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AN UNFOLDING METHOD FOR HIGH ENERGY PHYSICS
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Abstract
Finite detector resolution and limited acceptance requireto apply unfolding
methods in high energy physics experiments. Information onthe detector reso-
lution is usually given by a set of Monte Carlo events. Based on the experience
with a widely used unfolding program (RUN) a modified method has been
developed.

The first step of the method is a maximum likelihood fit of the Monte Carlo
distributions to the measured distribution in one, two or three dimensions; the
finite statistic of the Monte Carlo events is taken into account by the use of
Barlows method with a new method of solution. A clustering method is used
before to combine bins in sparsely populated areas. In the second step a regu-
larization is applied to the solution, which introduces only a small bias. The
regularization parameter is determined from the data aftera diagonalization
and rotation procedure.

1. THE UNFOLDING PROBLEM

A standard task in high energy physics experiments is the measurement of a distributionf(x) of some
kinematical quantityx. With an ideal detector one could measure the quantityx in every event and could
obtainf(x) by a simple histogram of the quantityx. With real detectors the determination off(x) is
complicated by three effects:

• Limited acceptance: The probability to observe a given event, thedetector acceptance, is less
than 1. The acceptance depends on the kinematical variablex.

• Transformation: Instead of the quantityx a different, but related quantityy is measured. The
transformation fromx to y can be caused by the non-linear response of a detector component.

• Finite resolution: The measured quantityy is smeared out due to the finite resolution (or limited
measurement accuracy) of the detector. Thus there is only astatistical relation between the true
kinematical variablex and the measured quantityy.

The really difficult effect in the data correction for experimental effects, or data transformation
from y to x is thefinite resolution, causing asmearingof the measured quantities. Mathematically the
relation between the distributionf(x) of the true variablex, to be determined in an experiment, and the
measured distributiong(y) of the measured quantityy is given by the integral equation,

g(y) =

∫
A(y, x)f(x) dx , (1)

called a Fredholm integral equation of the first kind. In practice often a known (measured or simulated)
background contributionb(y) has to be added to the right-hand side of equation (1); this contribution is
ignored in this paper. The resolution functionA(y, x) represents the effect of the detector. For a given
valuex = x0 the functionA(y, x0) describes the response of the detector in the variabley for that fixed
valuex0. The problem to determine the distributionf(x) from measured distributionsg(y) is called
unfolding; it is called an inverse problem. Unfolding of course requires the knowledge of the resolution
functionA(y, x), i.e. all the effects of limited acceptance, transformation and finite resolution.



In addition to the imperfections of the detector, there may be further effects betweenx andy,
which areoutside of the experimental control, even with an ideal detector. One example are radiative
effects, which in experiments are often corrected afterwards(radiative corrections), but are in their effect
similar to detector effects. If the true kinematical quantity is defined at theparton level, further effects
from the fragmentation process of partons to the (observable) hadrons influence the measured quantity
y. All these effects are of statistical nature.
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Fig. 1: The Monte Carlo simulation of the effects of limited

acceptance, transformation and finite resolution. Shown

is the original (true) distribution (line histogram) and the

”measured” distribution (yellow/shaded histogram).

A typical example for these effects is shown in Figure 1 takenfrom a Monte Carlo simulation
of all three effects. By unfolding an estimate of the original distribution has to be determined from the
distorted measured distribution. Details on the Monte Carlo simulation are given later in section 3.,
where the unfolding in this example is discussed in detail.

For the numerical solution of equation (1) the distributions have to represented by a finite set of
parameters. One posssibility is to represent the distributions by histograms, and the resolution function
by a matrix. Equation (1) can then be represented by the matrix equation

y = Ax , (2)

which has to be solved for the vectorx, given the vectory (data histogram). The vectory with n
elements represents a histogram of the measured quantityy, and the distributionf(x) is represented by
a histogram of the vectorx with m elements. The variablesy andx may be multidimensional, and the
multidimensional histograms can be mapped ton-bin (x) andm-bin histograms (y), respectively. The
transition fromx to y is described by then-by-m matrixA. The elementaij is related to the probability
to observe an entry in histogram bini of the histogramy, if the true valuex is from histogram binj of
the histogramx. Problems with standard solutions are discussed in the nextsection.

In high energy physics experiments the problems is even moredifficult than in other fields. Often
the statistics of the measurement is not high and everyy-bin content (which is distributed due to the
Poisson distribution around the expected value) has a largestatistical fluctuation. Furthermore the reso-
lution functionA(x, y) (or the matrixA) is not known analytically, but is represented by a data set from
Monte Carlo simulation of the process, based on some assumeddistributionfMC(x),

gMC(y) =

∫
A(y, x)fMC(x) dx , (Monte Carlo simulation) (3)

and is also statistically limited. Standard methods for thesolution of integral equations or linear equations
can not be used in this case.

A simple method like the so-calledbin-by-bin correctionmay be meaningful if the measurements
y are very close to the true valuesx. Realunfoldingmethods, taking all the correlations into account,
are essential if there are larger effects oftransformationandfinite resolution. A solution x has to be
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found, with small deviations between the elements ofAx and the elements of the actually measured
histogramŷ. In the maximum likelihood method a functionF (x) is constructed as the negative log of
the Likelihood function, which describes the statistical relations between data and result:

F (x) = − log L(x,y,A) (4)

and the minimum ofF (x) is determined. Wildly fluctuating resultsx are due to large (negative) corre-
lations between adjacent bins and are not acceptable. The approach to get a more reasonable solution
is to impose a measure of the smoothness on the resultx; this method is calledregularization. This
technique was proposed independently by Phillips [2] and byThikhonov [3]. For a functionf(x) the
integrated square of the second derivative

C(f) =

∫ (
d2f

dx2

)2

dx (5)

is often used in the regularization which in the linearized version of the problem can be expressed by a
quadratic formC(x) = xT Cx with a positive-semidefinite matrixC (derivatives are replaced by finite
differences). Equation (4) is then modified to the form

F (x) = − log L(x,y,A) + τ · C(x) (6)

with a factorτ called regularization parameter.

The result of the minimization of the modified functionF (x) of equation (6) will show smaller
fluctuations than the result obtained from equation (4) and may be more useful to compare the measure-
ment with theoretical predictions. However it is clear thatunavoidably the regularization introduces a
bias. The magnitude of the bias depends on the value of regularization parameterτ . A very large value
would result in alinear functionf(x) or distributionx, respectively. It is clear that the method requires
an a-priori knowledge about a smooth behaviour off(x). The functionfMC(x) used in the Monte Carlo
simulation of equation (3) is often very close to the final result f(x), i.e. the ratio is rather smooth. This
suggests to expressf(x) in the formf(x) = fMC(x) × fmult(x) and to rewrite equation (1) in the form

g(y) =

∫
[A(y, x)fMC(x)] fmult(x) dx . (7)

For the discretized form the functionfMC(x) can be absorbed in a redefinition of matrixA and the
vectorx is interpreted as discretization of the hopefullysmoothfunctionfmult(x). With this redefinition
the equation (2) can remain unchanged. The program RUN [4, 5]for regularized unfolding is available
since almost two decades and has been used in many experiments; early applications are [6] and [7]. It
is based on the reinterpretation of matrixA andx, as described above, and includes a method for the
determination of the regularization parameterτ based on the available degrees of freedom. In the method
described later in this paper some details are treated differently.

2. UNFOLDING AS AN ILL-POSED PROBLEM

The problems inherent to unfolding are discussed in a simplespecial case, assuming a resolution matrix
A with some smearing of data into neighbour bins. Assuming a true vectorx the producty = Ax

describes the distribution expected due to the migration effect. With the same dimensions for the vectors
x andy the matrixA is a square matrix and in the example later in this section thefollowing simple
symmetric form is assumed for the matrixA, which depends on a single parameterε (ε = migration
parameter); for a 5-by-5 matrix the form is

A =




1 − ε ε 0 0 0
ε 1 − 2ε ε 0 0
0 ε 1 − 2ε ε 0
0 0 ε 1 − 2ε ε
0 0 0 ε 1 − ε




. (8)
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A direct solution forx, given a measurement̂y differing from the expectationAx with the true vector
x by statistical fluctuations, is possible with inversion of the matrixA:

estimate x̂ = A−1ŷ error propagation V (x̂) = A−1V y

(
A−1

)T
.

The result has certain good statistical properties, for example it has no bias:E [x̂] = A−1E [y] =
A−1AE [x] = x. In practice the result is however satisfactory only for a matrix A with dominating
diagonal; the result looks terrible if the matrixA describes a large migration to neighbour bins. Conse-
quently the problem is called an ill-posed problem. In the following the solution of the equationy = Ax

using an orthogonal decomposition is discussed; this will allow some insight into the unfolding problem.

The symmetric matrixA is expressed by

A = UD UT (9)

with a transformation matrixU with propertyUT U = 1, and a diagonal matrixD, where the diagonal
elements of matrixD are the eigenvaluesλj of matrix A (in the order of decreasing value). The trans-
formation matrixU contains the corresponding eigenvectors with the eigenvector uj in thej-th column.
The condition numberκ of a matrix is defined by the ratio of eigenvectorsκ = λmax/λmin; the value of
κ is important for the quality of unfolding (see below). For values aboveε = 0.20 the condition number
κ is very rapidly increasing.

A transformation of equationy = Ax to a new basis is done by multiplication with matrixUT

(which is a rotation in then-dimensional space):

UT · | y = Ax = UDUT x .

UT y︸ ︷︷ ︸
=c

= D UT x︸ ︷︷ ︸
=b

→ c = Db .

The matrixU of eigenvectorsuT
j allows to transform the vectorsx andy to vectorsb = UT x and

c = UT y, and to transform these vectors back byx = Ub andy = Uc. The transformed equation
c = Db with the diagonal matrixD shows, that each of the coefficientsbj and cj is transformed
independently of any other coefficient by the simple relation cj = λj ·bj . This operation does not depend
on any assumption of the solutionx, and depends only on the properties of the matrixA. Folding
(x → y) and unfolding (y → x) is multiplication and division by the eigenvaluesλj , respectively, of
the coefficients in the transformed space.

In order to unfold a measured vectory, the vector is transformed byc = UT y to coefficients
cj , which have values influenced by statistical fluctuations ofthe elements of vectory. In the unfolding
the coefficientscj are divided by the eigenvaluesλj to obtainbj = cj/λj ; the statistical fluctuation of
coefficientcj is magnified for small eigenvaluesλj (i.e. λj ≪ 1). Eventually, for very small eigenvalues
λj , the final resultx = Ub will be dominated by one or by few of the coefficientsbj with small
eigenvalues and large statistical errors, and the completeresult is unsatisfactory.

Example. In a numerical example the matrixA has the form of equation (8) withn = 20 and a value of
the migration parameter ofε = 0.22. The first eigenvalue isλ1 = 1.0, and the last one isλ20 = 1/7.9,
giving a condition numberκ = 7.9. Forx the ideal distribution of Figure 2a is assumed; the underlying
function is of the formx exp(−ax). The decomposition of the matrixA according to equation (9) is
performed and the coefficientsbj andcj are calculated. These coefficients are shown in Figure 3a (with
bj ≥ cj). In addition this figure shows, calculated by standard error propagation, the almost constant
error level of the coefficients, of the folded distribution of Figure 2a with Poisson distributed bin contents.
Figure 3a shows, that the coefficientsbj of the true distribution decrease rapidly with increasing valuej
of the index of the coefficient, by roughly three orders of magnitude. The coefficientscj of the folded
distribution drop even faster, because it is more smooth dueto the migration effect. Of course the relation
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Fig. 2: Original (true) distribution (a) and two results from unfolding ((b) and (c)). Result (b) has been obtained from all 20

coefficients, and for result (c) a sharp cut-off after 10 coefficients has been applied (i.e. the coefficients 11 to 20 are ignored).
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Fig. 3: The absolute values of coefficientsbj andcj are shown forj = 1, 2, . . . 20. The coeffientsbj andcj for the true

distribution and the folded distribution (without measurement errors) are shown in (a), together with the (almost constant) error

estimate for the coeffientsbj calulated by error propagation. The coeffientscj from the simulated measured distribution are

shown in (b), together with the error estimate. Forj above12 the smaller coefficients of the folded distribution become smaller

than the statistical error. In (b) the coefficients forj above12 are dominated by statistical errors and even the sign is not

determined by the data.

bj/cj = λj is valid. The last coefficientbj in Figure 3a is reduced tocj by the inverse of the condition
number of the matrix, which isκ = 7.9 in this case.

The components of the first eigenvectoru1 (eigenvalue = 1) are all the same. Thus the coefficients
bi andci are identical, and proportional to the total sum of the measured distribution, not at all influenced
by the migration. If visualized by functions, interpolating the components the eigenvectoruj (eigenvalue
λj) hasj − 1 zeros, and the curvature of the visualized eigenvectors is rapidly increasing with index
j. The components of the last eigenvectorun have alternating sign for the bins; it has a small absolute
value and its measured value will have a large relative statistical error. The value ofb20 is obtained by
b20 = 7.9 · c20 in unfolding, introducing a large bin-to-bin oscillation into the result of unfolding.

In a simulation Poisson distributed bin contents are assumed in the measurement vectory. The
coefficents for this measured distribution are shown in Figure 3b, together with the level of the statistical
error. As expected from the size of the errors all coefficients with an index above aboutj = 12 are
dominated by the statistical error and therefore do not significantly contribute to the information content
of the measurement. For indices abovej = 12 even the sign of the coeffient can not be determined by
the measurement.

Using all the ”measured” coefficients for the unfolding the result of Figure 2b is obtained. This
result shows large fluctuations around the expected values shown by the curve. The fluctuations are due
to the contributions from indices abovej = 12, which represent noise and are magnified in the unfolding
because of the large values of their inverse eigenvalues. The result is clearly unsatisfactory.

Because all measured coefficientscj with j above a value of 12 are dominated by statistical errors
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(noise) their use in the unfolding makes no sense. A sharp cut-off after indexj = 12 or even after index
j = 10 will not remove any useful information from the measurement. The unfolding result using only
measured coefficientscj up toj = 10 is shown in Figure 2c; compared to Figure 2b the large fluctuations
are suppressed and the results seems to be acceptable. Of course the fine structure of the true distribution
expressed by the true coefficientsbj with j > 10 is not included in the solution and this may represent a
bias. It is an unavoidable bias because these coefficients can not be measured.

The covariance matrix of the result can be calculated by standard error propagation. However it
is clear that the covariance matrix is singular and has only rank 10 in this case, because the 20 bins are
obtained from 10 measured coefficients (10 degrees of freedom). This property is inherent to the cut-off
method and to the regularization method, and was already mentioned in [4]. Such singularity of the
covariance matrix can be avoided if the final transformationis to a number of bins identical to the degree
of freedoms; only a limited number of bins can be obtained in ameasurement with large miration effects.

This method of using a sharp cut-off has to be compared to the regularization method. It has been
shown [4] that the use of a regularization function of the type of equation (5) is equivalent to asmooth
cut-off; essentially the measured coefficientscj are multiplied by a factor depending on the curvature of
the orthogonal contributions (see section 3.).1

3. THE PROPOSED UNFOLDING METHOD

The proposed method is similar to the method used in RUN; the differences are emphasized in this
section. It is expected that the proposed modifications results in more stable solutions. The proposed
method requires large dimension parameters in the resolution matrixA. Like in RUN the regulariza-
tion is determined by the required number of degrees of freedom, which determines the regularization
parameter.

Figures in this section refer to the example already mentioned in section 1. In a Monte Carlo
calculation of all three effects, limited (x-dependent) acceptance, non-linear transformation and finite
resolution are simulated. Details on the function and the distorting effects are identical to the published
examples [4]. In total 100 000 ”events” are simulated for ”data” and for the MC defining matrixA. The
input functionfMC(x) (equation (7)) is a constant.

In RUN the discretization forf(x) and forA(y, x) was done using cubic B-spline functions; the
effect is the same as for simple histograms namely the integral equation is transformed to a system of
linear equations, however the elements of the vectors are B-spline coefficients instead of bin contents.
The advantage is that the parametrized solution is asmoothfunction and the curvature as defined by
equation (5) can be exactly written as a quadratic form. However the accurate determination of matrixA

requires a good Monte Carlo statistic. In RUN statistical fluctuations of the elements of matrixA could
not be treated.

Simple histograms are instead proposed here; the elements of the vectory are bin contents (integer
numbers). The curvature of the solution is constructed by finite differences: the second derivative in bin
j is proportional toxj−1−2xj +xj+1. In a histogram some resolution is lost if bins with a width aslarge
as expected for the final resolution would be used. It is recommended to use initiallym = 2ndf bins forx
for a final number of degrees of freedom ofndf. Fory a larger number of binsn (> m) is recommended,

1 Sometimes the iterative solution of unfolding problems expressed by the equationy = Ax is proposed in the literature
without explicit regularization, starting from a ”good” initial distribution forx. Of course equations of this type (with a square
matrix) have a unique solution and iterative solutions are slow compared to the direct solution; after a large number of iterations
with convergence the same unsatisfactory result as by direct solution will be obtained. However in these proposals onlya small
number of iterations is recommended. It can be shown that iterative methods can in fact include an implicit regularization
[8]: there is a different speed of convergence for the various orthogonal contributions and the small contributions with a small
eigenvalue will converge very slowly. Thus after a few iterations the (large) coefficients with large eigenvalues are already
accurate; the remaining coefficients are still almost unchanged and thus, for a stop after few iterations, their values are still
close to the starting values. There is of course some subjectivity in stopping ”early” enough.
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to avoid a loss of resolution. Thus the numbern × m of elements is large, and a large sample of Monte
Carlo events is required tofill matrix A. The statistical error of the elementsaij eventually can not be
neglected.

Standard Poisson maximum likelihood fit.Ignoring initially eventual statistical errors of the elements
aij the expected number of events in bini of y is given byyi =

∑m
j=1

aij xj . For the expected
numberyi, as given by this expression, the observed valuesŷi follows the Poisson distribution. Optimal
estimates for the elementsxj are obtained by minimizing the (negative) logarithm of the total likelihood
with respect to the elementsxj of vectorx, assuming the Poisson distribution:

F (x) = − lnL(x) = − ln

[
n∏

i=1

Pyi
(ŷi)

]
=

n∑

i=1

(yi − ŷi · ln yi) + const., (10)

where the constant term containing e.gŷi! can be ommited. This expression (10) correctly accounts also
for bins with a small number of histogram entriesŷi.

An alternative would be to use the (linear) least squares method with singular value decomposi-
tion for the fit. However for small number of entries the use ofthe Poisson distribution seems to be
essential. Furthermore the diagonalization used later in the method is almost equivalent to singular value
decomposition (eigenvalues are the squares of the singularvalues).

Fitting with finite Monte Carlo samples. The problem of statistical fluctuations of the elementsaij

has been neglected so far. A method to treat the problem within the maximum-likelihood method has
been developed by R.Barlow and Chr.Beeston [9]. In this method there is for each source binxj some
(unknown) expected number of eventsAij . For each elementAij the corresponding numberaij from the
Monte Carlo sample is generated by a distribution which is taken to be Poisson too. The nice feature of
this method is that a bias which would be introduced by ignoring the statistical character of the values of
the elementsaij is avoided and the maximum likelihood error is more realistic. A large number of slack
variables (one for each bin) is introduced and has to be treated in the optimzation. A new fast numerical
solution method has been developed (see [1]).

Combining bins. The likelihood function is a sum over all bins. Combining almost empty bins does not
introduce a systematic error. The total number of elements of the matrix may be large, especially ifx
and/ory are multidimensional, and a small number of entries (or evenzero) in an element may not be
uncommon. The combination of almost empty bins is done with acluster algorithm, taking into account
the distance between bins in one, two or three dimensions.

First option: sharp cut-off of orthogonal contributions. This method is rather similar to the method
discussed in section 2.. The computational problem is to determine the minimum ofF (x) (see equation
(10)). The standard iterative method is based on the representation for the correction∆x

F (∆x) =
1

2
∆xT H∆x + ∆xT g + . . . (11)

with the HessianH (matrix of second derivatives ofF (∆x)) and the gradient vectorg (first derivatives
of F (∆x)). A Newton step is then calulated from equationH∆x + g = 0. Convergence is usually fast
for good starting values and the covariance matrix is equal to the inverse of the Hessian. The starting
values can be calculated by a linear least square fit, based onthe approximation of the Poisson distribution
by a Gaussian distribution for each bin.

A sharp cut-off as discussed in the example of section 2. requires a diagonalization of the sym-
metric matrixH by H = UD UT with a diagonal matrixD and a transformation matrixU . By
a transformation (rotation) inx-space linear combinations of thex-components are obtained with a
diagonal covariance matrix, with variances of the linear combinations given by the inverse of the eigen-
values of matrixD. A cut-off is done at some indexj followed by backtransformation to thex-space of
bin-contents using the transformation matrixU .
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Second option: regularization. In this option the regularization is based on the second derivative of
the result according to equation (5), which can be expressedby a quadratic formxT Cx with a positive-
semidefinite matrixC. In principle the same procedure is used as in RUN; the mathematical details are
given elsewhere [4]. Here a simple explanation is given on the standard mathematical operations2 used.
Regularization is done by adding the termτ ·xT Cx to the functionF (∆x) of equation (11). Exactly as
in the first option the Hessian is diagonalized.

H = UD UT H−1 = UD−1UT =
[
UD−1/2

] [
D−1/2UT

]
. (12)

Up to this step everything is identical to the cut-off option. Using transformation matrixUD−1/2 the
vectorx is transformed to linear combinationŝx, which are orthogonal, with all variances equal to 1
(unit covariance matrix). Because the covariance matrix isequal to the unit matrix, every additional pure
rotation will not change the (unit) covariance matrix. In terms of the transformed vector the regularization
term can now be written in the formτ · x̂T CU x̂, whereCU is the transformed curvature matrixC. Now
another diagonalization can be done of matrixCU :

τ · xT Cx → τ · x̂T CU x̂ = τ · x̂T UC S UT
Cx̂ (13)

with a diagonal matrixS and a rotation matrixUC . This diagonalization can be used to define a pure
rotation from the linear combination̂x to another linear combinatioñx

x̂ → x̃ = UT
C x̂ . (14)

The components of the new vectorx̃ still have the unit matrix as covariance matrix. The complete
transformation fromx to x̃ is the effect of the transformation byUD−1/2 and byUC . The algebra can
be explained in other words: the error ellipsoid related to the Hessian is first rotated to have the axes
parallel to the axes of the new system. By a change of the scales the ellipsoid is transformed to a sphere,
which will remain a sphere for any further rotation. A last rotation is done to bring the axes into the order
of increasing curvature.

10 20 30

-0.05

0

0.05

transformation vectors 3, 4 and 16

Fig. 4: Selected column vectors of the complete trans-

formation matrix defined in the regularization procedure.

They correspond to the curvature eigenvaluesS33, S44 and

S16,16. Visualization is done by curves interpolating the

components. The amplitude associated which each vector

all have the same standard deviation of 1.

Some columns of the complete (product) transformation are shown in Figure 4. All linear com-
binations obtained have the same precision (standard deviation of the coefficient is one). As seen in the
Figure linear combinations with large indexj are oscillating with large amplitude. The diagonal elements
Sjj are the (statistically independent) contributions of the elements ofx̃ to the total curvature. Sorted
according to increasing value ofSjj the value ofSjj will increase rather fast with increasing indexj. The
spectrum of eigenvaluesSjj is shown in Figure 5. In terms of the linear combinationsx̃ regularization
is simply given by

(x̃j)reg =

(
1

1 + τ · Sjj

)
(x̃j)unreg . (15)
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Fig. 5: The eigenvalues after the curvature transformation. The values are very rapidly increasing for orthogonal contributions

for increasing index value (left). The amplitudes before (left bars) and after regularization (right bars). The statistical error of

all amplitudes is equal to 1, which is indicated by the horizontal line. The vertical scale is linear at the bottom and makes a

transition to a logarithmic scale at the top (right).

and this simple form is the reason for the transformations made before.

Determination of the regularization parameters τ . The first factors (smallj) on the right-hand-side
of equation (15) will be close to 1; for a valueτ = 1/Skk the factor will be 1/2 and for indicesj > k
will rapidly decrease towards zero. The sum of all factors can be called theeffectivenumber of degrees
of freedom, and can be used to determine the value of the regularization parameterτ from the required
number of degrees of freedom, i.e. the regularization parameterτ is determined from the value ofndf in
the equation

ndf =

m∑

j=1

(
1

1 + τ · Sjj

)
. (16)

Thus the required number of degrees of freedom has to be specified and determines the degree of regu-
larization. This number can be taken from the spectrum of thecoefficients or amplitudes, shown in Figure
5. The insignificant part (largej) is clearly visible in the spectrum and separated from the significant
part (smallj). The selected value ofndf should be equal to or larger than the number of significant
terms. The unregularized amplitudes, which have standard deviation one, are shown by the left bars;
amplitudes above index 15 are compatible with one and represent noise. They would however make a
large contribution to the solution, because the corresponding column vectors (Figure 4) are large. The
regularization effectively damps the amplitude (right bars) around and above index 15, which has been
chosen as the degree of freedom here. The significant amplitudes are not affected by the regularization.

The final result of the example (measured distribution in Figure 1) is shown in Figure 6. The left
figure shows 30 data points with error bars together with the original (true) distribution; within errors
the original distribution is nicely reproduced. The rank ofthe covariance matrix is about 15, which was
chosen as the effective number of degrees of freedom; thus inversion of the covariance matrix, needed
e.g. for a least-square fit of a model to the data, is not possible. Although the large number of 30 data
points seems to be attractive, the data points should be reduced to 15 data points by combining two
bins to one, which then have a full-rank covariance matrix. This set of data points is shown in Figure 6
(right). The broader bins of this set of data points are a consequence of the limited acceptance and finite
resolution of the measurement.

2In a publication the method has been described to ”have certain mathematical complications”, but it is based only on
standard linear algebra of symmetric matrices.

9



0 1 2
0

2000

4000

result of unfolding in 30 bins

0 1 2
0

2000

4000

result of unfolding in 15 bins

Fig. 6: The unfolding result after regularization with 15 degrees of freedom with 30 bins (left) and with 15 bins (right).For

comparison the original (true) distribution is shown by a histogram. The data from Figure 1 are used as input.
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