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Unfolding is required, due to migration effects, for the measurement of distributions in HEP, where the quantity of interest is often measured indirectly. Unfolding
is an linear inverse problem with a coefficient matrix, which is usually ill-conditioned. Techniques of standard linear algebra no longer apply and the numerical
treatment becomes more difficult. Available additional information can be used to stabilize the solution, without introducing a significant bias. The use of these
regularization methods requires some insight into statistical behavior and mathematical operations.

The measurement of distributions, cross sections . . . is distorted by migration effects and statistical
errors – the transformation of the raw measured data to the measured distribution is called unfolding.

1. An introductory example

2. Inverse problems and unfolding

3. Least squares methods

4. Regularization methods

5. Iterative methods

Comparison

Summary

All theorems are true,
All models are wrong.

All data are inaccurate.
What are we to do?

L. Smith: Chaos

Unfolding is a complex mathematical operation and requires a good understanding of the detector.
Straightforward methods can result in solutions which look chaotic.
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1. An introductory example Charm 1979/1980

Measurement of the differential cross section of

inelasticity y = Ehad/Eν,in

in neutral current neutrino interactions, in narrow-band ν-beam with peaks from K and π decay.

reactions in long calorimeter measure Ehad and radius r of vertex beamflux φ(Eν , r)

CC: ν N → [hadrons] µ

Eν,in = Ehad + Eµ

NC: ν N → [hadrons] ν

Eν,in = Ehad + ???

Eν,in is unmeasurable in NC ⇒ use measured radius r of vertex, and the known beamflux φ(Eν , r)
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Direct and inverse problems

Determination of dσ/dy:

1. Method: Most experimental physicists want to measure a physical quantity event-by-event und
fill a histogram.
Strategy: ignore ν from π-decay, use neutrino-energy Eν,in from flux-peak of νK at measured
radius –

and later correct by MC for the wrong assumption.

2. Method: It is impossible to reconstruct, event-by-event, the value of the inelasticity y for indi-
vidual events; but the differential cross section dσ/dy can be reconstructed.
Strategy:

direct problem (by MC) bin of dσ/dy =⇒ predicted distribution in Ehad and r

inverse problem (by unfolding) dσ/dy ⇐= measured distribution in Ehad and r

In this case unfolding is the transformation of the measured two-dimensional distribution of (Ehad, r)
to the one-dimensional distribution dσ/dy, using the response matrix determined by MC.
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Reality . . . in physics experiments

In a real experiment there is a set of observations, consisting of noisy measurements, which may be
biased, and are fundamentally different fom the noise-free mathematical and physical predictions -
statistical and systematic errors!

Reality is that which,
when you stop believing in it,

doesn’t go away.
P.K. Dick

Two examples for systematic problems/errors in the Charm experiment

Ratio of νπ to νK in beamflux:
if this is wrong, the whole result will become distorted.
Is it possible to make an independent check?

Hadronic energy calibration:
if this is wrong e.g. to high by 3 %, the result is a spike at high y.
An almost constant shape is expected at high y: use this information to improve the calibration?
If yes ⇒ no measurement at high y.

A correct determination of the response matrix A (e.g. by Monte Carlo) is essential.

This will require a detailed and precise knowledge of the detector behaviour – the . . .

Art of Physics Analysis

. . . that is not treated in textbooks.
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2. Inverse problems and unfolding

The transition input x ⇒ output y in a system is, in general form∫
Ω

system× input dΩ = output ,

expressed by the Fredholm integral equation of the first kind∫
Ω

A(y, x)f(x) dx = g(y) ,

and after discretization with bins in x, y and A, expressed by a linear equation

Ax ∼= y

The inverse problem is to reconstruct input x from a measured output y.

The ∼= symbol is used (instead =) in the boxed equation, because y has measurement errors (or is
Poisson distributed) and m ≥ n:

f(x) = true distribution of x x = n-histogram of true variable x

g(y) = measured distribution y = m-histogram of measured variable y

A(y, x) = Kernel, response function A = m× n response matrix

Inverse problem are called ill-posed:

“a small perturbation of the data can cause an arbitrary large perturbation of the solution!”
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. . . contnd.

The elements of the matrix A are determined from a Monte Carlo event sample; they do not depend
on the distribution f(x), assumed in the Monte Carlo simulation.

Equation Ax ∼= y (Measured histogram y is m-vector, result histogram x is n-vector)
Matrix A is m-by-n matrix in detail:

A11x1 + A12x2 + A13x3 + . . . A1nxn
∼= y1

A21x1 + A22x2 + A23x3 + . . . A2nxn
∼= y2

A31x1 + A32x2 + A33x3 + . . . A3nxn
∼= y3

. . .

Am1x1 + Am2x2 + Am3x3 + . . . Amnxn
∼= ym

where m ≥ n is assumed.

The matrix elements Aij can be interpreted in terms of probability:

• Aij is the probability for an event originating from bin j of x, to be observed in bin i of y.

• Acceptance probability for events from x-bin j (with j = 1 . . . n) is

Pj =
m∑

i=1

Aij (column sum of A) ,

which often is < 1.

V. Blobel – University of Hamburg Unfolding for HEP experiments page 6



Response matrix . . . from Monte Carlo simulation

The response matrix A is generated from Monte Carlo xy-pairs.
The resolution is deteriorated, if too few bins are used (m too small).
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Example: plots of x versus y, with small non-linearity in y = y(x) . . .

use number of y-bins m & 2n

Never use n = m with identical bins! – (“inverse crime”: . . . the numerical methods contain features
that effectively render the inverse problem less ill-posed than it actually is, thus yielding unrealistically
optimistic results.)
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Inverse problems in other fields

Linear inversion: (measurement) y ⇒ x (unfolded distribution)

There is an extensive literature (see below) about unfolding, which is of great importance in many
different fields:

• tomography in medicine, archaeology, biology, geophysics, oceanography, materials science, as-
trophysics . . . using several different physical phenomena including
X-rays, gamma rays, positron-electron annihilation reactions, nuclear magnetic resonance, ultra-
sound, electrons, ions . . . ;

• image restauration, picture deblurring;

• particle (e.g. neutron) spectra reconstruction from measured pulse-height distributions.

The dimension parameters m and n can be very large.
The covariance matrix V x is in general not required.

Literature:
Per Christian Hansen, Rank-Deficient and Discrete Ill-posed Problems, Siam (1998)
Jari Kaipio and Erkki Somersalo, Statistical and Computational Inverse problems, Springer (2005)
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General unfolding requirements . . . in HEP

You can get it wrong and still you think it’s all right
John Lennon and Paul McCartney from

We can work it out

The requirements for the solution of the unfolding equation

Ax ∼= y

• Complete usage of all available measurement information, including the (usually diagonal) co-
variance matrix V y of measured vector y with least squares (or Poisson likelihood).

• Unfolding should introduce no bias, with respect to a particular model of the physical process
and Monte Carlo simulation.

• Unfolding should introduce no or only a small bias, with respect to general requirements of
the solution (a general requirement is e.g. smoothness of the solution).

• Complete covariance matrix V x of solution (and weight matrix W x = inverse covariance matrix)
to be used in subsequent fits of parametrizations to the data.
For a linear inverse problem a linear solution and standard error propagation with a matrix

A#:

x = A#y V x = A# V yA
#T

• Solution should have small correlations between different x-bins. Correlation coefficients ρij up
to ±0.5 are acceptable, values |±ρij| > 0.9 should be avoided, i.e. the matrix V x should be
almost diagonal.
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3. Least Squares methods . . . with inversion

Optimal solution in the least squares sense of the equation Ax ∼= y is defined by the requirement

F (x) = ‖Ax− y‖2 = minimum

In the following the covariance matrix V y is inserted:

F (x) = (Ax− y)T V −1
y (Ax− y) = minimum

In the normal-equation formalism for the solution the matrix equation(
ATV −1

y A
)
x =

(
ATV −1

y y
)

Cx = b C =
(
ATV −1

y A
)

b =
(
ATV −1

y

)
y

has to be solved. The solution vector x is a linear transformation of the measurement vector y:

x = A#y A# =
(
ATV −1

y A
)−1

ATV −1
y

The result of standard error propagation is simple:

V x = A# V yA
#T

= C−1

This error propagation is possible only if the matrix A# exists in the used numerical method!
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The measured distribution

Measured histogram in 40 bins . . .
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Y = measured variable  [802]

. . . reconstruction by unfolding will be done in 16 bins, with σ = bin-width.
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Properties of the LS solution

The potential bias and the accuracy of a method should be checked.

(1) Check of a potential bias in the solution:

estimator x̂ = A#y with E [y] = Axexact

E [x̂] = A#E [y] =
(
A#A

)
xexact = xexact

⇒ the estimator x̂ is unbiased, because: resolution matrix Ξ ≡ A#A = 1.

(2) Variance: Lower bound of the variance is given by the Rao-Cramér-Frechet (RCF) inequality. The
covariance matrix V x is equal to the lower bound:
⇒ the estimator x̂ has the smallest possible variance for an estimator with zero bias.

General statement by the Gauss-Markov theorem: the least square estimate is unbiased and efficient.

But: the result x̂ will often show large, unacceptable fluctuations!

The fluctuations are not caused by inaccurate matrix elements (from Monte Carlo), but are inherent
in the problem, i.e. the response matrix A and its “smoothing” properties.
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Example of unfolding problem . . . by inversion

Example of unfolding problem with σ = bin size (Gaussian resolution)

Data points with error bars
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True curve f(x) is shown in red.
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−1 ≤ ρij ≤ +1
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The wonderful world of correlations

Average of two correlated numbers d1 and d2 (assuming σ1 = σ2) with positive/negative correlation:

average d = 1
2
(d1 + d2)

V d = 1
2
(1 + ρ12) σ2 V =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)

ρ12 = +0.95

0 2 4 6
0

2

4

6

8

Averaged value has almost the same error
as each single data value (0.987σ).

ρ12 = −0.95
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Averaged value has much smaller error
than each single data value (0.158σ).

V. Blobel – University of Hamburg Unfolding for HEP experiments page 14



Matrix diagonalization

Study transformation properties of symmetric n-by-n matrix C = (AV −1
y AT)

by decomposition in the form

C = UΛUT Λ = UTCU UTU = UUT = I C−1 = UΛ−1UT

with a diagonal matrix Λ.

All matrices in the decomposition are n-by-n matrices: C

 =

 U

 ·


λ1

λ2

. . .

λn

 ·

 UT



Eigenvalues λj ≥ 0 are in decreasing order, with λ1 ≥ λ2 ≥ . . . λn ≥ 0.

The orthogonal matrix U = [u1, u1, . . . ,un] is an array of column vectors = eigenvectors uj of the
matrix C.
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. . . contnd.

If the inverse C−1 exists (i.e. all λj > 0):

x = C−1b = UΛ−1/2 Λ−1/2UT b = UΛ−1/2c with coefficients c = Λ−1/2UTb ,

i.e. the solution is expressed by a vector c of Fourier coefficients.

The covariance matrix of the vector of Fourier coefficients c is simply the unit matrix, because

V c =
(
Λ−1/2UT

)
V b

(
UΛ−1/2

)
=

(
Λ−1/2UT

)
C

(
UΛ−1/2

)
= Λ−1/2ΛΛ−1/2 = 1 .

The solution can be written with a sum in the form

Solution: x =
n∑

j=1

1√
λj

cjuj with cj =
1√
λj

(
bTuj

)
V x =

n∑
j=1

1

λj

uju
T
j

Fourier coefficients cj, which are insignificant (compatible with zero), should follow a normal distribu-
tion N(0, 1); this allows simple statistical tests for significance.

The insignificant coefficients can make a huge and dominating contribution to the solu-
tion x, if the eigenvalues λj are small. Diagonalization allows to determine the degree of
freedom = number of significant coefficients
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Eigenvalue spectrum and Fourier coefficients

Eigenvalues = λj
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The eigenvalues decrease by ≈ 8 orders of magni-
tude, due to limited resolution.

Fourier coefficients = cj
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Fourier coefficients and filter dependence

Note: the cj are independent, and all have error
1 ⇒ only ten coefficients are significant.

Truncation: The truncated solution can be written with a sum up to k = 10 only (instead of n)
. . . the noisy contributions are removed from the result, without the introduction of a bias, . . . but the
rank of V x is only k (< n) ( ⇒ V x is singular).
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4. Regularization methods

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution!
⇒ control the norm of the residuals and, simultaneously, the norm of the solution x.

Thikhonov-Phillips: Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum τ > 0 L = 1

Matrix equation:
(
ATV −1

y A + τ · 1
)

x = ATV −1
y y to be solved

(C + τ · 1) x = b

(diagonalization of C) U (Λ + τ · 1) UTx = b

Fourier coefficients c = Λ−1/2UTb filter factor fj =
λj

λj + τ
= 1 . . . 0.5 . . . 0

Solution: x =
n∑

j=1

fj√
λj

cjuj with cj =
1√
λj

(
bTuj

)
(±1)

The result x is expressed as a superposition of eigenvectors uj, each weighted with the
Fourier coefficient cj and 1/

√
λj (!); the filter factor fj reduces the effect of insignificant

contributions, without introducing a bias.
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Second derivative

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution!
⇒ control the norm of the residuals and, simultaneously, the norm of second derivative Lx.

Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum τ > 0

Approximate second derivative:

x′′
i ∝ xi−1 − 2xi + xi+1 L =


1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1



Matrix equation:
(
ATV −1

y A + τ ·LTL
)

x = ATV −1
y y to be solved(

C + τ ·LTL
)

x = b

R (1 + τ · S) RT x = b with R = U 1Λ
1/2U 2

requires simultaneous diagonalization of two symmetric matrices C and LTL (S is diagonal).

Fourier coefficients c = UT
2 Λ−1/2UT

1 b filter factor fi =
λj

λj + τ
with λ = S−1

jj

Often better than standard regularization (L = 1), but depends on order of bins (2-dim solution?)!
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Eigenvectors

The result x is expressed as a superposition of eigenvectors uj, each weighted with the
Fourier coefficient cj and 1/

√
λj (!); the filter factor fj reduces the effect of insignificant

contributions.

eigenvectors,
(normalized)

eigenvectors,
scaled by eigenvalue factor 1/

√
λj (!)
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Regularization parameter I

Discrepancy principle (Morozov): choose τ such that ‖Axreg − y‖2
2 = ndf

L-curve method: plot ‖Lxreg‖2 versus ‖Axreg − y‖2 for a set of τ -values ⇒ dependence has
shape of an L with a distinct corner: optimal value of τ .

Effective number of degrees of freedom: (Run) determine ndf from spectrum of Fourier coeffi-
cients cj, and determine τ such that sum of filter factors

n∑
j=1

λj

λj + τ
= ndf

Minimum of global correlation: minimum mean value of global correlation coefficients

Definition: ρj =

√
1−

[
(V x)jj ·

(
V −1

x

)
jj

]−1

with 0 ≤ ρj ≤ 1

The global correlation coefficient is a measure of the total amount of correlation between element j of x and all other elements.

The arithmetic and the geometric mean of all n global correlation coefficients is determined for
a large range of τ -values: the τ -value with the smallest mean value is accepted.

. . . seems to be the best method!
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Regularization parameter II

L-curve
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Unfolding results . . . two resolution

Regularization parameter τ taken from minimum of mean of global correlation coefficients:

σ = bin-width σ = 1
2
× bin-width
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Small bias at the peaks. Reduced bias at the peaks.
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Correlation matrices

σ = bin-width σ = 1
2
× bin-width
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Covariance matrix
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Covariance matrix

Correlations ρj,j+1 ≈ +0.1 and ρj,j+2 ≈ −0.25 Correlations ρj,j+1 ≈ ±0.08 and ρj,j+2 ≈ −0.1
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Eigenvalue spectrum

σ = bin-width σ = 1
2
× bin-width

5 10 15
1E-8

1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

1

Eigenvalues

5 10 15
1E-8

1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

1

Eigenvalues

Eigenvalues decrease by a factor of ≈ 10−8 on the left, and only by ≈ 10−6 for the better resolution.
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5. Iterative methods

Often a method is used where a single computational step is not sufficient to get the solution.
Iterative methods with many computational steps are extremely popular in HEP for problems like

unfolding, calibration, alignment . . . (need start vector x(0))

• Only method, which is applicable for large number of parameters (e.g. 106),

• no matrix A#, no error propagation.

Methods

Correction factor method (CFM) and others: without any matrix and matrix operation, with-
out use of data covariance matrix V y, requiring measurement y close to true value x, with the
same bins for measurement and unfolded result. Often with intermediate smoothing/fit.

Landweber iteration: Matrix A unchanged, may be large and sparse:

x(k) := x(k−1) + ωAT
(
y −Ax(k−1)

)
k = 1, 2, . . . 0 < ω < 2

∥∥ATA
∥∥−1

2

Matrix A remains unchanged, used only in product Ax(k−1).
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Iterative methods – how do they work? Example: Landweber iteration

x(k) := x(k−1) + ωAT
(
y −Ax(k−1)

)
k = 1, 2, . . . 0 < ω < 2

∥∥ATA
∥∥−1

2

Surprisingly, solution similar to Thikhonov regularization, with an implicit filter factor f
(k)
i in

iteration k for the i-th eigen-contribution:

f
(k)
i = 1− (1− ωλi)

k i = 1, 2, . . . n

f
(k)
i ≈

{
k (ωλi) for λi � 1/ω i.e. f

(k)
i � 1 unless k very large

1 for large λi

⇒ The iteration number k plays the role of a regularization parameter:

• convergence is fast for components with a large eigenvalue λj, and

• very slow for components with small eigenvalues: result after few iterations is still close to start
vector x(0).

• Without smoothing the result will be, after a large number of iterations, the unique (oscillating?)
solution of the linear system ⇒ stop early(!), under which condition?

• Intermediate smoothing even removes the components with small eigenvalues!

Example of MC test in HEP publication: smoothing with 3rd degree polynomial ⇒ means only 4 (or
3) degress of freedom, for test distributions with linear and parabolic shapes (only 2 and 3 degrees of
freedom), but 9 points are shown: strong positive correlation in result!
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Comparison of unfolding methods

Iterative methods Regularized unfolding
Property e.g. CFM, Landweber with m > n

meas. errors taken into account no yes

unbiased w.r.t model no∗) yes

small bias w.r.t. general requirement ? [yes]

matrix A#, error propagation → V x no yes

small bin-to-bin correlations no yes

simple yes no
∗) unbiased for perfect model

• “– for the estimate by CFM it is hard to calculate noise characteristics and bias in the estimate
because of nonlinearity of the procedure” (V.B.Anykeyev et al., NIM A 322 (1992) 280-285)

• “Correction factors – a disaster. . . .The data will tend to follow the MC that gave you the
correction factors . . . ” (Roger Barlow, SLUO Lecture 9 (2000) SLAC)
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Summary

For every complex problem,
there is a solution that is simple, neat, and wrong.

H.L. Mencken

Experimental data, measured with finite resolution and limited acceptance, require unfold-
ing to allow a correct interpretation:

• Statistical errors are increased, if there are migration effects.

• Number of bins of unfolded distribution is in general small, and has to be adjusted to the size
of migration effects – otherwise correlations between bins will be large.

• Standard methods are based on

– Least squares (for Gaussian errors), or

– ML with Poisson distribution (for counting data, events), supplemented by

– regularization terms,

using orthogonalization methods (singular values or diagonalization), and allow to control a
potential bias and to propagate the measurement errors.
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Examples

Iterative methods are usually applied with intermediate “smoothing”

Example (1)
• . . . requires the double differential cross section model used in the simulation to be sufficiently

close to the data . . .

• . . .MC event reweighting procedure which converges after one iteration . . .

• . . . the measured double differential cross section is fitted by a new parametrization and the
analysis of the MC events is repeated using an additional weight factor . . .

Example (2)
• . . . to produce stable results . . . smooth the results of the unfolding before feeding them in the next

step as “initial probability” . . . the method is theoretically well grounded . . .

Example (3)
• Four test distributions are tested by MC, two with straight lines (polynomial of 1st degree) and

two with a parabolic shape (polynomial of 2nd degree) . . .

• . . . a rough smoothing has been performed for all of them by a polynomial of 3rd degree . . .

• . . . after a 20-step unfolding with intermediate smoothing . . .No oscillations are present and the
results do not change with the increasing the number of steps indicating that the procedure has
converged.
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