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The measurement of density functions is the standard task of experimental particle physics. In particle physics experiments a sample of values from a random
variable x is extracted from event data, and usually a histogram is generated from the sample as estimate of the density function f (x). More realistic and accurate
density estimates are discussed.
Often the true variables x are not directly accessible to the measurement; instead a sample of values from a random variable y is observed, which differs from
the variable x because of finite resolution, limited acceptance and perhaps some transformation. Monte Carlo events from a simulation of the measurement
process provide information on the transformation of variable x to y, by a sample (X, Y). The inverse ill-posed problem of reconstructing the density f (x)
from the statistically limited data sample (Y) and Monte Carlo sample (X, Y), the unfolding problem, is statistically and mathematically complex. Unfolding
methodology actually used in HEP is not well-established. Actually used methods and potential new methods are discussed.

1. Measurement of densities in Particle Physics

∗2. Non-parametric density estimation

3. Singular value decomposition – SVD

4. Iterative unfolding methods

5. Regularized Least Squares

∗6. Projection methods

7. Critical review
∗ = Methods without histograms



(1) Measurement of densities in Particle Physics

(1) Construct density estimate f̂ (x) from a sample of observations.

Observed sample of size N {X}N ≡ {X1, X2, . . . XN} Xk ∈ [xa, xb]

improve empirical density function f̂ (x) =
1

Ndata

N

∑
k=1

δ (x− Xk)

(2) Statistical inverse problem (unfolding): estimate f̂ (x) from measured sample {Y}N.

Measurements are recorded by non-perfect detectors: X (true) =⇒ Y (measured)

• smearing by a finite measurement accuracy;

• limited acceptance, causing a loss of part of the sample or a systematic shift of the
measured values;

• the trigger and the reconstruction influence the data;

• principally unobservable physical phenomena in the particle collision can occur.

Measured sample of size N {Y}N ≡ {Y1, Y2, . . . YN} Yk ∈ [ya, yb]
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Observed and true distribution
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• l Unavoidable random fluctuations: event number/bin follows Poisson distribution

• Measurement process – non-ideal detector

↔ migration due to measurement error
↓ limited acceptance
↙ non-linear response, e.g. loss of energy
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Fredholm integral equation

Assumption: the measurement process with the transformation f =⇒ g is described by a
linear operator K :

K f = g

Properties: superposition K ( f1 + f2) = K f1 +K f2

scaling K (α f ) = αK f

Fredholm integral equation: relation between the density function f (x) and g(y)

∫
Ω

K(y, x) f (x)dx = g(y)

Kernel (or response) function K(y, x) describes the behaviour of the measurement process.
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Response function/matrix by MC simulation

In particle physics the measurement process, i.e. the kernel K(y, x) is determined in a MC
simulation, based on a certain assumed distribution fMC(x).

MC
∫

Ω
K(y, x) fMC(x)dx = gMC(y)

Monte Carlo: generate X according to fMC(x)

• Hard interaction: exact matrix element
• QCD bremsstrahlung: parton showers in initial and final state
• Multiple Interactions: modelling beyond factorization
• Hadronization: non-perturbative modelling, and Hadron decays;
• Detector simulation: signal generation, trigger, reconstruction

Result of the Monte Carlo simulation: two statistical samples

{(X)}MC ≡ {(X)1, (X)2, . . . (X)MC} from fMC(x)
{(X, Y)}MC′ ≡ {(X, Y)1, (X, Y)2, . . . (X, Y)MC′} MC′ ≤ MC

Solution: ∫
Ω

Kprob(y, x) f̂ (x)dx ' gmeas(y) =⇒solution f̂ (x)

or
∫

Ω
[K(y, x) fMC(x)] f̂ ′(x)dx ' gmeas(y) =⇒solution f̂ (x) = fMC(x) f̂ ′(x)
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Discretization

Unfolding is a complex statistical and mathematical problem.

Inverse problems are ill-posed: small input data errors or small inaccuracies in the mathe-
matical treatment cause large errors in the solution.

Standard discretization method: Almost all unfolding methods in use in particle physics
perform the discretization by histograms, which are the input data to unfolding.

• What is the optimal bin width for the histograms?
Folklore: bins width show be close to the resolution (one standard deviation).
• How many Monte Carlo events are necessary for the sufficient determination of the

response matrix?
Folklore: a factor of 10 in statistic for Monte Carlo, compared to the data, should be
sufficient.

System of linear equations, with probability matrix A and histogram vectors f , g:

A f ' g

∗ Alternative methods: no histograms! Input n-tuples – densities are parametrized by e.g.
B-splines or system of orthogonal functions. Avoid mathematical operations that result
in unclear or undefined statistical properties of A or g.
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Simple bin-by-bin correction factor method

bin-correction factor = Ci =
MC truth-level bin conti

Reco–level bin cont after event reconstruction and selectioni

data bin contenti Di multiplied (“corrected”) by correction factor Ci

assumed “statistical” standard deviation ' Ci ×
√

Di
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• The method is at least rather opti-
mistic; it is essentially a pure accep-
tance correction method.

• In practice non-linear response ef-
fects are “corrected” before by a dif-
ferent method.

• “. . . a HEP-specific heuristic, called
bin-by-bin unfolding, which prov-
ably accounts for smearing effects in-
correctly through a multiplicative ef-
ficiency correction, is widely used.”
[V.M. Panaretos]

From a publication: “. . . The purity and stability typically exceed 50%. If either the purity or the
stability is below 25% in a bin . . . , the bin is combined with an adjacent bin . . . ”
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Unfolding in Particle Physics is still “Neuland”

In the past the problem of unfolding was not really discussed in particle physics experi-
ments.

• statement “our data are corrected by Monte Carlo” was assumed sufficient, and ac-
cepted as explanation of the applied method.

• bin-by-bin correction: for decades the complex problem of unfolding was “solved” by
the “bin-to-bin correction” method, fixing the migration between bins by an assumed
MC;

• unfolding is often called “data correction”, and ”histogram” is a synonym for “data”;
important data are published as histogram-like binned data.

• even often used unfolding methods are described by wrong or at least unclear terms

• a certain iterative method (1995) is called by different people either
? Bayesian unfolding, or
? Maximum Likelihood for Poisson distributed data, or
? expectation-maximation (EM) algorithm incomplete data (Dempster 1977),

• but is already known as “Richardson-Lucy method“ in astronomy (1972, 1974) and
included for image restauration in “Raw Therapee” photo software.
• a standard method with Tikhonov “second derivative” regularization (1995) is

called
“SVD Approach to Data Unfolding” (and sometimes a “single”-value decomposition
method).
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Phystat 2011 Workshop at CERN

PHYSTAT 2011 workshop (organized by Louis Lyons) in “Statistical Issues . . . ” at CERN
included one-day on “unfolding” (for the first time)

Abstract of introduction by Louis Lyons:

As a non-expert on unfolding, I wanted to make a few ‘obvious’ non-controversial
remarks about unfolding. It turns out, that even such innocuous comments can
become the subject of heated debate.

L.L. invited statistician Victor Panaretos (Lausanne).
The view of Panaretos in a proposal of a new statistical methodology:

“At present, the unfolding methodology used in LHC analysis is not well-
established. . . . these methods suffer from not dealing with two significant issues
satisfactorily:

(1) the choice of the regularization strength and
(2) quantification of the uncertainty in the solution.”

No real progress in unfolding since 2011.

PHYSTAT 2011 Workshop, CERN-2011-006 yellow report, edited by Harrison Prosper, Louis Lyons.

V. Panaretos, M. Kuusela: Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification,

arXiv: 1505.04768
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Unfolding is more general than “histogram correction”

Measurement of the differential cross section of inelasticity y = Ehad/Eν,in in neutral
current neutrino interactions (narrow band beam): CHARM collaboration

NC: ν N → [hadrons] ν Eν,in = Ehad + ???

beam flux φ(Eν, rbeam)

direct problem (by MC) dσ/dy =⇒ predicted dist. in Ehad, rbeam

inverse problem (by unfolding) dσ/dy⇐= measured dist. in Ehad, rbeam

Several “unfolding” codes are not able to solve such a problem
.

Unfolding is more general than “histogram data correction” to correct migration effects.
V. Blobel, Regularized Unfolding withRUN (1979-1984), CERN 1985 Computing School, Aiguablava, Spain
N. Milke, Fortran 77 code translated to C++ (with renaming to T RUEE ). TU Dortmund (2012)
Another experiment: “We reconstruct y event-by-event – using the Kν-peak energy, . . . and later we correct by MC . . . ”
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∗ (2) Non-parametric density estimation

Task: estimate the density f (x) from a sample {X}N of random observations.

observations, sample of size N {X}N ≡ {X1, X2, . . . XN}

orthogonal function system {φk(x)}
∫ b

a
φj(x)φk(x)dx = δjk

density function histogram h, discrete sample

f (x) =
∞

∑
k=0

fkφk(x) f̂ (x) =
p

∑
k=0

ĉkφk(x)

fk =
∫ b

a
f (x)φk(x)dx ĉk = N−1

n

∑
j=1

hjφk(x̄j) =⇒ N−1
N

∑
i=1

φk(Xi)

• Decay of coefficients fk fast for a smooth density function f (x);

• histogram with many bins e.g. n = 1024 = 210, as accurate as discrete data;

• property of estimate: E [ĉk] = fk;

• moments ck for large k dominated by noise truncation or low-pass filter necessary.
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Cosine series expansion

Special basis
{

φ0(x) = 1, φk(x) =
√

2 cos (πkx) , k = 1, 2, . . .
}

, orthonormal in [0, 1]:

variance of ck = Vkk =
dk
N

with dk ≈ 1

Moments ck follow Gaussian distribution (Central limit theorem).

DCT = Discrete Cosine Transformation: in use for compression in JPEG, MPEG, . . . and
purely real, more efficient than Discrete Fourier Transformation.

Transformation of histogram h either

• by product with matrix UDCT and inverse by UT
DCT:

UT
DCTh = b UDCTb = h

• or by “Fast Cosine Transform”, cpu-time O(n× log n).

• generalization to multidimensional data: e.g. 2D-DCT
by two 1D-DCT sequences.

N. Ahmed, T. Natarajan, K.R. Rao, Discrete Cosine Transform, IEEE Transactions on Computers, p. 90 – 93, (1974)
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Moments from histogram data by DCT

• Fast decay of “true” moments from probability density function;

• uncertainty from histogram moments ∝ 1/
√

N ;

• moments reach noise-level after p = 8 moments (103 entries) and after p = 25 moments
(106 entries).
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Density estimates I

Example: Geyser-data sample {X}272 from Yellowstone National park, from the web.
http://www.stat.cmu.edu/~larry/all−of−statistics/=data/faithful.dat

Duration of geyser eruption (in mins)
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pdf estimate by log-lin Chebyshev expansion

density
±2σ

+ no correlations between different
bins;

− discontinuous (5-bit) density esti-
mate,

− required parameters: nr of bins, origin

− bad/no estimate in low-density re-
gions

− Poisson uncertainty from bin content.

− non-zero correl. between different points;

+ continuous accurate density estimate,

+ no parameters required,

+ estimate > 0 in whole region,

+ uncertainty available (log-normal).

V. Blobel – University of Hamburg Non-parametric Density Estimation and Unfolding page 14



Density estimates II same data, shifted origin

Example: Geyser-data sample {X}272 from Yellowstone National park, from the web.
http://www.stat.cmu.edu/~larry/all−of−statistics/=data/faithful.dat

Duration of geyser eruption (in mins)
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pdf estimate by log-lin Chebyshev expansion
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±2σ

+ no correlations between different
bins;

− discontinuous (5-bit) density esti-
mate,

− required parameters: nr of bins, origin

− bad/no estimate in low-density re-
gions

− Poisson uncertainty from bin content.

− non-zero correl. between different points;

+ continuous accurate density estimate,

+ no parameters required,

+ estimate > 0 in whole region,

+ uncertainty available (log-normal).
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Log-linear models

Task: construct estimate f̂ (x) of pdf, if a lim-
ited number of moments ck of f (x) is known?

f̂ (x) =
p

∑
k=0

ĉkφk(x) =⇒ exp

[
p

∑
k=0

γkφk(x)

]

Log-normal: Intuitivly one could expect a log-normal distribution of estimated density
values, which by definition are restricted to positive density values.
Hiroshi Sekimoto, An Unfolding Method Leading to a Positive Solution Only, Nucl. Instrum. Methods Phys. Res. A

228, pp. 129 – 132, 1984.

Generalized linear models: log-linear models for counts (Poisson)
linear model for predictor η, related to solution f̂ (x) by logarithmic link function (for
Poisson data):

f̂ (x) = exp (η(x)) η(x) =
p

∑
k=0

γkφk(x)

J.A.Nelder and R.W.M.Wedderburn, Generalized linear models, J.R.Statist. Soc A 135, pp. 370–384, 1972

Maximum-entropy approach: The maximum entropy method is based on the concept that
the distribution that maximizes the information entropy is the statistically most likely to
occur. Require equality constraints for p moments ck and . . .

maximization of the entropy functional S = −
∫ b

a
[ f (x) ln f (x)] dx

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review 106 pp. 620–630 (1957)
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Cosine and Chebyshev polynomial expansion

cos (kπt)
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∫ +1

−1

Tn(x)Tm(x)
π
√

1− x2
dx =


1 : n = m = 0
1/2 : n = m 6= 0
0 : n 6= m

cn = 2
∫ +1

−1

Tn(x) f (x)
π
√

1− x2
dx n = 1, 2 . . .

Gauss-Lobato zeros for k = 0, 1 . . . n− 1:

xk = cos (π(2k + 1)/(2n))
1/π arccos(xk) = tk = (2k + 1)/(2n)
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xk

1
m

m−1

∑
k=0

Ti(xk)Tj(xk) =


1 i = j = 0
1/2 i = j 6= 0
0 i 6= j

cj =
2
n

n−1

∑
k=0

f (xk)Tj(xk) j = 1, 2 . . .

V. Blobel – University of Hamburg Non-parametric Density Estimation and Unfolding page 17



Transformation x =⇒ t by arccos

Only cos-terms after transformation:

x = − cos(πt) ∈ [−1,+1] t =
1
π

arccos(−x) ∈ [0, 1]
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Chebyshev expansion of f̃ (x) by cosine expansion of g̃(t)

hi = N × 2
Z2

exp

[
m

∑
k=1

γkTk(x̄i)

]
gi = N × π sin(π t̄i)

Z1
exp

[
m

∑
k=1

γk cos (πkt̄i)

]
with same coefficients γk for cosine and Chebyshev expansion.
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(3) Singular value decomposition – SVD

SVD . . . a new way to see into the heart of a matrix.
GILBERT STRANG

The SVD in least-squares problems allows insight into the structure of the matrix A and
the LS solution of the matrix equation A f ' g

Singular value matrix decomposition A = UΣVT =
n

∑
i=1

σiuivT
i Σ = UTAV

Σ = diag {σ1, . . . , σn} with ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.



(n)

(m) A


=


u1 u2 . . . un−1 un




σ1 0

σ2
. . .

σn−1
0 σn




vT
1

vT
2
· · ·

vT
n−1
vT

n


Matrices U and V with orthonormal columns: the m-vectors ui and the n-vectors vi are
called left and right singular vectors of matrix A. They have, with increasing index an in-
creasing number of sign-changes in their elements, corresponding to higher frequencies.
SVD developed in 19. century by geometers; stable algorithm by Golub and Reinsch (1970 ALGOL).
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The (1) direct problem and . . .

Simple model: A︸︷︷︸
response matrix

×
solution︷︸︸︷

f ' (g +Nm)︸ ︷︷ ︸
measurement

Direct (folding): calculate expected measured distribution

g = A f = UΣV T f =
n

∑
j=1

σj

(
vT

j f
)

uj

The “true” vector f is decomposed into components(
vT

j f
)

, and the expected “measured” vector g is a su-
perposition of the vectors uj, weighted with singular
values σj.

Components with σj = 0 or σj � 1 disappear in the real
measured vector g +N (noise).

Singular vectors
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. . . and the (2) inverse problem

Naive Least Squares: minimize ‖A f − g‖2  f̂ = A†g A† =
(

ATA
)−1

AT

Inverse (unfolding): SVD solution identical to LS solution using generalized inverse A†

f̂ = A†g = VΣ−1
(

UTg
)
=

n

∑
j=1

1
σj

(
uT

j g
)

vj=
n

∑
j=1

1
σj

cjvj

The estimated “true” vector f̂ is a superposition of the vectors vj, with ‘measured” Fourier

coefficients cj =
(

uT
j g
)

, and weighted with the inverse singular values 1/σj.

V f = A†A†T
= VΣ−2VT =

n

∑
j=1

(
1
σ2

j

)
vjvT

j

Note: building blocks of the solution are not single bins, but whole distributions vj
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Properties of the naive LS solution

(1) Check of a potential bias in the solution:

estimator f̂ = A†g with E [g] = A f exact

E
[

f̂
]
= A†E [g] =

(
A†A

)
f exact = f exact f̂ unbiased

(2) Variance: V f = lower bound, given by the Rao-Cramér-Frechet (RCF) inequality.
Gauss-Markov theorem: the least square estimate is unbiased and has smallest possible
variance.

But: the result f̂ will often show large, unacceptable fluctuations!
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10000 entries, no smearing unfolding by inversion truncation – p = 15 terms
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Strategies

Naive unfolding results will be wildly fluctuating and are not acceptable.

Wider bins – reduce number n of bins of estimated “true” vector x̂; this will avoid very
small singular values σj.

Cut/truncation – ignore insignificant Fourier coefficients cj (value ≈ uncertainty) with
small values σj:

f̂ = A†g =
n

∑
j=1

1
σj

cjvj ⇒
p

∑
j=1

1
σj

cjvj with p < n

A sharp cut-off may result in Gibbs oscillations.

Regularization – add e.g. ‘smoothing” term ‖Lx‖2 to least squares condition:

minimize
a

‖A f − g‖2 + τ f T
(

LTL
)

f

Result is a smooth cut-off, that avoids Gibbs oscillations.

Parametrized unfolding – if a well-known parametrization f (t; a) has to be tested, this
parametrization can be used directly, without the need for regularization.
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Effect of a Gaussian resolution: convolution . . .

Approximation of an even function f (t) with period 1:

f (t) ≈ a0 +
n−1

∑
k=1

ak cos (πkt) g(s) ≈ α0 +
n−1

∑
k=1

αk cos (πks)

Convolution: Effect of a Gaussian kernel with standard deviation σ:∫ +∞

−∞

1√
2π σ

exp
(
−(s− t)2

2σ2

)
× cos (πkt)dt = exp

(
−(πkσ)2

2

)
× cos (πks) ,

blue dashed curve:
σ = 0.05, i.e. full range ≡ 20 σ

Damping factor becomes

≈ 10−2 for k = 19

≈ 10−4 for k = 27
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Cosine basis functions . . . and deconvolution

The exponential factor exp
(
−π2k2σ2

2

)
corresponds to the singular value σk.

Deconvolution: correct coefficients

for small k :

âk = αk × exp
(

π2k2σ2

2

)
for large k :

âk = (noise level) × exp
(

π2k2σ2

2

)
Blue noise:
with k2 exponentially increasing noise!
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. . . and deconvolution

Deconvolution: expand convoluted (“measured”) function g(s) to obtain coefficients αk:

Correct coefficients back: âk = exp
(

π2k2σ2

2

)
× αk for small k

= exp
(

π2k2σ2

2

)
×
√

α2
k + ε2 −−−→

k→∞
ε× exp

(
π2k2σ2

2

)
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Convolution and deconvolution

• Fourier coefficients αk are below the exact ones ak and reach for k = 15 a level of about
10−8, due to round-of-errors ε.

• The deconvoluted Fourier coefficients are correct only up to k = 15.

• Deconvolution with k� 15 will have result dominated by noise.
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Singular values and MC statistics

How many singular values and vectors can be determined by MC simulation with limited
number of events?

Four versions of response matrix:

• MC 106 and 108 events

• Single and double precision analytical
computation

Limitation by statistical fluctuations and
roundoff-errors!

p = nr of σi σp

106 MC 15 0.06
108 MC 21 0.006
single prec. 43 3× 10−9

double prec. 56 3× 10−14
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(4) Iterative unfolding methods

Iterative methods to solve the equation A f = g for the vector f access the (unaltered) re-
sponse matrix only by matrix-vector multiplication with A and AT and generate a sequence
of iteration vectors f [k], k = 1, 2, . . . They allow to solve large-scale inverse problems,
where factorization methods are infeasible (response often point spread function).

“. . . need iterative schemes with the intrinsic property that they . . . pick up those SVD com-
ponents corresponding to the largest singular values . . . (semi-convergence)” [Hansen]

Methods
Landweber method (1951): additive corrections determined iteratively.

Corresponds to Least Squares solution with Gaussian distributed data.
L.Landweber(1951): An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math. 73,

615–624

Richardson-Lucy method (1972, 1974): multiplicative corrections determined iteratively,
used for restoration of Hubble ST images
Corresponds to Maximum Likelihood solution with Poisson distributed data.
W.H. Richardson,(1972) Bayesian-Based Iterative Method of Image Restoration, Journal of the Optical Society of America

A, 62 (1): 55 – 59. L.B.Lucy(1974), An iterative technique for the rectification of observed distributions, Astronomical

Journal 79 (6): 745 – 754.
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Landweber method

Starting (iteration k = 0) from distribution f̂ (0)j (e.g. uniform):

iterate: f̂
(k+1)

= f̂
(k)

+
ω

σ2
1

AT
(

g − A f̂
(k)
)

0 < ω < 2

Filter factors for f̂
(k)

(ω = 1):

G[k]
i = 1−

(
1− σ2

i
σ2

1

)k

i = 1, 2, . . . n
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Filter factors as function of the index
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Richardson-Lucy (RL) unfolding

Starting (iteration k = 0) from distribution f̂ (0)j (e.g. uniform) iterate:

f̂ (k+1)
j =

(
∑

i
Aij

gi

g(k)i

)
·

f̂ (k)j

αj
with g(k)i = ∑

j
Aij f̂ (k)j

The algorithm shows semi-convergence: often a smooth solution f̂ is obtained after few
iterations, and then oscillations occur corresponding to the naive maximum likelihood
solution. [Shepp, L. A.; Vardi, Y. (1982), Maximum Likelihood Reconstruction for Emission Tomography, IEEE Transactions on Medical Imaging 1: 113]

Identical to algorithm called “Bayesian unfolding” in HEP:
G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Meth. in Phys. Res. A362 (1995) 487

The RL-algorithm has the following properties

• Estimates f̂ j are always positive (starting values f̂ [0]j modified by positive factors);

• result is ML solution for Poisson distributed bin entries;

• no straightforward determination of the covariance matrix;

• regularization (damping of oscillations) dependent on iteration number (and by his-
togram binning and start distribution): no prescription for blind unfolding; sometimes
intermediate smoothing recommended to suppress developing oscillations (in HEP);

• typical application is picture deblurring using simple point-spread-function (PSF).
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Opinions about the RL algorithm

• “. . . the iteration sequence converges
quickly to a reasonable unfolded his-
togram, sometimes after a single itera-
tion.”

• “. . . one can realize that in most of the
cases a good agreement is reached after
a few iterations.”

• “In these cases where the observed dis-
tribution indicates that there are sharp
structures in the true distribution, the
iterative method permits to implement
these in the input distribution. In this
way the number of iterations is reduced
and oscillations are avoided.”

• “. . . solution obtained by stopping the
iteration does depend on the starting
distribution. We may choose it accord-
ing to our expectation.”

• “Unfolding is not an entirely objective
procedure.”

. . . studies from Particle Physics

• “convergence can be extremely slow”

• “The slow convergence of the method
is sometimes argued to be a positive
feature of the algorithm, since a fast
program would bring us quickly close
to the minimum norm solution that is
usually nonsense . . . ”

• “. . . need iterative schemes with the in-
trinsic property that they . . . pick up
those SVD components corresponding
to the largest singular values . . . ”

• “. . . if the system of equations has
many solutions, then the algorithm
will converge to the solution that is
closest to the . . . starting distribution.”

• “Contributions corresponding to
small singular values show an ex-
tremely slow convergence, and are,
after a few iterations, still biased to
the initial assumption.”

. . . from the statistical literature.
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(5) Regularized Least Squares

More realistic with N = noise = statistical fluctuations plus systematic deviations

(A +NMC)︸ ︷︷ ︸
response matrix

×
solution︷︸︸︷

f + (b +Nb)︸ ︷︷ ︸
background

= (g +Nm)︸ ︷︷ ︸
measurement

Noise contributions combined with small singular values (response matrix) will result in
fluctuating/oscillating result.

• Optimization: regularization term (penalty) and χ2-expression

Regularization minimize ‖A f − g‖2 + τ × regularization term

• or (better) maximum likelihood (Poisson) with (instead χ2) deviance

D(g; gfit) = 2
n

∑
i=1

[
gi log gi − gi log gfit

i − (gi − gfit
i )
]

• Reduce, by regularization, influence of noise (in all its forms) on the solution, but bal-
ance between variance and bias.

• Regularization based on norm, squared second derivatives or entropy.
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Norm regularization

Norm regularization with diagonal penalty term:

minimize ‖A f − g‖2 + τ × f T f

Solution by SVD of response matrix A recommended (but not necessary).

Solution: f̂ =
n

∑
k=1

ϕk ×
ck
σk

vk with Fourier coefficients ck

filter factor ϕj =
σ2

j

σ2
j + τ

= 1 . . . 0.5 . . . 0

ϕk = 0.5 for τ = σ2
k

Caution — the shape of the filter curve is fixed!

• Significant terms should not be reduced, in order to avoid a bias;

• but insignificant contributions should be damped, to reduce influence of noise;

• no standard procedure to determine optimal value of τ.

• Standard Tikhonov regularization with a single regularization parameter τ may be too
simple under the conditions of HEP experiments (several noise sources).
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Squared second derivative regularization

Regularization based on square of second derivatives ≈ − fi−1 + 2 fi − fi+1.

minimize ‖A f − g‖2 + τ × f T
(

LTL
)

f

second der. L =



1 −1 0 0 ··· 0 0 0

−1 2 −1 0 ··· 0 0 0

0 −1 2 −1 ··· 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 ··· −1 2 −1

0 0 0 0 ··· 0 −1 1

 ∈ Rn×n

Requires GSVD = generalized SVD (two non-diagonal matrices) (not in CERN libraries).
Decomposition analytically known:

C =
(

LTL
)
= UDCT Λ2 UT

DCT

Do not try to invert C = (LTL)!

filter factor ϕj =
γ2

j

γ2
j + τ

−1 0 1 2 3 4 5 6 7 8 9 10 11
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index k

ei
ge
n
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k

Eigenvalues of second-derivative matrix

λk

G. Golub and C.F.Van Loan, Matrix Computation. C.F.Van Loan, Generalizing the Singular Value Decomposition (1976)
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Example: Unfolding of inclusive jet cross section as a function of pT

Measurement:

• pT, measured by
calorimeter, systemat-
ically underestimated
(bias);

• region of small pT un-
measurable: uncertain-
ties increase for region
pT → 0

jet transverse momentum pT distribution

MC simulation

FNAL-publication: Correction in two separate steps, for (1) bias, and for (2) limited reso-
lution (smearing) using bin-by-bin CF method (standard procedure).

Unfolding (see figure): in one step, taking into account bias, finite resolution (smearing),
and limited acceptance;

• allows the consistent determination of the covariance matrix,
• steeply falling distribution: intermediate transformation to

√
pT ⇒ variable bin

size and constant standard deviation.
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Presentation of regularized result . . . with MC input

Unfolding with Tikhonov regularization, using square of second derivatives.

“Histogram”-like presentation of result.
(from A. Hoecker and V. Kartvelishvili: NIM A 372)

Result with 40 data points:

• almost like a “band” representing re-
sult
• constructed from 10 significant pa-

rameters, with 40-by-40 covariance
matrix, singular with rank 10;
• large positive correlations, therefore

few sign-changes of the residuals to
MC input distribution.

(Same) result with 10 data points:

• each point represents a bin average of
the result
• 10-by-10 covariance matrix non-

singular, inverse is weight matrix.
• small and negligible correlations.

V. Blobel – University of Hamburg Non-parametric Density Estimation and Unfolding page 36



Example for positive correlation

Unfolding of charged multiplicity distribution in ALICE:

Hump observed around Nch = 30± 5 ⇒ new physics?

Charged Multiplicity distribution

Residuals of measured distribution

Small upward fluctuation observed
in ≈ 4 bins around Nch = 20.

Bins of the unfolded distribution are (positively) correlated over a large range. The origin
of the 10-bins hump at Nch = 30 is a 4-bin fluctuation at observed Nch = 20.

Note: n = 40 bins are unfolded here from m = 30 measured bins – covariance matrix must
have rank defect > 10.

From: Jan Fiete Grosse-Oetringhaus: Comments on Unfolding Methods in ALICE, PHYSTAT 2011
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Regularization parameter . . . no unique determination

Discrepancy principle (Morozov): choose τ

such that
∥∥∥A f reg− g

∥∥∥2

2
= nd f

L-curve method: plot∥∥∥L f reg

∥∥∥
2

versus
∥∥∥A f reg− g

∥∥∥
2

for
a set of τ-values ⇒ dependence has
shape of an L with a distinct corner  
optimal value of τ.

L-curve

1.4 1.6 1.8

4

6

8 L curve

log10 of chi^2

lo
g1

0 
of

 c
ur

va
tu

re

negative correlation

positive correlation

weak regularization

strong regularization

Effective number of degrees of freedom: (RUN ) determine nd f from spectrum of Fourier
coefficients cj, and determine τ such that sum of filter factors

p

∑
j=1

σ2
j

σ2
j + τ

= nd f

Minimum of global correlation: minimum mean value of global correlation coefficients

Definition: ρj =

√
1−

[(
V f

)
jj
·
(

V−1
f

)
jj

]−1
with 0 ≤ ρj ≤ 1
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∗ (6) Projection methods . . . without histograms

Histograms with few bins (e.g. 32 = 25) deteriorate the resolution.

Alternative method:

• Avoid the use of histograms with low number of bins;

• use unbinned data or histogram with many bins, e.g. 1024 = 210 bins and response
array with 1024× 1024 bins;

• transform all vector- and matrix arrays using well-defined DCT matrix UDCT after
arccos transformation to frequency space.

measured data g̃ = UT
DCT g

MC input f̃ MC = UT
DCT f MC

response matrix Ã = UT
DCT AUDCT

The solution f̃ is obtained in the space of frequencies:

Ã f̃ = g̃

and is finally expressed as log-parametrization f̃ (x) in terms of Chebyshev polynomials.
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Response matrix A . . . and DC transform of A

Transformation of 2D-histogram matrix A by DCT:

UT
DCT A UDCT = Ã in analogy to SVD: UTAV = Σ
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1024× 1024 bin response histogram
from Monte Carlo simulation.

compression: almost all 1024 × 1024 mo-
ments are compatible with zero
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DCT Response matrix A . . . and smoothed version

The SVD is applied to the lower-left corner of the moment array;

Ã = UΣVT

with the diagonal matrix of singular values. The inverse singular values are used to con-
struct the final moments, i.e. the elements of f̃ from the elements of g̃.
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Only a fraction of the singular value is significantly different from zero; the corresponding
colums vectors of U and V , the left- and right-singular vectors are well-defined.
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Accuracy of singular values MC 106 events

• Green dashed curve assumes Gaussian
random value of σi with mean zero.

• All singular values σi have the same un-
certainty!

• Singular vectors for insignificant σi are
random vectors with ≈ same curvature.

 sharp index limit on well-defined re-
sponse!

• Use all the significant moments and sin-
gular values/vectors, without regulariza-
tion;
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• Measured moments ck from g(y) are multiplied by inverse singular values =⇒ re-
constructed moments of f (x);

• Log-linear determination of f̂ (x) = ∑
p
k=0 γ̂kTk(x), from equality constraints for recon-

structed moments.
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(7) Critical review MC input

Is the linear Fredholm integral equation the correct model?

• Is the problem described by a linear integral equation?

• How to take into account the migration in and out the measurement region?

• Even unfolding a 1D-distribution can require a more-dimensional measurement!

• How to discretize statistically correct the 2D-, 3D- . . . distributions?

 
Use a realistic Monte Carlo input function fMC(x) close to the expected result in or-
der to avoid distorting effects from a potentially non-linearity and in/out migration,
without introducing a significant bias towards the expectation.
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Criticisms

• “Each year, the experimental collaborations working with LHC data publish dozens of
papers using . . . unsatisfactory unfolding techniques.”

• “Furthermore, . . . methods suffer from not dealing with two significant issues satisfac-
torily: (1) the choice of the regularization strength and (2) quantification of the uncer-
tainty in the solution.”

• “The delicate problem of choosing the regularization strength is handled in most LHC
analyses using non-standard heuristics or, in the worst case scenario, by simply fixing a
certain value “by hand". When quantifying the uncertainty of the unfolded spectrum,
the analyses rarely attempt to take into account the uncertainty related to the choice of
this regularization strength.”

• “. . . ignores the Poisson nature of the observations and does not enforce the positivity
of the solution.”

• ”Almost all unfolding methods in particle physics use directly histograms for the ob-
served distribution and the response matrix . . . although histograms may cause severe
problems.”
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Two opposition opinions

• A fundamental problem in unfolding is the discrepancy, that, on one hand,

• unfolding itself is a complex statistical and mathematical procedure,
and on the other hand,
• the procecure should be used, more or less blindly, by physicists, which are experts

in particle physics, but have only limited knowledge in the theory of unfolding.

• This discrepancy can be resolved by the development of unfolding procedures, which
require a minimum of steering parameters for unfolding.

versus

• Unfolding is a complex data analysis task that involves several assumptions and ap-
proximations. It is crucial to understand the ingredients that go into an unfolding
procedure.
Unfolding algorithms should never be used as black boxes!

T HE END
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Backup pages Complexity and simplicity

“For every complex problem there is an answer
that is clear, simple, and wrong.”

H. L. MENCKEN

“Everything should be made as simple as possible, but not simpler.”

ALBERT EINSTEIN

“Using a simple tool to solve a complex problem does not result in a simple solution.”

JOHN DOUGLAS PORTER

“Seek simplicity and distrust it.”

ALFRED NORTH WHITEHEAD

“You can get it wrong and still you think it’s all right”

JOHN LENNON and PAUL MCCARTNEY, from

We can work it out

The credibility of a quotation is increased substantially if it can be ascribed to a widely-recognized genius such as Albert Einstein.
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Unfolding codes

GURU (Fortran, SVD, by Andreas Hoecker and Vato Kartvelishveli)
TUNFOLD, an algorithm for correcting migration effects in high energy physics, by Stefan
Schmitt, DESY
Both in RooUnfold (ROOT Unfolding Framework, by Tim Adye et al.)

RUN (Fortran), converted to C++ by Natalie Milke (Uni Dortmund)

Method RUN GURU Tunfold Iterative
Input: matrix 4 4 4

Input: n-tuple 4
Orthogonalization 4 4

Input errors 4 4 4
Least squares 4 4 ?

MaxLik (Poisson) 4
Regularization 4 4 4 implicit

iterative 4
automatic binning 4
Cov.mat. by prop. 4 4 4
MC re-weighting 4
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RL: uniform start distribution I 0 . . . 3 iterations
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RL: uniform start distribution II 10 . . . 100 iterations
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RL: uniform dist + spike I 0 . . . 3 iterations
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RL: uniform dist. + spike II 10 . . . 100 iterations
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Smoothing

smooth f =⇒ y

algorithm transfer function

(a) yk =
1
3
( fk−1 + fk + fk+1) H(ω) =

1
3

(
1 + 2 cos π

ω

ΩNyq

)
(b) yk =

1
4
( fk−1 + 2 fk + fk+1) low-pass filter H(ω) = cos2 π

2
ω

ΩNyq

The Nyquist frequency is 1/2 of the sampling rate of a discrete signal processing.
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(a)
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high pass (c)

Non-consistent algorithm (a): non-
optimal smoothing, zero transfer for
ω = 2/3ΩNyq and negative (!) for higher
frequencies.

Correct algorithm (b): damping of higher
frequencies without zero-transfer and
without sign-change. Transfer 1/2 for
ω = 1/2ΩNyq.
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RL: uniform dist + spike I 0 . . . 3 iterations, smooth
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RL: uniform dist + spike II 10 . . . 1000 iterations, smooth
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RL: hi-freq start distribution I 0 . . . 3 iterations
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RL: hi-freq start distribution II 10 . . . 100 iterations
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Frequentist and Bayesian probability

Two fundamental approaches to statistical analysis: Frequentism and Bayesianism

Method Frequentist Bayesian

Meaning of probability Frequentist Degree of belief
Probability for parameters? No, no, no Yes

Frequentists: P(A) = number of times A occurs, divided by nr of trials (objective; the
probability of Quantum mechanics; can only be applied to repeatable phenomena – most
scientific work).

Bayes theorem: Probability of both A and B being true:

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

which implies P(B|A) =
P(A|B)P(B)

P(A)
Bayes theorem

Bayes theorem itself is not controversial between frequentists and Bayesians.

Bayesian use of Bayes theorem: A = observed data, B = theoretical parameter

P(parameter|data)︸ ︷︷ ︸
posterior density

∝ P(data|parameter)︸ ︷︷ ︸
likelihood function

× P(parameter)︸ ︷︷ ︸
prior density
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Purity and stability . . . from a publication

“The resolution in each bin is checked using a Monte Carlo simulation. Two variables are
calculated for this purpose, the purity P = Nrec,gen/Nrec and the stability S = Nrec,gen/Ngen,
where Nrec (Ngen) is the total number of reconstructed (generated) Monte Carlo events in
the bin and Nrec,gen is the number of events which are both generated and reconstructed
in the same bin. The purity and stability are calculated for both the electron and the Σ
methods. For the cross section measurement the method with the higher purity is used.
. . . The purity and stability typically exceed 50%. If either the purity or the stability is below 25%
in a bin for the chosen reconstruction method, the bin is combined with an adjacent bin.

Events are only taken into account from bins which pass the stability and purity criteria
and are covered by the chosen method.

The radiative and bin centre corrections can be determined using the Monte Carlo simula-
tion.

The correction for the detector acceptance using Monte Carlo modelling requires the cross
section model used in the simulation to be sufficiently close to the data, such that migra-
tions between the bins are well reproduced.

In practice, this is achieved using an iterative MC event reweighting procedure which con-
verges after one iteration for the measurement region.”
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Example for transformation problem Plots from MAGIC MC study

Measurement: flux of cosmic gamma-rays, up to tens of TeV, by system of two Cherenkov
telescopes. Vertical scale = log10 of energy/GeV horizontal scale: observables

Observable 1:

energy estimate – good
correlation with energy;

Observable 2:

light-distribution parame-
ter, has some correlation
with energy;

Observable 3:

angle, no direct correla-
tion with energy, but en-
ergy estimates differ for
different angles.

3-dim distribution of observables used to unfold (reconstruct) the 1-dim energy flux.
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