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1. Introduction

The process of the transition from the true distribution f(x) to the measured distribution g(y) for
linear inverse problems is described by the Fredholm integral of the first kind:∫

Ω

A(y, x)f(x) dx = g(y)

The function A(y, x) (called kernel in the theory of integral equations) gives the response of the
measurement device to the distribution f(x).

Two types of processes are based on the integral equation:

direct process: true distribution f(x)→ g(y) measured distribution

inverse process: measured distribution g(y)→ f(x) true distribution .

Numerical calculations: replace integral equation by linear equation Ax+ ε = y

• measured distribution in form of a histogram, represented by a m-vector y, contaminated by a
statistical fluctuations represented by m-vector ε;

• bin-averaged values, represented by a n-vector x;

• response function A(y, x), represented by a m-by-n response matrix A (determined by MC
methods); it does not depend on the MC input shape.
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Properties of the Fredholm integral equation of 1. kind

Riemann-Lebesgue lemma: Assuming a function fp(x) = sin(2πpx) with p = 1, 2, . . ., the lemma
states that ∫

Ω

A(y, x) sin(2πpx) dx = gp(y) −→ 0 for p −→∞

for “arbitrary” Kernel functions A(y, x): high-frequency terms in f(x) are damped in gp(y), and in
the reconstruction of f(x) from gp(y), they are amplified together with high-frequency noise.
This effect limits the possibility to reconstruct narrow structures in f(x).

Null space of the Kernel: a functions fnull(x) exists with the property∫
Ω

A(y, x)fnull(x) dx = 0 .

Standard strategy is to set fnull(x) ≡ 0.
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2. Solution of linear inverse problems

In equation Ax + ε = y with m > n or even m � n (recommended), the matrix A is a non-square
matrix, and hence a direct inverse does not exist.

In linear inverse theory the estimate x̂ is a linear transformation of the measurement y:

x̂ = A# y

where A# is called a generalized inverse and can include regularization. Inserting y = Ax+ ε:

x̂ =
(
A#A

)
x+A#ε = x +

(
A#A− I

)
x︸ ︷︷ ︸

regularization error

+
(
A#
)
ε︸ ︷︷ ︸

error contribution

The n-by-n matrix Ξ = A#A is called the resolution matrix.

The existence of the matrix A# is essential, it allows the standard calculation of the covariance matrix
of estimate x̂:

V x = A# V y A
#T

Some unfolding methods (CFM, . . . ) construct x̂, without defining the generalized A#, thus no standard
covariance matrix calculation, inclusing the correlation between elements, is possible.
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Least Squares solution

Using Least Squares as statistical model, with F (x) = ‖Ax− y‖2 = minimum, matrix A# becomes:

A# =
(
ATV −1

y A
)−1

ATV −1
y V x = A# V yA

#T
=
(
ATV −1

y A
)−1

For this definition the resolution matrix Ξ becomes the unit matrix:

Ξ = A# × A =
(
ATV −1

y A
)−1

ATV −1
y A = I

i.e. the regularization error vanishes.

Study transformation properties of symmetric matrix C = AV −1
y A

T by diagonalization:

C = UΛUT Λ = UTCU UTU = UUT = I C−1 = UΛ−1UT

with diagonal matrix Λ of eigenvalues in decreasing order: λ1 ≥ λ2 ≥ . . . λn ≥ 0 and columns of
orthogonal matrix U = [u1,u1, . . . ,un] given by the eigenvectors uj.

Using result from diagonalization:

x̂ = C−1
(
ATV −1

y

)
y = UΛ−1/2

[(
Λ−1/2UT

) (
ATV −1

y

)]
y = UΛ−1/2c

with vector of Fourier coefficients c =
[(
Λ−1/2UT

) (
ATV −1

y

)]
y

i.e. the solution is x̂ expressed by Fourier coefficients with V c = I.
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Eigenvalue spectrum and Fourier coefficients

Eigenvalues = λj
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Note: the cj are independent, and all have error
1 ⇒ only ten coefficients are significant.
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. . . contnd.

The solution can be expressed by a sum in the form (with b =
(
ATV −1

y

)
y)

Solution: x̂ =
n∑
j=1

1√
λj
cjuj with cj =

1√
λj

(
bTuj

)
V x =

n∑
j=1

1

λj
uju

T
j

Fourier coefficients cj, which are insignificant (only noise, i.e. compatible with zero), should follow a
normal distribution N(0, 1); this allows simple statistical tests for significance.

The insignificant coefficients can make a huge and dominating contribution to the solution
x̂, if the eigenvalues λj are small.

Alternative is the Singular Value Decomposition (SVD) (used e.g. by Höcker and Kartvelishvili in
Guru), which is equivalent.

Simplest method to avoid insignificant contribution: truncation!
The truncated solution can be written with a sum up to k < n only (instead of n) . . . the noisy
contributions are removed from the result, without the introduction of a bias, . . . but the rank of V x

is only k (< n) ( ⇒ V x is singular, unless the number of data points is reduced.).
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Regularization methods

Regularization: add penalty term to the χ2-expression, in order to make a smooth cut-off.

Thikhonov-Phillips: Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum

with L = 1 or = derivative expresssion (first, second, third). The factor τ is called regularization
parameter.

Fourier coefficients c = Λ−1/2UTb filter factor ϕj =
λj

λj + τ
= 1 . . . 0.5 . . . 0

Solution: x̂ =
n∑
j=1

ϕj√
λj
cjuj with cj =

1√
λj

(
bTuj

)

The result x̂ is expressed as a superposition of eigenvectors uj, each weighted with the
Fourier coefficient cj and 1/

√
λj (!); the filter factor ϕj reduces the effect of insignificant

contributions, without introducing a bias.
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Plot of the eigenvectors uj

solution x̂ =
n∑
j=1

ϕj√
λj

cj uj

The solution x̂ is expressed as a su-
perposition of normalized eigenvec-
tors uj, each

• proportional to the Fourier co-
efficient cj, and

• weigthted by 1/
√
λj (!);

• the filter factor ϕj reduces or
removes the effect of insignifi-
cant contributions.
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Regularization parameter I

Discrepancy principle (Morozov): choose τ such that ‖Axreg − y‖2
2 = ndf

L-curve method: plot logs of ‖Lxreg‖2
2 versus ‖Axreg − y‖2

2 for a set of τ -values ⇒ dependence
has shape of an L with a distinct corner: optimal value of τ .

Effective number of degrees of freedom: (RUN ) determine ndf from spectrum of Fourier coeffi-
cients cj, and determine τ such that sum of filter factors ϕj

n∑
j=1

λj
λj + τ

=
n∑
j=1

ϕj = ndf

Minimum of global correlation: minimum mean value of global correlation coefficients

Definition: ρj =

√
1−

[
(V x)jj ·

(
V −1

x

)
jj

]−1

with 0 ≤ ρj ≤ 1

The global correlation coefficient is a measure of the total amount of correlation between element j of x and all other elements.

The arithmetic and the geometric mean of all n global correlation coefficients is determined for
a large range of τ -values: the τ -value with the smallest mean value is accepted.

. . . seems to be the best method!
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Regularization parameter II
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Unfolding program RUN

Development started 1979/1980 for neutral current neutrino experiment Charm:

• First problem was reconstruction of cross section dσ/dy from the measured values Ehad and
radius rinteraction (only these 2 quantities were measureable).

• Input are n-tuples, and 1-dim. or 2-dim. or 3-dim. measured histograms.

• Instead of Least Squares the ML method with Poisson statistic was used (sometimes only few
entries/bin for > 1-dim. histograms), with diagonalization of Hessian.

• For the intermediate result cubic B-splines were used to avoid discontinuities.

• A special option allows to check the consistency of MC simulation.

• Used in other experiments:
Neutrino physics, 2-photon-physics at e+e− colliders, in astrophysics, and still used in 2010 (LHC,
D0 at FNAL).

• Conversion to C++ in preparation (or ready? Talk by Natalie Milke).
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3. Iterative methods

In case of unfolding with extremely large dimensions (e.g. 106 parameters in picture deblurring)
iterative methods are preferred, because they avoid the n3 time dependence of the direct solution
methods, also the n2 space dependence. The iterations require only a product of the – often sparse –
response matrix with vectors. Because of the small dimension parameters for Hep unfolding iterative
methods are not necessary.

Iterative methods have a kind of built-in regularization. In the literature iterative methods like Landwe-
ber iteration are explained. This and other methods are slowly or very slowly convergent algorithms.
After an extremely large number of iterations the same result as in the direct methods without regu-
larization is obtained.

x(k) := x(k−1) + ωAT
(
y −Ax(k−1)

)
k = 1, 2, . . . 0 < ω < 2

∥∥ATA
∥∥−1

2

in one iteration.
Implicit filter factor ϕ

(k)
i in iteration k for the i-th eigen-contribution:

ϕ
(k)
i = 1− (1− ωλi)k i = 1, 2, . . . n

with the asymptotic behaviour for very large and very small eigenvalues:

ϕ
(k)
i ≈

{
1 for large λi

k (ωλi) for λi � 1/ω

The number of iterations is equivalent to a regularization parameter.
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4. Discussion – Presentation of unfolding results

• Is the unfolding result allowed to depend on the MC input dependence, or is independecne
required?

• Is a large number of data points preferred, which means a rank-deficient covariance matrix and
large positive correlations between data points.

• Or: Should the unfolded data points have a full-rank covariance matrix, which allows to use the
inverse weight matrix in parameter fits? The full-rank requirement means a limitation of the
number of unfolded data points – and a small correlation between the points.

(The same result is easily converted to the previous case with a large number of data points, without
increasing the information content.)
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Is the unfolding result allowed to dependend on the MC input dependence?

My opinion: NO.
Do “blind analysis”, whenever possible. Avoid any bias w.r.t. an expected result.

From a paper on the CFM: “The correction of the detector acceptance using Monte Carlo modelling
requires the cross section model used in the simulation to be sufficiently close to the data, such that
migration between the bins are well reproduced. . . . In practice this is achieved using an iterative MC
event reweighting procedure which converges after one iteration for the measurement region.”

In an iterative method: “ . . . it gives the best results (in terms of its ability to reproduce the true
distribution) if one makes a realistic guess about the distribution that the true values follow . . . .

What happens in the case of a completely insensitive detector?

Regularization methods will not be able to get any result!

In the iterative method: “ One finds then that the final probabilities are equal to the initial ones . . . .
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Averaging correlated data

The Figures show two adjacent data points d1 and d2 with a large positive (left) and negative (right)
correlation coefficient, assuming the same standard deviations: σ = σ1 = σ2.

V =

(
σ2 ρ12σ

2

ρ12σ
2 σ2

)
with ρ12 = ±0.95

Average: the average value d = 1
2

(d1 + d2) has a variance of V d = 1
2

(1 + ρ12)σ2 (see middle point
in figures).
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For highly correlated data the properties for averaging and χ2-comparison with predicted values are
not intuitive, but have to be performed with an explicit calculation, based on the inverse covariance
matrix V −1

x = W x (weight matrix).
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Full or reduced rank of covariance matrix?

In truncation methods with k(< n) elements the covariance matrix has only rank k for n data points,
i.e. is singular; similar for regularization methods.
The different opinions about the rank of the covariance matrix are discussed by Hoecker and Kartvel-
ishvili (Guru program):

“Obviously, as the number of statistically indepen-
dent data points is usually smaller (and sometimes
much smaller) than the number of bins in the un-
folded histogram, the latter will probably have signif-
icant bin-to-bin correlations. In our approach full
propagation of errors from the measured distribu-
tion to the unfolded one is implemented, and both
the covariance matrix of the unfolded solution and
its inverse are easily calculated. This allows one
to perform further error propagation and parame-
ter fitting without any problem, so, contrary to the
viewpoint expressed in Ref. [Blobel/RUN , requires
full rank], we do not think that one should use fewer
bins and custom bins boundary for the unfolded hsi-
togram, in order to make the covariance matrix di-
agonal”.

40 data points and rank 10
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