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1. Unfolding – direct and inverse processes

The process of the transition between the true distribution f(t) and the measured distribu-
tion g(s) for linear inverse problems is described by the Fredholm integral equation of the first
kind: ∫

Ω

K(s, t) f(t) dt+ b(s) = g(s)

(b(s) = background contribution). Two types of processes are based on the integral equation:

direct process (MC) true/MC dist. f(t) =⇒ g(s) measured dist.

inverse process (unfolding) measured dist. g(s) =⇒ f(t) true dist.

Discretization: the integral equation becomes an (usually ill-posed) linear system of equations:

Ax = y yi =

∫ si

si−1

g(s) ds i = 1, 2, . . . , m

(assuming a case without background contribution) with the representation

true distribution f(t)⇒ x n-vector of unknowns

measured distibution g(s)⇒ y m-vector of measured data

Kernel K(s, t)⇒ A rectangular m-by-n response matrix .

The variables s, t and vectors x, y can be multi-dimensional. Elements of the response matrix A
are (positive) probabilities, and include efficiency.
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Discretization

• The response matrix A has to be determined in particle physics by MC ;

• several different methods can be applied in the discretization: simple binning, quadrature
methods (weighted sums), B-splines (allows re-weighting of MC) . . . ;

• unfolding is independent of the assumed f(t)MC, if the Fredholm equation above is correct,

• but for complex physical measurements this assumption may not be true, and the response
function is influenced by the assumed f(t)MC . In this case the Fredholm integral equation
should be rewritten in the form,∫

Ω

K(s, t; f) f(t) dt+ b(s) = g(s) ,

which represents a more difficult nonlinear inverse problem; f(t)MC should be close to the
expected result.

Problems in Particle Physics differ from problems in other fields:

• input erros are well-known (Poisson data, . . . covariance matrix) V y;

• covariance matrix of result is required, no bias, small correlations;

• dimension parameters are small compared to other fields (with e.g. 106 parameters)
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Unfolding is more general than “data correction”

Neutral current neutrino interactions (narrow band beam): CHARM collaboration

Measurement of Ehad, ϑhad, rbeam

beam flux φ(Eν , rbeam)

CC: ν N → [hadrons] µ

Eν,in = Ehad + Eµ

NC: ν N → [hadrons] ν

Eν,in = Ehad + ???

“Indirect” determination of dσ/dy and dσ/dx:

direct problem (by MC) dσ/dx; dσ/dy =⇒ predicted dist. in Ehad, ϑhad, rbeam

inverse problem (by unfolding) dσ/dx; dσ/dy ⇐= measured dist. in Ehad, ϑhad, rbeam

Unfolding is more general than “data correction” to correct migration effects.
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2. Naive unfolding

The data errors are represented by a m-vector e, and the actually measured distribution y is
given by

measured distribution y = yexact + e = Axexact + e e = data errors

Unfolding: y; V y
A

=⇒ x; V x min
x

{
‖Ax− y‖2}

The n-by-m pseudoinverse A+ is a generalization of the inverse matrix (also called Moore-Penrose

generalized inverse); it satisfies the relation A+A = I, and allows the least squares solution by

x̂ = A+y A+ =
(
ATV −1

y A
)−1

ATV −1
y

V x = A+V yA
+T

=
(
ATV −1

y A
)−1

The response matrix A and the pseudoinverse A+ do not depend on any assumption about x.

estimate x̂ = A+y = A+ yexact +A+e = A+Axexact +A+e

= xexact +
(
A+A− I

)
xexact︸ ︷︷ ︸

systematic error

+ A+e︸︷︷︸
statistical error

The systematic error (bias)
(
A+A− I

)
xexact depends in xexact!

Least squares A+A =
(
ATV −1

y A
)−1

ATV −1
y A = I no bias! Good or bad?
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Naive result with narrow bins

Example of unfolding problem with narrow bins

Perfect resolution (no smearing)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Naive unfolding by inversion

10 20 30

-2000

0

2000

4000 Parameter and cov.matrix (inversion)  [0]

Huge fluctuations, due to large negative
correlations: neighbour bin −95% (second
+85%).

True curve f(x) is shown in red.
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Orthogonalization!
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3. Convolution/deconvolution with Gaussian response

An even function f(t) with period 1 can be approximated by a sum with n terms

f(t) ≈ a0 +
n−1∑
k=1

ak cos (πkt) g(s) ≈ α0 +
n−1∑
k=1

αk cos (πks)

Convolution of functions cos (πkt) by a kernel function K(s, t) ≡ K(s− t) given by a Gaussian
resolution function (standard deviation σ):∫ +∞

−∞

1√
2πσ

exp

(
−(s− t)2

2σ2

)
× cos (πkt) dt = exp

(
−(πkσ)2

2

)
× cos (πks) ,

The amplitude is atten-
uated by an exponen-
tial factor, which will
become � 1 for larger
values of k.

exp
{
− (πkσ)2

2

}
× cos(πkt) t ∈ [0, 1]
σ = 0.01k = 1
k = 7

k = 37

k = 86
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. . . and deconvolution

Deconvolution: expand convoluted (“measured”) function g(s) to obtain coefficients αk:

Correct coefficients back: âk = exp

(
π2k2σ2

2

)
× αk for small k

= exp

(
π2k2σ2

2

)
×
√
α2
k + ε2 −−−→

k→∞
ε× exp

(
π2k2σ2

2

)

Fourier coefficients αk are below the ex-
act ones ak and reach for k = 15 a level
of about 10−8 due to round-of-errors
ε. The deconvoluted Fourier coefficients,
labelled corrected, are correct only up
to k = 15.

Deconvolution with k � 15 will have
result dominated by noise.

For bin width w = σ the factor is > 100.
A factor below 10 is reached for w >
1.5σ.

Fourier coefficients

index k

exact

corrected

measured
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4. Orthogonalization

Singular value decomposition, applied to rectangular m-by-n matrix A: (m ≥ n)

A = UΣV T =
n∑
i=1

σiuiv
T
i UTU = V TV = V V T = I



(n)

(m) A


=



(n)

(m) U


·


(n)

(n) Σ




(n)

(n) V T


Matrix Σ = diag(σ1, . . . , σn) with ordered singular values σ1 ≥ σ2 ≥ . . . σn ≥ 0, assuming
pre-whitening of eq. Ax ' y, i.e. V y = I.

Diagonalization of symmetric LS matrix (or Hessian of log-Likelihood functions):

C = ATA =
(
UΣV T

)T
UΣV T = V Σ2V T = V ΛV T

Eigenvalues λj of symmetric matrix C are equal to squared singular values σj, and eigenvectors
are equal to the singular vectors of matrix V .
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Least squares solution

SVD . . . “a new way to see into the heart of a matrix” (Gilbert Strang)

Matrix product using SVD: Ax = UΣV Tx =
n∑
j=1

σj
(
vT
j x
)
uj = y

Fourier coefficients c = UTy with V c = I represent measurement y.

Least squares solution with SVD:

UT · | Ax = UΣV T x̂ = y

ΣV T x̂ = UTy = c Fourier coefficients cj = uT
j y ± 1

x̂ = V Σ−1c

V x = V Σ−1Σ−1V T error propagation

x̂ =
n∑
j=1

(
1

σj

)
cjvj V x =

n∑
j=1

(
1

σ2
j

)
vjv

T
j

Problem with zero or very small singular values!
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Vanishing singular values and truncation

Assumption: p non-zero singular values of total n values with contribution dj = cj/σj.

x̂ =

p∑
j=1

djvj︸ ︷︷ ︸
xrange ∈ Rp

+
n∑

j=p+1

d̃jvj︸ ︷︷ ︸
xnull ∈ Rn−p

Ax̂ =

p∑
j=1

σjdjvj +
n∑

j=p+1

σj d̃jvj︸ ︷︷ ︸
=0

= y

(n− p) contributions d̃j are arbitrary: xnull ∈ Rn−p without influence on measured distribution y

Alternatives for unfolding solution:

• xnull = plausible contribution; in iterative methods the initial contributions xnull ∈ Rn−p

remain unchanged;

• minimum norm solution: xnull = 0 with n > p;

x̂ = xrange + xnull ‖xrange + xnull‖2 = ‖xrange‖2 + ‖xnull‖2

• reduction of dimension: n′ = p with full-rank covariance matrix.

What is the “best” approach?
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Eigenvalues and Fourier coefficients

Example of unfolding problem with narrow bins

Eigenvalues λj = σ2
j

5 10 15 20
1E-7

1E-6

1E-5

1E-4

0.001

0.01 Eigenvalues, coeffs, eigenvectors  [12]

Eigenvalues decrease by 4 orders of magnitude.

Normalized coefficients cj

0 10 20
0

1

10

Only 10 of the 20 coefficients are significant.

Red lines are for 1, 2, 3 and 4 standard deviations.
Statistical errors are 1 for all coefficients.
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Example with truncation

Example of unfolding problem with narrow bins

Perfect resolution (no smearing)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Truncation method (15 terms kept)

10 20 30
0

500

1000

Parameter Cov.matrix  [0]

Reduced fluctuations

True curve f(x) is shown in red.
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5. Truncation and positive correlations

“Can unfolding dist have σ <
√
n?”

Assume distribution y without migration: discrete cosine transformation c = UT
DCT y

curve: exact fct.

hist: measured fct.

Histogram with unit cov. matrix

cos(πkt)

DCT amplitudes

circles: measured fct.

curve: exact fct.

DCT amplitudes with unit cov.
matrix

All high-frequency coeffients with index > 20 compatible with zero: truncation of second half of
contributions (coeffs. and elements of cov. matrix) and back-transformation ŷ = UDCT c reduces
noise. Note: ∆χ2 = c2

j for single coefficient cj!
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Increase of accuracy . . .

• Histograms of differences to exact bin content: single bin, bin 51 vs. bin 52, 2-bin average;

• broader distribution from unmodified histogram, narrower from histogram with truncation
after half the coefficients;

• truncation results in higher local accuracy (single bins), no bias, but positive correlations;

• perfect agreement of width with calculated errors and correlations.

Residuals 1 bin

Residual bin 51

Residual bin 52
Average of 2 bins

Residuals

Truncation of coefficients of high frequency contributions

• no bias introduced; cov.matrix calculation is accurate (but rank defect);

• higher precision for single bins only, due to introduction of positive correlations;

• neither higher total precision by truncation nor distortion of data or errors.
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6. Regularization

Norm regularization: min
x

{
‖Ax− y‖2 + τ ‖x‖2} =⇒ x = A#y =

[(
ATA+ τI

)−1
AT
]
y

Solved for fixed τ by inversion, or (better) . . . A#A 6= I

using SVD x = V
[(
Σ2 + τI

)−1
Σ2
]

︸ ︷︷ ︸
filter factor ϕ

Σ−1
(
UTy

)︸ ︷︷ ︸
coeff. c

Effect of regularization: introduction of filter factor ϕj:

x̂ =
n∑
j=1

1

σi
cjvj =⇒ x̂ =

n∑
j=1

1

σi
ϕj cjvj

V x =
n∑
j=1

1

σ2
j

vjvj
T =⇒ V x =

n∑
j=1

1

σ2
j

ϕ2
j vjvj

T

filterfactor ϕj =

(
σ2
j

σ2
j + τ

)
=


1 for σ2

j � τ

1/2 for σ2
j = τ

0 for σ2
j � τ

Different dependence possible: 1/
(
1 + (τ/σ2

j )
α
)

index
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Regularization with differential operator

L regularization: min
x

{
‖Ax− y‖2 + τ ‖Lx‖2} =⇒ A# =

[(
ATA+ τLTL

)−1
AT
]

Solution by more complicated mathematical operation (“generalized singular value decomposi-
tion”), but almost identical unfolding formalism with filter factors ϕj.

most popular: sec.der. Lr2 =



1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 1


= UDCT Λ U

T
DCT

My opinion about regularization:

• A result without regularization with many data points represents noise – nothing else;

• removing coefficient cj (by filtering) means ∆χ2 = c2
j ;

• regularization will not introduce unwanted bias, and allows to reduce or suppress insignificant
contributions (noise), that would destroy the unfolding result.
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Determination of regularization parameter

• Regularization corresponds technically to “weak” a-priori information about x (like “mea-
surement” with standard deviation ≈

√
1/τ for norm regularization);

• if τ > σ2
j of significant Fourier coefficients cj ⇒ no bias;

• evaluate several quantities as function of τ for wide range: τ ∈ (τL, τR);

• effective number of degrees of freedom:
∑
ϕj

1.5 2 2.5
2

4

6

8

L curve

log10 of chi^2

lo
g1

0 
of

 c
ur

va
tu

re

positive correlation

negative correlation

strong regularization

weak regularization

dependence as a function of τ

log10 τ

p-value

mean global correlation
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Presentation of regularized result I . . . with MC input

(from A. Hoecker and V. Kartvelishvili: NIM A 372)

• Result with 40 data points, almost like
a “band” representing result

• constructed from 10 significant parame-
ters, with 40-by-40 covariance matrix,
singular with rank 10;
use “effective” weight matrix for fits

[V x]
−1 =

n∑
j=1

σ2
j vjvj

T

• large positive correlations, therefore few
sign-changes of the residuals to MC in-
put distribution.

• (Same) result with 10 data points,
each point represents a bin average of
the result

• 10-by-10 covariance matrix non-
singular, inverse is weight matrix.

• small and negligible correlations.

x

dN
dx

x

dN
dx

V. Blobel – University of Hamburg PHYSTAT2011 – Workshop on Unfolding: Unfolding methods for particle physics page 20



Presentation of regularized result II . . . without MC input

• Plots (without the true MC distribu-
tion): both data sets represent the same
information!

• What is the better data presentation in
Particle Physics?

• Try to calculate “limits” from the data!

• Note: not obtained by different meth-
ods, but (only) different presentation of
identical information.

x

dN
dx

x

dN
dx
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Example: two unknowns, three measured values

The measured vector y and the response matrix A are given by

y = A

(
1
1

)
︸ ︷︷ ︸

exact

+

 0.01
−0.03

0.02


︸ ︷︷ ︸

error

=

 0.27
0.25
3.33


︸ ︷︷ ︸

measured

A =

 0.16 0.10
0.17 0.11
2.02 1.29



If analysed by the singular value decomposition the singular values are

σ1 = 2.4127 σ2 = 0.0022

The least-squares solution x̂LS, assuming a stan-
dard deviations of 0.02 for the three elements
of y

x̂exact =

(
1
1

)
x̂LS =

(
7.01± 4.90
−8.40± 7.67

)
correlation coeff. ρ = −0.999998

-4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

Example from Per Christian Hansen: Discrete Inverse Problems – Insight and Algorithms
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Example with regularization

• Regularization term τ ‖x‖2 is equivalent to assumption of measurement information

(x)j = 0±
√

1

τ

• Example: assume solution to have norm ‖x‖ of the order of 1.

• Regularization parameter value τ = 1/4 corresponds to

(x)j = 0± 2 j = 1, 2

Regularized solution of example:

x̂exact =

(
1
1

)
x̂reg LS =

(
1.44 ± 1.05
0.33 ± 1.65

)
correlation coeff. ρ = −0.99996

-4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

Calculation using normal fit program aplcon.
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7. DCT and projection methods

Discrete cosine transformation DCT = orthonormal transformation by matrix UDCT with
UDCT U

T
DCT = I,

transformations: X = UT
DCTx x = UDCTX

Ujk =

{√
1/n k = 0√
2/n cos [πk(j + 1/2)/n] k = 1, 2 . . . n− 1

Relation to derivative regularization matrix L = Lr2:

L = UDCT Λ U
T
DCT LTL = UDCT Λ

2 UT
DCT

with eigenvalues: λk = 4 sin2

(
kπ

2n

)
k = 0, 1, . . .

• DCT is purely real, and concentrates “energy” into
lower order coefficients better than discrete Fourier
transformation;

• separability – perform DCT in any of the directions
first and then apply to second direction: coefficients
wills not change: 2-D DCT is 2× 1-D DCT;

• used in modern coding standards like JPEG, MPEG.

uk(t) = cos (πkt)

k = 0, 1, . . . n− 1

t ∈ (0, 1)
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Projection methods

So far: approximation of solution xexact ∈ Rn in low-dimensional subspace of low-frequency
components:

• by truncation, keeping the first p Fourier coefficients of SVD method (TSVD), or

• by regularization using e.g. second-derivative matrix Lr2 with regularization parameter τ .

Alternative: use of fixed projection n-by-p matrix W(p) = {v1, v2 . . .vp} with x ∈ Rp:

x = W(p) x A = AW(p)

min
x

Q(x) with Q(x) = ‖Ax− y‖2 =
∥∥AW(p) x− y

∥∥2
=
∥∥A x− y

∥∥2

• Basis vectors vj = e.g. DCT eigenvectors, or SVD singular vectors;

• solutions x and x = W(p) x dominated by low-frequency components;

• truncation or filtering with filter functions ϕj possible;

• fixed one- or two-dimensional transformation, to be used with different MC data sets to
study MC differences.
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8. Iterative unfolding

Why iterative methods? What is the advantage compared to a direct solution?

• Unfolding with extremely large dimensions (e.g. 106 parameters in picture deblurring)
requires iterative methods;

• dimension parameters in Particle Physics problems are small, no cpu-time problems for
direct analytic methods, like SVD;

• certain iterative methods for inverse problems are popular in Particle Physics:
they have semi-convergence, with implicit regularization.

Gauß had used iterative methods at least since the year 1823:

You will in future hardly eliminate directly, at least not when you have more than two
unknowns. The indirect procedure can be done while one is half asleep, or is thinking
about other things. [Carl Friedrich Gauß, Werke IX, p.278]
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Landweber iteration

Formula for one Landweber+ iteration step k = 0, 1, 2, . . .:

x[k+1] := x[k] + ωAT
(
y −Ax[k])

)
0 < ω < 2/σ2

1

Semi-convergence corresponds to regularization (j = 1, 2, . . . , n): iteration number k

x[k] =
n∑
j=1

ϕ
[k]
j

σj

(
uT
j y
)
vj ϕ

[k]
j ≈ 1−

(
1− ωσ2

j

)k ≈


1 for large σ2
j

k
(
ωσ2

j

)
for σ2

j � 1/ω

→ 0 for σ2
j → 0

Iteration number k plays the role of a regularization parameter:

• convergence fast for components with a large singular values σj;

• very slow for components with small singular value: components unchanged after few
iterations;

• after a large number of iterations the unique (oscillating) solution of linear system;

• no prescription for covariance matrix calculation.

+ Other names associated with the algorithm are Richardson, Fridman, Picard and Cimmino.
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Iterative methods in particle physics

In general there is the attempt, by an iterative tuning process, to use the “correct” distribution
in the MC simulation, i.e. that distribution that should be extracted from the measured data
y ' Ax.

Iterative improvement of a matrix M [k]
x , which depends on the solution x and which should allow

to extract the solution

x[k+1] = M [k]
x y =⇒ x[k+1] =

(
M [k]

x A
)
x but

(
M [k]

x A
)
6= I

“equation” valid only for certain x

bin-by-bin correction factor: Mx = diagonal

other iterative methods: Mx = matrix with non-negative elements

Advantage: popular and accepted by collaborations; simple mathematics: no “complicated”
operations like SVD;

Disadvantage: no direct error propagation with matrix Mx possible; unknown regularization
strength; correlations unknown and ignored in bin-by-bin correction method; questionable
statistically and mathematically; applicable only to “correct” for migration effects, no
general unfolding.
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Summary

• Folding is a direct process – it is robust and simple, but a folded
model prediction does not show the sensitivity of the measurement
(and is insensitive to contribution xnull).

• Unfolding is the inverse process – it is a discrete ill-posed prob-
lem, mathematically complex, with a response matrix with large
condition number, but it allows to study the sensitivity of the
measurement:

• test of black-box algorithms on a few selected examples are
not sufficient;

• it is essential to understand the statistical and mathematical
properties of the algorithm, and to understand the detector;

• orthogonalization and regularization are generally accepted
concepts in other fields;

• there are still several open questions to apply successfully
unfolding for particle physics experiment.
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Appendix

• Types of unfolding problems
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• Is the unfolding result allowed to dependend on the MC input
dependence?
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• Averaging correlated data

• Smoothing by truncation of DCT amplitudes

• Low-pass regularization
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Types of unfolding problems

Parametrized unfolding
parameterized expression with few parameters no regular-
ization necesssary – using normal fit program.

Parameter-free unfolding bins or classes, no parametriza-
tion

• Classification problems, small number of bins: no
reduction of number of bins possible;

• Correction of distributions with small migration ef-
fects;

• Unfolding with transformation, evtl. > 1 measured
distribution;

• Structureless distributions (small number of Fourier
coefficients):

• Regularization with possibility to reduce number
of bins;

• Steeply falling: try transformation to remove
steepness, e.g.

√
Ehad, evtl. use parametrization

• Distributions with narrow structures, peaks: try to
use parametrization e.g. Gaussian peaks)
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Open questions

• discretization: continuous B-splines of higher order (necessary for re-weighting of MC –
RUN) instead of simple discontinuous bins

• input of n-tuples instead of vectors/matrices

• strategies for steeply falling distributions and for class data (e.g. 2- ,3- . . . jet events)

• alternative low-pass filter strategies

• data presentation with small or large number of data points

• projection methods (DCT) in one- and two-dimensions

• case of limited acceptance regions (e.g. low pT – using constraints (Lagrange multiplier –
RUN)) in one- and two-dimensions

• using general fit program (like aplcon) for unfolding? (flexible: e.g. fit may include
uncertainty of A or background fit)

• uncertainties of response matrix elements

• algorithm for automatic variable bin definition (RUN)

• statistical comparison of information content for different number of degrees of freedom

• use of detailed estimates of the unfolding result (multiplicative, additive)

V. Blobel – University of Hamburg PHYSTAT2011 – Workshop on Unfolding: Unfolding methods for particle physics page 32



Is the unfolding result allowed to dependend on the MC input depen-
dence?

My opinion: NO.
Do ‘blind analysis”, whenever possible. Avoid any bias w.r.t. an expected result.

From a paper on the CFM: ‘The correction of the detector acceptance using Monte Carlo modelling
requires the cross section model used in the simulation to be sufficiently close to the data, such that
migration between the bins are well reproduced. . . . In practice this is achieved using an iterative
MC event reweighting procedure which converges after one iteration for the measurement region.”

In an iterative method: ‘ . . . it gives the best results (in terms of its ability to reproduce the true
distribution) if one makes a realistic guess about the distribution that the true values follow . . . .

What happens in the case of a completely insensitive detector?

Regularization methods will not be able to get any result!

In the iterative method: “One finds then that the final probabilities are equal to the initial ones
. . . .”
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Comparison of codes

Method RUN GURU Tunfold Iterative
Input: matrix 4 4 4

Input: n-tuple 4

Orthogonalization 4 4

Input errors 4 4 4

Least squares 4 4 ?
MaxLik (Poisson) 4

Regularization 4 4 4 implicit
iterative 4

automatic binning 4

Cov.mat. by prop. 4 4 4

MC re-weighting 4

GURU (Fortran, SVD, by Andreas Hoecker and Vato Kartvelishveli) and TUNFOLD (by Stefan
Schmitt) in RooUnfold (ROOT Unfolding Framework, by Tim Adye et al.)

RUN (Fortran), converted to C++ by Natalie Milke (Uni Dortmund)
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Unfolding program RUN

Development started 1979/1980 for neutral current neutrino experiment Charm:

• First problem was reconstruction of cross section dσ/dy from the measured values Ehad and
radius rinteraction (only these 2 quantities were measureable).

• Input are n-tuples, and 1-dim. or 2-dim. or 3-dim. measured histograms.

• Instead of Least Squares the ML method with Poisson statistic was used (sometimes only
few entries/bin for > 1-dim. histograms), with diagonalization of Hessian.

• For the intermediate result cubic B-splines were used to avoid discontinuities.

• A special option allows to check the consistency of MC simulation.

• Used in other experiments:
Neutrino physics, 2-photon-physics at e+e− colliders, in astrophysics, and still used in 2010
(LHC, D0 at FNAL).

• Conversion to C++ by Natalie Milke (Uni Dortmund).
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Correlations

Correlation coefficients |ρ| > 0.5 are dangerous:

variance inflation factor F = 1
1−ρ2
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Averaging correlated data

The Figures show two adjacent data points d1 and d2 with a large positive (left) and negative
(right) correlation coefficient, assuming the same standard deviations: σ = σ1 = σ2.

V =

(
σ2 ρ12σ

2

ρ12σ
2 σ2

)
with ρ12 = ±0.95

Average: the average value d = 1
2

(d1 + d2) has a variance of V d = 1
2

(1 + ρ12)σ2 (see middle
point in figures).
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For highly correlated data the properties for averaging and χ2-comparison with predicted values
are not intuitive, but have to be performed with an explicit calculation, based on the inverse
covariance matrix V −1

x = W x (weight matrix).
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Smoothing by truncation of DCT amplitudes

Example for smoothing of histogram by DCT and truncation:

• Transformation (
√
nj) of bin content (Poisson) to stable variance;

• discrete cosine transformation and truncation of insignificant coefficients;

• back transformations.

curve = smoothed histogram
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Low-pass regularization

Without regularization there are large bin-to-bin fluctuations due to negative correlations between
neighbour bins. These fluctuations can be suppressed in a low-pass filter by averaging 3-to-1 bins:

xj = 1
4
xj−1 + 1

2
xj + 1

4
xj+1 or general xj = ajxj−1 + (1− 2aj)xj + ajxj+1

The factor aj can be chosen to minimize1) the variance of xj, using the known matrix V x.

Pro: Fluctuations are really suppressed and the true dependence is clearer visible.

No bias, if number of bins large and no strong structure.

Con: In regions of larger second-derivatives a bias is introduced, because the above filter assumes
an almost linear dependence over 3-point regions.
First and last bins disappear.

The general averaging algorithm for this ‘local”-regularization method:

x = Tx

V x = TV xT
T

with T =
1

4


1 2 1 0 · · · 0 0 0
0 1 2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 2 1


1) O. Helene et al., NIM A 523 (2004) 186; NIM A 580 (2007) 1466 - 1473
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Example with low-pass filter

Example of unfolding problem with narrow bins

Perfect resolution (no smearing)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

regularization τ = 10−5 + low-pass filter

10 20 30
0

500

1000

Transformed result  [0]

Reduced correlations: neighbour bin −10%
and second neighbour −30%.

True curve f(x) is shown in red.

V. Blobel – University of Hamburg PHYSTAT2011 – Workshop on Unfolding: Unfolding methods for particle physics page 41



Contents

1. Unfolding – direct and inverse processes 2

Discretization . . . . . . . . . . . . . . . . . . 3

Unfolding is more general than “data correction” 4

2. Naive unfolding 5

Naive result with narrow bins . . . . . . . . . 6

3. Convolution/deconvolution 8

. . . and deconvolution . . . . . . . . . . . . . . 9

4. Orthogonalization 10

Least squares solution . . . . . . . . . . . . . . 11

Vanishing singular values and truncation . . . 12

Eigenvalues and Fourier coefficients . . . . . . 13

Example with truncation . . . . . . . . . . . . 14

5. Truncation and positive correlations 15

Increase of accuracy . . . . . . . . . . . . . . . 16

6. Regularization 17

Regularization with differential operator . . . 18

Determination of regularization parameter . . 19

Presentation of regularized result I . . . . . . 20

Presentation of regularized result II . . . . . . 21

Example: two unknowns, three measured values 22

Example with regularization . . . . . . . . . . 23

7. DCT and projection methods 24

Projection methods . . . . . . . . . . . . . . . 25

8. Iterative unfolding 26

Landweber iteration . . . . . . . . . . . . . . . 27

Iterative methods in particle physics . . . . . 28

Summary 29

Appendix 30

Types of unfolding problems . . . . . . . . . . . 31

Open questions . . . . . . . . . . . . . . . . . 32

Is the unfolding result allowed to dependend

on the MC input dependence? . . . . . . 33

Comparison of codes . . . . . . . . . . . . . . . 34

Unfolding program RUN . . . . . . . . . . . 35

Literature . . . . . . . . . . . . . . . . . . . . 36

Correlations . . . . . . . . . . . . . . . . . . . . 37

Averaging correlated data . . . . . . . . . . . 38

Smoothing by truncation of DCT amplitudes 39

Low-pass regularization . . . . . . . . . . . . 40

Example with low-pass filter . . . . . . . . . . . 41

Table of contents 42


	1. Unfolding – direct and inverse processes
	Discretization
	Unfolding is more general than ``data correction''

	2. Naive unfolding
	Naive result with narrow bins

	3. Convolution/deconvolution
	…and deconvolution

	4. Orthogonalization
	Least squares solution
	Vanishing singular values and truncation
	Eigenvalues and Fourier coefficients
	Example with truncation

	5. Truncation and positive correlations
	Increase of accuracy …

	6. Regularization
	Regularization with differential operator
	Determination of regularization parameter
	Presentation of regularized result I
	Presentation of regularized result II
	Example: two unknowns, three measured values
	Example with regularization

	7. DCT and projection methods
	Projection methods

	8. Iterative unfolding
	Landweber iteration
	Iterative methods in particle physics

	Summary
	Appendix
	Types of unfolding problems
	Open questions
	Is the unfolding result allowed to dependend on the MC input dependence?
	Comparison of codes
	Unfolding program RUN
	Literature
	Correlations
	Averaging correlated data
	Smoothing by truncation of DCT amplitudes
	Low-pass regularization
	Example with low-pass filter

	Table of contents

