimistic results.)

V. Blobel – University of Hamburg Data unfolding page 11



Problem: Unfolding with 2 bins

Exercise in unfolding and propagation of uncertainties

probability matrix A =

 A11 A12

A21 A22

A01 A02

 =

 0.7 0.4
0.3 0.6
0 0


Example: A12 is probability to observe in bin 1, originating from bin 2.

inverse matrix A−1 =
1

A11 · A22 − A12 · A21

(
A22 −A12

−A21 A11

)
=

(
? ?
? ?

)

observed values y = Ax =

(
y1

y2

)
=

(
64
36

)
V

(
y1

y2

)
=

(
64 0
0 36

)

calculate “true” values x = A−1y =

(
x1

x2

)
= ? V

(
x1

x2

)
=

(
? ?
? ?

)
calculate sum and diff =

(
x1 + x2

x1 − x2

)
= ? V

(
x1 + x2

x1 − x2

)
=

(
? ?
? ?

)

Replace ? by numbers!
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Solution: Unfolding with 2 bins

Solution for the exercise in unfolding

probability matrix A =

 A11 A12

A21 A22

A01 A02

 =

 0.7 0.4
0.3 0.6
0 0


inverse matrix A−1 =

1

A11 · A22 − A12 · A21

(
A22 −A12

−A21 A11

)
=

(
2 −4/3
−1 7/3

)

observed values y = Ax =

(
y1

y2

)
=

(
64± 8
36± 6

)
V

(
y1

y2

)
=

(
64 0
0 36

)

“true” values x = A−1y =

(
x1

x2

)
=

(
80± 17.9
20± 16.1

)
V

(
x1

x2

)
=

(
320 −240
−240 260

)
sum and diff =

(
x1 + x2

x1 − x2

)
=

(
100± 10
60± 32.6

)
V

(
x1 + x2

x1 − x2

)
=

(
100 60
60 1060

)

The correlation coefficient between x1 and x2 is ρ = −0.83,
and between x1 + x2 and x1 − x2 it is ρ = +0.18.
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The wonderful world of correlations

Average of two correlated numbers d1 and d2 (assuming σ1 = σ2) with positive/negative correlation:

average d = 1
2

(d1 + d2)

V d = 1
2

(1 + ρ12)σ2 V =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)

ρ12 = +0.95

0 2 4 6
0

2

4

6

8

Averaged value has almost the same error
as each single data value (0.987σ).

ρ12 = −0.95

0 2 4 6
0

2

4

6

8

Averaged value has much smaller error
than each single data value (0.158σ).
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3. Least Squares methods

Optimal solution in the least squares sense of the equation Ax ∼= y is defined by the requirement

F (x) = ‖Ax− y‖2 = minimum

In the following the covariance matrix V y is inserted:

F (x) = (Ax− y)T V −1
y (Ax− y) = minimum

In the normal-equation formalism for the solution the matrix equation(
ATV −1

y A
)
x =

(
ATV −1

y y
)

Cx = b C =
(
ATV −1

y A
)

b =
(
ATV −1

y

)
y

has to be solved. The solution vector x is a linear transformation of the measurement vector y, which
allows standard error propagation:

x = A#y A# =
(
ATV −1

y A
)−1

ATV −1
y V x = A# V yA

#T
= C−1

V. Blobel – University of Hamburg Data unfolding page 15



The measured distribution

Measured histogram in 40 bins . . .

0 1 2
0

100

200

300
Y = measured variable  [802]

. . . reconstruction by unfolding will be done in 16 bins, with σ = bin-width.
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Example of unfolding problem . . . by inversion

Example of unfolding problem with σ = bin size (Gaussian resolution)

Data points with error bars

0 1 2

-1000

0

1000

2000

True curve f(x) is shown in red.

Matrix of correlation coefficients

0 5 10 15
0

5

10

15

Covariance matrix

−1 ≤ ρij ≤ +1
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Properties of the LS solution

The potential bias and the accuracy of a method should be checked.

(1) Check of a potential bias in the solution:

estimator x̂ = A#y with E [y] = Axexact

E [x̂] = A#E [y] =
(
A#A

)
xexact = xexact

⇒ the estimator x̂ is unbiased, because: resolution matrix Ξ ≡ A#A = 1.

(2) Variance: Lower bound of the variance is given by the Rao-Cramér-Frechet (RCF) inequality. The
covariance matrix V x is equal to the lower bound:
⇒ the estimator x̂ has the smallest possible variance for an estimator with zero bias.

General statement by the Gauss-Markov theorem: the least square estimate is unbiased and efficient.

But: the result x̂ will often show large, unacceptable fluctuations!

The fluctuations are not caused by inaccurate matrix elements (from Monte Carlo), but are inherent
in the problem, i.e. the response matrix A and its “smoothing” properties.
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Matrix diagonalization

Study transformation properties of symmetric n-by-n matrix C = (AV −1
y A

T)

by decomposition in the form

C = UΛUT Λ = UTCU UTU = UUT = I C−1 = UΛ−1UT

with a diagonal matrix Λ.

All matrices in the decomposition are n-by-n matrices: C

 =

 U

 ·


λ1

λ2

. . .

λn

 ·
 UT



Eigenvalues λj ≥ 0 are in decreasing order, with λ1 ≥ λ2 ≥ . . . λn ≥ 0.

The orthogonal matrix U = [u1,u1, . . . ,un] is an array of column vectors = eigenvectors uj of the
matrix C.
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. . . contnd.

If the inverse C−1 exists (i.e. all λj > 0):

x = C−1b = UΛ−1/2
(
Λ−1/2UT

)
b = UΛ−1/2c with coefficients c = Λ−1/2UTb ,

i.e. the solution is expressed by a vector c of Fourier coefficients.

The covariance matrix of the vector of Fourier coefficients c is simply the unit matrix, because

V c =
(
Λ−1/2UT

)
V b

(
UΛ−1/2

)
=
(
Λ−1/2UT

)
C
(
UΛ−1/2

)
= Λ−1/2ΛΛ−1/2 = 1 .

The solution can be written with a sum in the form

Solution: x =
n∑
j=1

1√
λj
cjuj with cj =

1√
λj

(
bTuj

)
V x =

n∑
j=1

1

λj
uju

T
j

Fourier coefficients cj, which are insignificant (compatible with zero), should follow a normal distribu-
tion N(0, 1); this allows simple statistical tests for significance.

The insignificant coefficients can make a huge and dominating contribution to the solu-
tion x, if the eigenvalues λj are small. Diagonalization allows to determine the degree of
freedom = number of significant coefficients
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Eigenvalue spectrum and Fourier coefficients

Eigenvalues = λj

5 10 15
1E-8

1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

1

Eigenvalues

The eigenvalues decrease by ≈ 8 orders of magni-
tude, due to limited resolution.

Fourier coefficients = cj

0 5 10 15

-1

0

1

10

Fourier coefficients and filter dependence

Note: the cj are independent, and all have error
1 ⇒ only ten coefficients are significant.

Truncation: The truncated solution can be written with a sum up to k = 10 only (instead of n)
. . . the noisy contributions are removed from the result, without the introduction of a bias, . . . but the
rank of V x is only k (< n) ( ⇒ V x is singular).
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4. Regularization methods

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution!
⇒ control the norm of the residuals and, simultaneously, the norm of the solution x.

Thikhonov-Phillips: Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum τ > 0 L = 1

Matrix equation:
(
ATV −1

y A+ τ · 1
)

x = ATV −1
y y to be solved

(C + τ · 1) x = b

(diagonalization of C) U (Λ+ τ · 1)UTx = b

Fourier coefficients c = Λ−1/2UTb filter factor fj =
λj

λj + τ
= 1 . . . 0.5 . . . 0

Solution: x =
n∑
j=1

fj√
λj
cjuj with cj =

1√
λj

(
bTuj

)
(±1)

The result x is expressed as a superposition of eigenvectors uj, each weighted with the
Fourier coefficient cj and 1/

√
λj (!); the filter factor fj reduces the effect of insignificant

contributions, without introducing a bias.
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Plot of the eigenvectors uj

solution x =
n∑
j=1

fj√
λj

cj uj

The solution x is expressed as a su-
perposition of normalized eigenvec-
tors uj, each

• proportional to the Fourier co-
efficient cj (±1), and

• weigthted by 1/
√
λj (!);

• the filter factor fj reduces the
effect of insignificant contri-
butions.
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Second derivative

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution!
⇒ control the norm of the residuals and, simultaneously, the norm of second derivative Lx.

Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum τ > 0

x′′i ∝ xi−1 − 2xi + xi+1 L =


1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1



Matrix equation:
(
ATV −1

y A+ τ ·LTL
)

x = ATV −1
y y to be solved(

C + τ ·LTL
)

x = b

R (1 + τ · S)RT x = b with R = U 1Λ
1/2U 2

requires simultaneous diagonalization of two symmetric matrices C and LTL (S is diagonal).

Fourier coefficients c = UT
2Λ
−1/2UT

1 b filter factor fi =
λj

λj + τ
with λ = S−1

jj

Often better than standard regularization (L = 1), but depends on order of bins (2-dim solution?)! ⇒more

V. Blobel – University of Hamburg Data unfolding page 24



Regularization parameter I

Discrepancy principle (Morozov): choose τ such that ‖Axreg − y‖2
2 = ndf

L-curve method: plot ‖Lxreg‖2 versus ‖Axreg − y‖2 for a set of τ -values ⇒ dependence has
shape of an L with a distinct corner: optimal value of τ .

Effective number of degrees of freedom: (Run) determine ndf from spectrum of Fourier coeffi-
cients cj, and determine τ such that sum of filter factors

n∑
j=1

λj
λj + τ

= ndf

Minimum of global correlation: minimum mean value of global correlation coefficients

Definition: ρj =

√
1−

[
(V x)jj ·

(
V −1

x

)
jj

]−1

with 0 ≤ ρj ≤ 1

The global correlation coefficient is a measure of the total amount of correlation between element j of x and all other elements.

The arithmetic and the geometric mean of all n global correlation coefficients is determined for
a large range of τ -values: the τ -value with the smallest mean value is accepted.

. . . seems to be the best method!

V. Blobel – University of Hamburg Data unfolding page 25



Regularization parameter II

L-curve

1.4 1.6 1.8

4

6

8 L curve

log10 of chi^2

lo
g1

0 
of
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ur
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tu

re

negative correlation

positive correlation

weak regularization

strong regularization

Dependence as a function of τ

-8 -6 -4 -2 0
0

0.5

1

1.5

exponent n of tau = 10^n

optimal regularization in region of largest curvature

circle=minimum

magenta/cyan=mean global correlation
green=χ2 probability

red=average probability
blue=relative sigma
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Unfolding results . . . two resolution

Regularization parameter τ taken from minimum of mean of global correlation coefficients:

σ = bin-width σ = 1
2
× bin-width

0 1 2
0

200

400

600

800

0 1 2
0

200

400

600

800

Small bias at the peaks. Reduced bias at the peaks.
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Correlation matrices

σ = bin-width σ = 1
2
× bin-width

0 5 10 15
0

5

10

15

Covariance matrix

0 5 10 15
0

5

10

15

Covariance matrix

Correlations ρj,j+1 ≈ +0.1 and ρj,j+2 ≈ −0.25 Correlations ρj,j+1 ≈ ±0.08 and ρj,j+2 ≈ −0.1
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Summary

Pragmatic decisions about the selection of unfolding methods alone are suboptimal:

• Tests of black-box unfolding algorithms on a few selected examples are not sufficient;

• it is essential, to understand the statistical and mathematical properties of the algorithms!

Experimental data, measured with limited resolution and acceptance, require unfolding to
allow a correct interpretation:

• Statistical errors are increased, if there are migration effects.

• Number of bins of unfolded distribution is in general small, and has to be adjusted to the size
of migration effects – otherwise correlations between bins will be large.

• Methods based on Least squares (for Gaussian errors) and Poisson ML (for counting
data), supplemented by regularization terms, using orthogonalization methods (singular values
or diagonalization), exist and allow to control a potential bias and to propagate the measurement
errors.
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Unfolding example

• Unfolding by inversion

• Eigenvalues and coefficients

• Truncation

• Correlation matrices

• Regularization method

• Bin combination: 2→ 1

• Low-pass regularization with 3→ 1 averaging

• Low-pass regularization

•

• Regularized unfolding by RUN
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Unfolding by inversion

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Unfolding by inversion

10 20 30

-2000

0

2000

4000 Parameter and cov.matrix (inversion)  [0]

Huge fluctuations, due to large negative corre-
lations: neighbour bin −95%, second +85%.

True curve f(x) is shown in red.
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Eigenvalues and coefficients . . . for example

Example of unfolding problem with σ/binwidth = 3

Eigenvalues uj

5 10 15 20
1E-7

1E-6

1E-5

1E-4

0.001

0.01 Eigenvalues, coeffs, eigenvectors  [12]

Eigenvalues decrease by 4 orders of magnitude.

Normalized coefficients cj

0 10 20
0

1

10

Only 10 of the 20 coefficients are significant.

Red lines are for 1, 2, 3 and 4 standard deviations.
Statistical errors are 1 for all coefficients.

Diagonalization allows to determine the degree of freedom = number of significant coefficients
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Truncation

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Truncation method (15 terms kept)

10 20 30
0

500

1000

Parameter Cov.matrix  [0]

Reduced fluctuations, but large errors due to
large correlations.

True curve f(x) is shown in red.
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Correlation matrices

Example of unfolding problem with σ/binwidth = 3

Colour graph of correlation coefficients ρ with range −1 . . .+ 1:

Direct inversion

0 10 20
0

10

20

Parameter and cov.matrix (inversion)  [7]

Large negative and positive correlations: neighbour
bin −95%, second neighbour +85%.

Truncation method (15 terms kept)

0 10 20
0

10

20

Parameter Cov.matrix  [15]

Correlations reduced, negative for neighbour
bin −40% and second neighbour −30%.
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Regularization

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Unfolding by regularization τ = 10−5

10 20 30
0

500

1000

Parameter and cov.matrix (inversion)  [0]

Reduced fluctuations: correlations neighbour
bin −80% and second neighbour +40%.

True curve f(x) is shown in red.
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Bin combination 2→ 1

Reduce correlations and errors by combination of two bins to one:

Example of unfolding problem with σ/binwidth = 3 ⇒ 1.5

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Unfolding by regularization τ = 10−5

10 20 30
0

1000

2000

Combined result: 2 bins -> 1 bin  [0]

Reduced fluctuations: correlations neighbour
bin −20% and second neighbour −30%.

True curve f(x) is shown in red.
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Low-pass regularization with 3→ 1 averaging

Without regularization there are large bin-to-bin fluctuations due to negative correlations between
neighbour bins. These fluctuations can be suppressed in a low-pass filter by averaging 3-to-1 bins:

xj = 1
4
xj−1 + 1

2
xj + 1

4
xj+1 or general xj = ajxj−1 + (1− 2aj)xj + ajxj+1

The factor aj can be chosen to minimize1) the variance of xj, using the known matrix V x.

Pro: Fluctuations are really suppressed and the true dependence is clearer visible. ⇒ more

No bias, if number of bins large and no strong structure.

Con: In regions of larger second-derivatives a bias is introduced, because the above filter assumes an
almost linear dependence over 3-point regions.
First and last bins disappear.

The general averaging algorithm for this “local”-regularization method:

x = Tx

V x = TV xT
T

with T =


a2 1− 2a2 a2 0 · · · 0 0 0
0 a3 1− 2a3 a3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · an−1 1− 2an−1 an−1


Question: Can the bias in curved regions be avoided in an improved averaging algorithm?
1) O. Helene et al., NIM A 523 (2004) 186; NIM A 580 (2007) 1466 - 1473
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Low-Pass regularization

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Low pass after regularization τ = 10−5

10 20 30
0

500

1000

Transformed result  [0]

Reduced correlations: neighbour bin−10% and
second neighbour −30%.

True curve f(x) is shown in red.
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Regularized UNfolding by RUN

The program for regularized unfolding:

• Developed in the 1980’s and under conditions of the 1980’s (with punched cards?);

• input are n-tuple files, with additional quantities for detailed checks after unfolding;

• measured distribution can be > 1-dimensional;

• curvature (square of second derivates) is used for regularization;

• use of cubic splines to represent intermediate result without discontinuities; allows to calculate
accurate second derivatives for regularization and finding of optimized bins;

• maximum likelihood fit based on Poisson distribution;

• final result converted to bins (optional with different optimized bin size)

• Test of covariance matrix:

– Generate large number of sets of random measurements from the n-dimensional normal
distribution, using full matrix V x.

– Calculate χ2 for each set, ignoring all off-diagonal elements of V x.

– Convert each χ2 with ndf into the p-value and make histogram of p-values.

Off-diagonal elements can be neglected, if the histogram of p-values is flat.

Now converted to C++.
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