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Abstract

Finite detector resolution and limited acceptance requirapply unfolding

methods in high energy physics experiments. Informatiotheretector reso-
lution is usually given by a set of Monte Carlo events. Bagethe experience
with a widely used unfolding program (RUN) a modified methas fbeen

developed.

The first step of the method is a maximum likelihood fit of theri#oCarlo

distributions to the measured distribution in one, two ee¢hdimensions; the
finite statistic of the Monte Carlo events is taken into actdwy the use of
Barlows method with a new method of solution. A clusteringhmd is used

before to combine bins in sparsely populated areas. In tengestep a regu-
larization is applied to the solution, which introducesyoalsmall bias. The
regularization parameter is determined from the data aftéragonalization

and rotation procedure.

1. THE UNFOLDING PROBLEM

A standard task in high energy physics experiments is thesumement of a distributiorf (x) of some
kinematical quantity:. With an ideal detector one could measure the quamtityevery event and could
obtain f(x) by a simple histogram of the quantity With real detectors the determination ¢fx) is
complicated by three effects:

e Limited acceptance: The probability to observe a given event, tihetector acceptancas less
than 1. The acceptance depends on the kinematical variable

e Transformation: Instead of the quantity: a different, but related quantity is measured. The
transformation frone to y can be caused by the non-linear response of a detector cemipon

e Finite resolution: The measured quantityis smeared out due to the finite resolution (or limited
measurement accuracy) of the detector. Thus there is ostigtigtical relation between the true
kinematical variablec and the measured quantigy

The really difficult effect in the data correction for expeantal effects, or data transformation
from y to z is thefinite resolution, causing amearingof the measured quantities. Mathematically the
relation between the distributiofyx) of the true variable, to be determined in an experiment, and the
measured distributiop(y) of the measured quantityis given by the integral equation,

o(y) = / Ay, 2)f () d )

called a Fredholm integral equation of the first kind. In ficgcoften a known (measured or simulated)
background contributioh(y) has to be added to the right-hand side of equafipn (1); thigribation is
ignored in this paper. The resolution functidify, z) represents the effect of the detector. For a given
valuex = x( the functionA(y, =) describes the response of the detector in the variabbe that fixed
value zy. The problem to determine the distributigitz) from measured distributiong(y) is called
unfolding it is called an inverse problem. Unfolding of course regsithe knowledge of the resolution
function A(y, =), i.e. all the effects of limited acceptance, transformatod finite resolution.



In addition to the imperfections of the detector, there mayfurther effects between and y,
which areoutside of the experimental contra@ven with an ideal detector. One example are radiative
effects, which in experiments are often corrected afteta@adiative corrections)but are in their effect
similar to detector effects. If the true kinematical quignis defined at theparton leve] further effects
from the fragmentation process of partons to the (obsesydizdrons influence the measured quantity
y. All these effects are of statistical nature.

measured histogram and original distribution
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Fig. 1: The Monte Carlo simulation of the effects of limited
acceptance, transformation and finite resolution. Shown
is the original (true) distribution (line histogram) anceth
"measured” distribution (yellow/shaded histogram).

A typical example for these effects is shown in Figlire 1 taftem a Monte Carlo simulation
of all three effects. By unfolding an estimate of the oridjidistribution has to be determined from the
distorted measured distribution. Details on the Monte €aiinulation are given later in sectigr 3.,
where the unfolding in this example is discussed in detail.

For the numerical solution of equatid (1) the distribusidrave to represented by a finite set of
parameters. One posssibility is to represent the distoibsitby histograms, and the resolution function
by a matrix. Equation[[1) can then be represented by the xretiation

v=4q]. 2

which has to be solved for the vectar, given the vectory (data histogram). The vectay with n
elements represents a histogram of the measured quantityd the distributiory (x) is represented by
a histogram of the vectat with m elements. The variablgsandz may be multidimensional, and the
multidimensional histograms can be mappedbin (x) andm-bin histograms), respectively. The
transition fromax to y is described by the-by-m matrix A. The element;; is related to the probability
to observe an entry in histogram himf the histogramy, if the true valuer is from histogram biry of
the histograme. Problems with standard solutions are discussed in theseexibn.

In high energy physics experiments the problems is even aiifireult than in other fields. Often
the statistics of the measurement is not high and eyelojn content (which is distributed due to the
Poisson distribution around the expected value) has a Hagistical fluctuation. Furthermore the reso-
lution function A(z, y) (or the matrixA) is not known analytically, but is represented by a datarset f
Monte Carlo simulation of the process, based on some assdisteithution fuc(x),

gmec(y) = /A(y,w)fmc(a:) dz (Monte Carlo simulation) (3)

and is also statistically limited. Standard methods fostiation of integral equations or linear equations
can not be used in this case.

A simple method like the so-calleain-by-bin correctiormay be meaningful if the measurements
y are very close to the true values Realunfolding methods, taking all the correlations into account,
are essential if there are larger effectstrainsformationandfinite resolution A solution z has to be
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found, with small deviations between the elementsdaf and the elements of the actually measured
histogramy. In the maximum likelihood method a functidr(x) is constructed as the negative log of
the Likelihood function, which describes the statistiedations between data and result:

F(ZB) = —logL(a:,y,A) (4)

and the minimum of(x) is determined. Wildly fluctuating results are due to large (negative) corre-
lations between adjacent bins and are not acceptable. Titeaqh to get a more reasonable solution
is to impose a measure of the smoothness on the restltis method is calledegularization. This
technique was proposed independently by Philljps [2] and hikhonov [3]. For a functionf(z) the
integrated square of the second derivative

- [(2) e ©

is often used in the regularization which in the linearizedsion of the problem can be expressed by a
quadratic formC(x) = z” Cx with a positive-semidefinite matri€ (derivatives are replaced by finite
differences). Equatiorf|(4) is then modified to the form

F(x)=—logL(z,y,A)+ 7 C(x) (6)
with a factorr called regularization parameter.

The result of the minimization of the modified functid®(x) of equation [[6) will show smaller
fluctuations than the result obtained from equat[¢n (4) amgl be more useful to compare the measure-
ment with theoretical predictions. However it is clear thatwvoidably the regularization introduces a
bias. The magnitude of the bias depends on the value of mixatian parameter. A very large value
would result in dinear function f(x) or distributionz, respectively. It is clear that the method requires
an a-priori knowledge about a smooth behaviouy @f). The functionfuc(z) used in the Monte Carlo
simulation of equation[]3) is often very close to the finalifeg (z), i.e. the ratio is rather smooth. This
suggests to expreggx) in the form f(z) = fuc(z) x fmur(r) and to rewrite equatiof](1) in the form

g@z/mmmmwMMM@M- 7)

For the discretized form the functiofiuc(x) can be absorbed in a redefinition of matdk and the
vectorz is interpreted as discretization of the hopefidimoothfunction fmyi(z). With this redefinition

the equation[{2) can remain unchanged. The program RUN férSgularized unfolding is available
since almost two decades and has been used in many expesjrearly applications ar¢][6] anf] [7]. It

is based on the reinterpretation of matdxandx, as described above, and includes a method for the
determination of the regularization parametdrased on the available degrees of freedom. In the method
described later in this paper some details are treatedetiffly.

2. UNFOLDING AS AN ILL-POSED PROBLEM

The problems inherent to unfolding are discussed in a sisgéeial case, assuming a resolution matrix
A with some smearing of data into neighbour bins. Assumingia wectorx the producty = Ax
describes the distribution expected due to the migratitecefWith the same dimensions for the vectors
x andy the matrix A is a square matrix and in the example later in this sectiorfdt@wing simple
symmetric form is assumed for the matuk, which depends on a single parametgs = migration
parameter); for a 5-by-5 matrix the form is

1—c¢ € 0 0 0
€ 1—2¢ € 0 0
A= 0 € 1—2¢ € 0 (8)
0 0 € 1—2¢ €
0 0 0 € 1—e¢



A direct solution forz, given a measuremeigt differing from the expectatiomx with the true vector
x by statistical fluctuations, is possible with inversion loé imatrix A:

estimate z = A"y error propagation V(z) = A™'V, (A‘l)T .
The result has certain good statistical properties, formgta it has no bias:E [z] = A 'E[y] =
A7'AE [x] = . In practice the result is however satisfactory only for arirad with dominating
diagonal; the result looks terrible if the matuk describes a large migration to neighbour bins. Conse-
guently the problem is called an ill-posed problem. In tHfeing the solution of the equation = Ax
using an orthogonal decomposition is discussed; this Wohesome insight into the unfolding problem.

The symmetric matrixA is expressed by
A=UDUT”T (9)

with a transformation matrik/ with propertyU” U = 1, and a diagonal matri, where the diagonal
elements of matrixD are the eigenvalues; of matrix A (in the order of decreasing value). The trans-
formation matrixU contains the corresponding eigenvectors with the eigeéoreg in the j-th column.
The condition number of a matrix is defined by the ratio of eigenvectars= Amax/Amin; the value of
 is important for the quality of unfolding (see below). Fotues above = 0.20 the condition number
K is very rapidly increasing.

A transformation of equatioy = Az to a new basis is done by multiplication with matfix”
(which is a rotation in the-dimensional space):

Ut | y = Az=UDU"z.
Uy = DUz — c=Db.
“ b
=C =

The matrixU of eigenvectorSu,f allows to transform the vectoes andy to vectorsb = U’ and

¢ = U"y, and to transform these vectors backdoy= Ub andy = Uec. The transformed equation
c = Db with the diagonal matrixD shows, that each of the coefficierits and ¢; is transformed
independently of any other coefficient by the simple refatip= ); - b;. This operation does not depend
on any assumption of the solutian, and depends only on the properties of the mattix Folding
(x — y) and unfolding { — «) is multiplication and division by the eigenvalugs, respectively, of
the coefficients in the transformed space.

In order to unfold a measured vectgr the vector is transformed by = U”y to coefficients
¢;, which have values influenced by statistical fluctuationthefelements of vectay. In the unfolding
the coefficients:; are divided by the eigenvalues to obtainb; = c¢;/);; the statistical fluctuation of
coefficientc; is magnified for small eigenvalues (i.e. \; < 1). Eventually, for very small eigenvalues
Aj, the final resulte = Ub will be dominated by one or by few of the coefficierits with small
eigenvalues and large statistical errors, and the compastét is unsatisfactory.

Example. In a numerical example the matri& has the form of equatiorf](8) with = 20 and a value of
the migration parameter af= 0.22. The first eigenvalue i&; = 1.0, and the last one &2y = 1/7.9,
giving a condition numbex = 7.9. Forz the ideal distribution of Figurf] 2a is assumed; the undeglyi
function is of the formz exp(—az). The decomposition of the matriA according to equatior](9) is
performed and the coefficients andc; are calculated. These coefficients are shown in Fijure 3 (wi
b; > ¢;). In addition this figure shows, calculated by standardreggropagation, the almost constant
error level of the coefficients, of the folded distributider:gure@a with Poisson distributed bin contents.
Figure[Ba shows, that the coefficiemtsof the true distribution decrease rapidly with increasiafpe

of the index of the coefficient, by roughly three orders of miagle. The coefficients; of the folded
distribution drop even faster, because it is more smootttaltiee migration effect. Of course the relation
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Fig. 2: Original (true) distribution (a) and two resultsrfrainfolding ((b) and (c)). Result (b) has been obtained frdr2@
coefficients, and for result (c) a sharp cut-off after 10 fioieints has been applied (i.e. the coefficients 11 to 20 averéyl).
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Fig. 3: The absolute values of coefficieitsandc; are shown forj = 1, 2,...20. The coeffientd; andc; for the true
distribution and the folded distribution (without measuent errors) are shown in (a), together with the (almosttam)serror
estimate for the coeffients; calulated by error propagation. The coeffieatdrom the simulated measured distribution are
shown in (b), together with the error estimate. Fabovel2 the smaller coefficients of the folded distribution becommealter
than the statistical error. In (b) the coefficients foabove12 are dominated by statistical errors and even the sign is not
determined by the data.

b;j/c; = A;is valid. The last coefficierti; in Figure[Ba is reduced te; by the inverse of the condition
number of the matrix, which is = 7.9 in this case.

The components of the first eigenvectgr(eigenvalue = 1) are all the same. Thus the coefficients
b; andc; are identical, and proportional to the total sum of the messdistribution, not at all influenced
by the migration. If visualized by functions, interpolagithe components the eigenvectgr(eigenvalue
Aj) hasj — 1 zeros, and the curvature of the visualized eigenvectorapglly increasing with index
j. The components of the last eigenvectgrhave alternating sign for the bins; it has a small absolute
value and its measured value will have a large relativessiizai error. The value diy is obtained by
bag = 7.9 - c9o In unfolding, introducing a large bin-to-bin oscillationto the result of unfolding.

In a simulation Poisson distributed bin contents are asdumée measurement vectgr The
coefficents for this measured distribution are shown in té'ﬂlb, together with the level of the statistical
error. As expected from the size of the errors all coeffidemith an index above aboyt= 12 are
dominated by the statistical error and therefore do notifsggimtly contribute to the information content
of the measurement. For indices abgve- 12 even the sign of the coeffient can not be determined by
the measurement.

Using all the "measured” coefficients for the unfolding tlesult of Figurg]2b is obtained. This
result shows large fluctuations around the expected vah@grsby the curve. The fluctuations are due
to the contributions from indices aboye= 12, which represent noise and are magnified in the unfolding
because of the large values of their inverse eigenvaluesrdsult is clearly unsatisfactory.

Because all measured coefficienfsvith j above a value of 12 are dominated by statistical errors



(noise) their use in the unfolding makes no sense. A sharpftafter index;j = 12 or even after index

j = 10 will not remove any useful information from the measuremditte unfolding result using only
measured coefficients up toj = 10 is shown in Figur¢]2c; compared to Fig{ite 2b the large fluiinat
are suppressed and the results seems to be acceptable.r&f gwifine structure of the true distribution
expressed by the true coefficiemtswith j > 10 is not included in the solution and this may represent a
bias. It is an unavoidable bias because these coefficientsatdbe measured.

The covariance matrix of the result can be calculated bydst@herror propagation. However it
is clear that the covariance matrix is singular and has anti 1.0 in this case, because the 20 bins are
obtained from 10 measured coefficients (10 degrees of fregdbhis property is inherent to the cut-off
method and to the regularization method, and was alreadyioned in [4]. Such singularity of the
covariance matrix can be avoided if the final transformaiscio a number of bins identical to the degree
of freedoms; only a limited number of bins can be obtainedrreasurement with large miration effects.

This method of using a sharp cut-off has to be compared tcethdarization method. It has been
shown [#] that the use of a regularization function of theetg equation[{5) is equivalent tosanooth
cut-off; essentially the measured coefficieatsre multiplied by a factor depending on the curvature of
the orthogonal contributions (see sectignfB3.).

3. THE PROPOSED UNFOLDING METHOD

The proposed method is similar to the method used in RUN; iffierences are emphasized in this
section. It is expected that the proposed modificationslteesumore stable solutions. The proposed
method requires large dimension parameters in the resolatiatrix A. Like in RUN the regulariza-
tion is determined by the required number of degrees of tneedvhich determines the regularization
parameter.

Figures in this section refer to the example already meation sectior{ IL. In a Monte Carlo
calculation of all three effects, limited:{dependent) acceptance, non-linear transformation aitd fin
resolution are simulated. Details on the function and tséoding effects are identical to the published
examples[[4]. In total 100 000 "events” are simulated fortéd@and for the MC defining matrix. The
input function fuc () (equation[(7)) is a constant.

In RUN the discretization foyf (z) and for A(y, «) was done using cubic B-spline functions; the
effect is the same as for simple histograms namely the iategiuation is transformed to a system of
linear equations, however the elements of the vectors apliBe coefficients instead of bin contents.
The advantage is that the parametrized solution ssnaothfunction and the curvature as defined by
equation [(6) can be exactly written as a quadratic form. Hewthe accurate determination of matex
requires a good Monte Carlo statistic. In RUN statisticattilations of the elements of matr could
not be treated.

Simple histograms are instead proposed here; the elenfghts\ectory are bin contents (integer
numbers). The curvature of the solution is constructed hiefdifferences: the second derivative in bin
Jj is proportional tor; 1 —2x; +x;41. In @ histogram some resolution is lost if bins with a widtleage
as expected for the final resolution would be used. It is renended to use initiallyn = 2ng; bins forx
for a final number of degrees of freedomygi. Fory a larger number of bins (> m) is recommended,

1 Sometimes the iterative solution of unfolding problemsresped by the equatianp = Az is proposed in the literature
without explicit regularization, starting from a "goodifial distribution forz. Of course equations of this type (with a square
matrix) have a unique solution and iterative solutions & sompared to the direct solution; after a large numbetestions
with convergence the same unsatisfactory result as bytdiohation will be obtained. However in these proposals @ngmall
number of iterations is recommended. It can be shown thattite methods can in fact include an implicit regulariaati
[E]: there is a different speed of convergence for the varimthogonal contributions and the small contributiondweismall
eigenvalue will converge very slowly. Thus after a few itemas the (large) coefficients with large eigenvalues areaaly
accurate; the remaining coefficients are still almost ungkd and thus, for a stop after few iterations, their valuesssll
close to the starting values. There is of course some sibfgéh stopping "early” enough.



to avoid a loss of resolution. Thus the numbex m of elements is large, and a large sample of Monte
Carlo events is required fidl matrix A. The statistical error of the elements eventually can not be
neglected.

Standard Poisson maximum likelihood fit.Ignoring initially eventual statistical errors of the elents
a;; the expected number of events in hirf y is given byy; = Z;.”:laij xz; . For the expected
numbery;, as given by this expression, the observed valdsllows the Poisson distribution. Optimal
estimates for the elements are obtained by minimizing the (negative) logarithm of thiak likelihood

with respect to the elements of vectorz, assuming the Poisson distribution:

n

117 @)

1=1

n

= Z (yi — Ui - Iny;) + const., (10)
i=1

Flx)=—-InL(x)=—1In

where the constant term containing §;gcan be ommited. This expressidn](10) correctly accounts als
for bins with a small number of histogram entrigs

An alternative would be to use the (linear) least squaresiogetvith singular value decomposi-
tion for the fit. However for small number of entries the usdle Poisson distribution seems to be
essential. Furthermore the diagonalization used latdremiethod is almost equivalent to singular value
decomposition (eigenvalues are the squares of the singallaes).

Fitting with finite Monte Carlo samples. The problem of statistical fluctuations of the elememts
has been neglected so far. A method to treat the problemnntitiéd maximum-likelihood method has
been developed by R.Barlow and Chr.Bees{pn [9]. In this otethere is for each source hin some
(unknown) expected number of events. For each elememnt;; the corresponding numbey; from the
Monte Carlo sample is generated by a distribution whichkerao be Poisson too. The nice feature of
this method is that a bias which would be introduced by igrgpthe statistical character of the values of
the elements;; is avoided and the maximum likelihood error is more realiséi large number of slack
variables (one for each bin) is introduced and has to bestlgatthe optimzation. A new fast numerical
solution method has been developed ($ge [1]).

Combining bins. The likelihood function is a sum over all bins. Combining abhempty bins does not
introduce a systematic error. The total number of elemeintseomatrix may be large, especially aif
and/ory are multidimensional, and a small number of entries (or e&n) in an element may not be
uncommon. The combination of almost empty bins is done witluster algorithm, taking into account
the distance between bins in one, two or three dimensions.

First option: sharp cut-off of orthogonal contributions. This method is rather similar to the method
discussed in sectign] 2.. The computational problem is terdehe the minimum of’(x) (see equation
(L9)). The standard iterative method is based on the reqass for the correctiod\x

F(Az) = %AwTHAa: +AzTg . (11)

with the HessiarH (matrix of second derivatives df(Ax)) and the gradient vectgr (first derivatives
of F'(Ax)). A Newton step is then calulated from equatiBFAx + g = 0. Convergence is usually fast
for good starting values and the covariance matrix is equéhé inverse of the Hessian. The starting
values can be calculated by a linear least square fit, baste approximation of the Poisson distribution
by a Gaussian distribution for each bin.

A sharp cut-off as discussed in the example of sedtion 2.irezja diagonalization of the sym-
metric matrix H by H = UD U” with a diagonal matrixD and a transformation matri&/. By
a transformation (rotation) im-space linear combinations of thecomponents are obtained with a
diagonal covariance matrix, with variances of the lineanbimations given by the inverse of the eigen-
values of matrixD. A cut-off is done at some indeifollowed by backtransformation to thespace of
bin-contents using the transformation mattix



Second option: regularization. In this option the regularization is based on the second/akire of
the result according to equatidi} (5), which can be exprelsgedquadratic forne” Cz with a positive-
semidefinite matridC'. In principle the same procedure is used as in RUN; the mattieah details are
given elsewhereJ4]. Here a simple explanation is given erstandard mathematical operatfpnsed.
Regularization is done by adding the termz” Cz to the functionF'(Az) of equation [(I]1). Exactly as
in the first option the Hessian is diagonalized.

H=-UDUT H'-UD 'U" = [UD—W} [D—WUT} . (12)

Up to this step everything is identical to the cut-off optiddsing transformation matrik/ D~'/2 the
vector x is transformed to linear combinatioas which are orthogonal, with all variances equal to 1
(unit covariance matrix). Because the covariance matmxjigal to the unit matrix, every additional pure
rotation will not change the (unit) covariance matrix. Imts of the transformed vector the regularization
term can now be written in the form- iTCUi, whereCy; is the transformed curvature matidx. Now
another diagonalization can be done of mafrix:

r2lCe — 7.3 Cyz=7-2"Uc SULZ (13)

with a diagonal matrixS and a rotation matrixU . This diagonalization can be used to define a pure
rotation from the linear combinatiof to another linear combination

T - xz=ULZ. (14)
C

The components of the new vectsrstill have the unit matrix as covariance matrix. The comgplet
transformation frome to Z is the effect of the transformation By D~'/? and byU . The algebra can
be explained in other words: the error ellipsoid relatedhi® Hessian is first rotated to have the axes
parallel to the axes of the new system. By a change of thessttadeellipsoid is transformed to a sphere,
which will remain a sphere for any further rotation. A lagiatoon is done to bring the axes into the order
of increasing curvature.

. transf?rmatioq vectors|3 4 and 16

Fig. 4: Selected column vectors of the complete trans-
formation matrix defined in the regularization procedure.
They correspond to the curvature eigenvaldes, Si4 and
Si6,16. Visualization is done by curves interpolating the
components. The amplitude associated which each vector
all have the same standard deviation of 1.

Some columns of the complete (product) transformation laogvs in Figurg 4. All linear com-
binations obtained have the same precision (standardteviaf the coefficient is one). As seen in the
Figure linear combinations with large indg&re oscillating with large amplitude. The diagonal eleraent
S;; are the (statistically independent) contributions of tleerents ofz to the total curvature. Sorted
according to increasing value 6f; the value ofS;; will increase rather fast with increasing indgxThe
spectrum of eigenvalueS;; is shown in Figur¢]5. In terms of the linear combinatiahsegularization
is simply given by

(:fj)reg = <T15N> (fj)unreg . (15)



Amplitudes before and after regularization
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Fig. 5: The eigenvalues after the curvature transformafidre values are very rapidly increasing for orthogonal ibations
for increasing index value (left). The amplitudes befoedt(bars) and after regularization (right bars). The siatiserror of
all amplitudes is equal to 1, which is indicated by the hantabline. The vertical scale is linear at the bottom and reake
transition to a logarithmic scale at the top (right).

and this simple form is the reason for the transformationdenteefore.

Determination of the regularization parametersr. The first factors (smalf) on the right-hand-side
of equation [(I5) will be close to 1; for a value= 1/Sy,, the factor will be 1/2 and for indices > &
will rapidly decrease towards zero. The sum of all factors loa called thesffectivenumber of degrees
of freedom, and can be used to determine the value of theanézption parameter from the required
number of degrees of freedom, i.e. the regularization patam is determined from the value afj; in
the equation

ngt = Em: (Tlsj]) : (16)

j=1

Thus the required number of degrees of freedom has to befigpeand determines the degree of regu-
larization. This number can be taken from the spectrum oftleficients or amplitudes, shown in Figure
B. The insignificant part (largg) is clearly visible in the spectrum and separated from tgaificant
part (smallj). The selected value ofy should be equal to or larger than the number of significant
terms. The unregularized amplitudes, which have standewdhiibn one, are shown by the left bars;
amplitudes above index 15 are compatible with one and reptewise. They would however make a
large contribution to the solution, because the correspgncolumn vectors (Figurf] 4) are large. The
regularization effectively damps the amplitude (rightd)around and above index 15, which has been
chosen as the degree of freedom here. The significant achguitare not affected by the regularization.

The final result of the example (measured distribution irufeffl) is shown in Figurf 6. The left
figure shows 30 data points with error bars together with tigiral (true) distribution; within errors
the original distribution is nicely reproduced. The ranklod covariance matrix is about 15, which was
chosen as the effective number of degrees of freedom; thassion of the covariance matrix, needed
e.g. for a least-square fit of a model to the data, is not plessikithough the large number of 30 data
points seems to be attractive, the data points should beeddio 15 data points by combining two
bins to one, which then have a full-rank covariance matrixisBet of data points is shown in Figite 6
(right). The broader bins of this set of data points are aegusnce of the limited acceptance and finite
resolution of the measurement.

2In a publication the method has been describedhi@ve certain mathematical complicatidndut it is based only on
standard linear algebra of symmetric matrices.



result of unfolding in 30 bins result of unfolding in 15 bins
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6: The unfolding result after regularization with 15ydees of freedom with 30 bins (left) and with 15 bins (righEpr

comparison the original (true) distribution is shown by stbgram. The data from Figuﬂe 1 are used as input.

ACKNOWLEDGEMENTS

| would like to thank the organizers of the conference on Adeal Statistical Techniques in Particle
Physics for their hospitality and the stimulating atmosphie Durham.

References

[1] A more detailed text is available viatp://www.desy.de/ blobel/

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

D. L. Phillips , A technique for the numerical solution cdrtain integral equations of the first kind,
J. Assoc. Comput. Macl9, 84-97 (1962)

A.N. Thikhonov, On the solution of improperly posed pleins and the method of regularization,
Sov. Math5, 1035 (1963)

V. Blobel, Unfolding methods in high energy physics esipwnts, in Proceedings of the 1984
CERN School of ComputingCERN 85-09 (1985) and DESY 84-114

V. Blobel, TheRUN manual, Regularized Unfolding for High-Energy Physics &xments, OPAL
Technical Note TN361 (1996)

M. Jonker et al. (CHARM Collaboration), Experimentalidy of differential cross sectionr/dy
in neutral current neutrino and antineutrino interacti®gysics Letterd02 B, 62-72 (1981) M.
Jonker et al. (CHARM Collaboration), Experimental studyredistributions in semileptonic neu-
tral current neutrino interactions, Physics Lett&€?8 B, 117-123 (1983)

Ch. Berger etal. (PLUTO Collaboration), Measuremerthefphoton structure functiah) (z, Q?),
Physics Letterd42 B, 111-118 (1984) Ch. Berger et al. (PLUTO Collaboration),aslerement of
deep inelastic electron scattering off virtual photonsydits Lettersl42 B, 119-124 (1984)

A.K. Louis, Inverse und schlecht gestellte Problemeybireer, Stuttgart und Leipzig (1989)

Roger Barlow and Christine Beeston, Fitting finite Moarlo samplesComputer Physics Com-
municationsr7, 219-228 (1993)

10



