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Unfolding methods in high-energy physics experiments

. V. BLOBEL
ILInstitut fiir Experimentalphysik der Universitit Hamburg

ABSTRACT. Distributions measured in high-energy physics experiments are often distorted
or transformed by limited acceptance and finite resolution of the detectors. The unfolding of
measured distributions is an important, but due to inherent instabilities a very difficult problem.
Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their
properties are discussed. An introduction is given to the method of regularization.

Nay, answer me: stand, and unfold yourself
- William Shakespeare, from Hamlet

You can get it wrong and still you think it’s all right
- John Lennon and Paul McCartney, from
We can work it out

1. INTRODUCTION

One of the objectives of experimental physics is to measure distributions f(z) of
some physical variable z. Examples from high-energy physics are angular distributions,
invariant-mass spectra and structure functions. The set {z} of values measured in parti-
cle reactions, or events, can be regarded as a random sample, drawn from a distribution
f(z) of a one-dimensional random variable z, and it is the purpose of data analysis, to
make inferences about f(z) from the set {z}. The measured distribution f(z)*, usually
determined in the form of a histogram [1], differs from the true distribution f(z) by
statistical errors ¢(z); it can be used to test theoretical predictions fi(z). In the case
of an expression fi;(z,a), depending on parameters a, values for the parameters can be

extracted by fitting fir(z,a) to the data f (2).

In high-energy physics experiments often the quantity z and the distribution of z
cannot be measured directly, due to the imperfection of the detector. Two detector
effects can be distinguished, limited acceptance and resolution. Limited acceptance
means that the probability to observe a given event is less than one; the acceptance
may depend on the kinematical region. The second effect, limited resolution, means
that the quantity z in a given event cannot be determined exactly, but it can only
be measured with a certain measurement error. Both effects result in a distortion of
the measured distribution which can be expressed in the following way: instead of
the physically relevant variable z, a variable y and its distribution g(y) is measured.
Due to a transformation property of the measurement process, the measured variable y
may differ from z completely; for a one-dimensional variable z the variable y may be

1Mcasure<} quantities, and quantities, derived from measured quantities, are denoted by a hat, for
example f(z).



-89 -

multidimensional. The transformation may also include additional kinematical effects,
for example in scattering experiments there may be effects from radiation and Fermi
motion (in case of heavy targets) [2].

In this paper only the case is considered, where the distributions f(z), defined over
the range a < z < b, and g(y) are related by the convolution integral

b
aw=ﬁAmwﬂﬂu- (1.01)

In the theory of integral equations equation (1.01) is called the Fredholm integral equa-
tion of first kind. Integral equations occur in many branches of computational physics.
Examples from different fields of science are given in [38] and in [4], which also contains
many references. The function A(y,z), called a kernel in the theory of integral equa-
tions, describes the response of the detector including the transformation from z to y.
For a given z = z,, the response of the detector in the variable y is A(y, zo). In practice
the distribution §(y) actually measured differs from the expected distribution g(y) by
statistical errors e(y):

b
mw=£4mwﬂmu+dw (1.02)

An accurate determination of the response function A(y,z) is essential for any
meaningful analysis of the data. Information on the behaviour of the detector can be
obtained by test measurements with a known f(z). For example a hadron calorimeter
can be exposed to a particle beam with well known fixed energy =z = z9, then f(z) =
6(z— zo) and the result of the measurement of the energy y in the calorimeter is directly

A(y’ 30): . ,
-/; Ay, z)6(z — =) dz = A(y, %o). (1.08)

Complex high-energy experiments usually require Monte-Carlo calculations of the de-
tector response. This method allows the determination, for a given dependence f(z), of
the expected distribution g(y) of any measurable quantity y by a detailed simulation of
the measuring process in the detector. Often detector data are generated in the same
format as real data, and can be processed by an identical chain of reconstruction and
analysis programs.

If the effect of limited resolution is negligible and the measured distributions are
essentially affected only by limited acceptance, the correction for these effects is usually .
not very difficult. There are two possibilities for the data analysis in case of a large -
distorting effect due to limited resolution. If a specific theoretical prediction fix(z)
is to be compared with the data, the corresponding expected distribution g;s(y) can
be evaluated by equation (1.01). If the distribution g;5(y) agrees with the measured
distribution §(y) within statistical errros, one can conclude, that the tested prediction
gives a consistent description of the measured process. In the case of disagreement
however a publication of a detector-dependent measured distribution §(y) is of little use.
The comparison with alternative theoretical predictions is impossible, unless they are
also convoluted with the detector response using equation (1.01). The other possibility
is the reconstruction of f(z) from the measured distribution §(y).
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The reconstruction of f(z) from the measured distribution §(y) is called unfolding,
and it is a statistical estimation problem. Unfolding is a complicated problem, because, -
in mathematical classification, it is an ill-posed problem [3], which can have wildly oscil-
lating solutions [4]. In spite of its practical importance, it is not mentioned in standard
textbooks on statistics, with only few exceptions [5]; in general many misconceptions -
exist and are used in practical applications. It ig characteristic of these methods, that
they are usually described only in words; the standard criteria for statistical estima-
tion methods, the requirements for efficiency, consistency and unbiasedness are usua.lly
difficult to discuss for these methods.

One example of the combined effects of acceptance, transformation and resolution
in a high-energy physics experiment is the measurement of the cross section do/dn as a
function of the inelasticity # = (Ej — mp)/E, in neutral current reactions.

vN - vX

in a narrow band neutrino beam! [8]. The detector allows the measurement of the energy
E}, of the hadronic system X above a threshold of a few GeV with a certain resolution,
and in addition the distance r of the interaction from the beam axis can be measured
(m, is the proton mass). The beamflux ®(E,,r) has a two-peak structure at a fixed
distance r, since the neutrinos have their origin in decays of - and K-Mesons. Clearly
the measured data do not allow the reconstruction of the value n of the inelasticity
in individual events, since the neutrino energy E, is not known. The knowledge of
the beamflux ®(E,,r) together with the known acceptance and resolution in Ej and r
allows the calculation for any given do/dn of the resulting distribution of the events in
the (Ep,r)-plane. The transformation between 5 and (Eh,r) is completely defined and
can be expressed by the formula

o(Bn,) = [ A(Bn,rim) T, (1.04)

which has the same structure as equation (1.01). Unfolding in this case means the
reconstruction of do/dn from the measured distribution g(Ep,r).

Another example from high energy physics is the measurement of the total cross

section for y7-interactions, which is possible with e*e~ storage rings at high energies
by a measurement of the reaction [7] [8]
ete” —ete ™ X.
Because some fraction of particles of the hadronic final state X are emitted at small
angles with respect to the beams, they escape detection by the detector and the measured
invariant mass of the hadronic system is on average smaller than the true invariant mass.
A model of the physical process is necessary in this case for the calculation of the response
function A(y, z). Model parameters have to be determined from the data.

1The usual symbol y for the inelasticity is replaced here by the symbol 5, to avoid confusion with
measured variables, denoted by the symbol y in this paper.
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If the variables z and y are discrete variables, the integral in equation (1.01) has to be
replaced by a sum. A discrete set can always be mapped on a set of consecutive integers,
and therefore one can assume, that the random variables z and y have ranges 1...m and
1...n, respectively. Instead of functions f(z) and g(y) of continuous variables, there
is a finite number of elements f;, 7 = 1...m and g;, 4 = 1...n, and the convolution
equation can be written in the form

m
gi = Z Ajifi+ € or short g=Af +e¢ (1.05)

=1

where f is a n-vector, § and € are m-vectors, and A is a m-n matrix. The equation can be
interpreted as a discrete approximation of the integral equation (1.02). Any numerical
solution of the integral equation for continuous variables will require an approximation
by a finite number of elements. The simplest discretization is the representation of the
distributions by histograms f and § (a more general discretization method is discussed
in chapter 4.2).

As mentioned before, the correction is not very difficult, if the dominant effect of
the detector is limited acceptance. In this case all elements A;; are zero for ¢ # j
(with n = m) and only the elements A;;, the acceptance probability for bin j, have
to be considered. A common method for pure acceptance correction is the following:
Monte Carlo events with z-values generated according to some fixed assumption f are
processed, simulating the detector response, and the accepted events are used to fill
a histogram j. The binwise ratio §;/f; of the histograms gives the values Aj; of the
acceptance probabilities for bins j. The correction of the measured bin contents §; is
then made according to _
fi=40; (%cl) : (1.06)
95
to obtain corrected bin contents f,—. Since A;; = 0 for ¢ # j, the correction factor does
not depend on the used MC-input histogram f. There are no difficulties or problems with
this method, which may be called the factor method, except perhaps if the acceptance
probability changes rapidly within a few bins [9).

The situation is completely different, if a correction for limited resolution becomes
necessary. The principal difficulty of unfolding is easily demonstrated. For the discrete
case with n = m (square matrix A), the straightforward application of standard analysis

methods suggests the solution
f=a1y, (1.07)

where A~ is the matrix inverse to A; this method may be called inversion method. The
expectation value E(f) of the estimate f is equal to the true f, provided the measured
g has no bias, i.e. E(§) = Af:

E(f)=B(A™'g)=A""B(j)=AT"Af = . (1.08)
An estimate with this desirable property is called consistent. Error propagation yields

V(f)=4a"'v(g) 4! (1.00)
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for the covariance matrix V (f), calculated from the covariance matrix V (§) of the mea-
sured data. This method is probably tried first by many people, whén confronted with
an unfolding problem. The result however is often very disappointing, as shown in the
numerical example below, and it is understandable that people after trying this method
turn to a heuristic method which provides ’better’ results.

Example: Unfolding of a distribution of a discrete variable. The case n = m =
20 is assumed, with the following response matrix:

(0.75 025 0O \
0.25 050 025 O

0 025 050 025 O
A= 0 025 050 0.25
0 025 0.50

150

fix)
iy | '

200}

100 100

50!

-100: -
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y
Figure 1. Distribution of the measured quantity y (a) and oscillating result of unfolding

(b) using equation (1.05), shown as histograms. The original dependence is shown as a
curve in both cases.

The probability to observe for y the true value z is 50 % (except for z = 1 and
£ = n). A certain dependence f(z) is assumed and the expected distribution g(y)
is calculated by ¢ = A f; a random sample of 1000 independent measurements of the
variable y is generated. The result of the simulation is shown in Figure 1a as a histogram.
Equation (1.07) is used to obtain an estimate f for the original distribution, and this is
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shown as a histogram in Figure 1b together with the original distribution (smooth curve).
The result has an oscillating behaviour, and the covariance matrix shows large negative
correlations, especially between adjacent values, although the effect of the resolution on
the shape of the measured distribution appears to be rather small. The result of this
example is typical for the direct solution of the unfolding problem, based on equation
(1.07). Clearly this method is not acceptable.

In several experiments the factor method, as discussed above for the case of a pure
acceptance correction, is used in the case of limited resolution as well. However now
because of 4;; # 0 for ¢ # j the correction factor according to formula (1.06) will depend
on the MC input histogram f, and will only be correct, if f is the true histogram.
Since this is not known (otherwise the measurement would not be necessary), some
assumption is necessary and the corrected values f,- will be biaged towards the MC
input histogram. Often in applications of this kind, the MC input histogram is adjusted
" in several iterations, to get a histogram g, which describes the measured histogram § well.
The essential point in applications of this method is to use always a smoothed histogram
f, otherwise the repeated application of equation (1.06) can be shown to give (in case of
convergence) the result of the inversion method (which exactly reproduces 3). In general
one can say, that the factor method applied to the case of finite resolution gives a biased
result, with the danger to underestimate statistical and systematic uncertainties. Quite
often the corrected result is presented in the form of a histogram with many bins, which
are narrower than the resolution, and which cannof be resolved by the detector.

Acceptable unfolding results can be obtained by regularization methods [10] [11],
which suppress the spurious oscillatory component in the solution. Regularization can
be interpreted as the use of certain a-priori information on the degree of smoothness of
the true solution. Since this can introduce a bias, the weight of the a-priori information
has to be determined by statistical methods in order to keep any possible bias small
compared to statistical errors. One unavoidable consequence of acceptable unfolding is
the limitation of the number of unfolded data points, according to the resolution and
the statistical accuracy. A measurement with limited resolution always means a loss of
statistical accuracy. '

A special feature of high-energy physics experiments is the fact that the response
function is usually known only implicitly by the simulation of particle reactions in the
detector. Limited statistical accuracy of the often very time-consuming Monte-Carlo
calculations can introduce systematic uncertainties. The usual requirement ’number
of MC events ~ number of measured events’ is insufficient. Even more difficult, the
Monte-Carlo simulation may require some assumptions, which have to be tested by
comparison with the data, and therefore unfolding methods should allow sensitive tests
of the assumptions. In addition the discretization has to be done rather carefully to
avoid a further deterioration of the already limited resolution.

In this paper a general unfolding method, based on fundamental statistical princi-
ples is discussed in detail together with numerical examples. The method is similar to
methods, used in other fields of science [12] [13] [14] and allows the inclusion of certain
a priori information (regularization). It has been applied to several high-energy physics
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experiments in an earlier [6] [15] and in the present version [7] [8]. The discussion is
restricted to the case of a one-dimensional variable z and its distribution; the measured .
variable however may be multidimensional.

The description and discussion of the unfolding method is preceeded by two chapters
which introduce the basic concepts of statistics including parameter estimation and the
parametrization of functions by spline and orthogonal functions.
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2. STATISTICS
2.1 ONE-DIMENSIONAL RANDOM VARIABLES

The result of a measurement can be characterized by one or more real numbers z;,
t = 1.... The probability that an experiment yields a result a < z < b is given by

.Hagz<ﬂ=/¢ﬂﬂdz (2.01)

for a continuous random variable (r.v.) z, where f(z) is the probability density function
of the variable z. A probability density function is a nonnegative function with unit
integral:

e o]
f(z) >0 and / f(z)dz = 1. (2.02)
—00
Physicists usually call a probability density function (p.d.f.) a distribution, in statistics

this name is reserved for the integrated p.d.f., which may be called cumulative distribu-
tion F(z):

F(z) = /;z f(z') dz’ - (2.03)

with F(—00) = 0 and F(oo) = 1. An important parameter characterising the location
of a random variable z is the expectation value of z, denoted by E(z) and defined by

©0
m@:/ z f() dz. (2.04)
—00
Generalized for an arbitrary function h(z), the expectation value of k(z) is defined by
©0
E(h) = h(z) f(z) dz. (2.05)
—o00

The expectation values of z" and of (z — E(z))™ are called n-th algebraic moments pu,,
and n-th central moments u},, respectively. The expectation value of z, or mean value
i of z, is equal to the first algebraic moment u,,

b= p1 = E(z). (2.06)

The second central moment p} is a measure of the spread of the distribution, it is called
variance V(z) and its definition is

V(z) = E((z — E(z))?). (2.07)
The variance is abbreviated by o2, and ¢ is called the standard deviation.

The normal distribution. The normal or gaussian distribution is in practice the most
important distribution, since measurement errors often follow the normal distribution.
The density is

202

The normal distribution has two parameters 4 and o with E(z) = p and V(z) = o2 .
The probability for z to fall into the region u + o is 68.3 %. The normal distribution
for the case 4 = 9 and o = 3 is shown in Figure 2 as a curve. .

f(z) = ‘/21_”0 exp ((z— ﬂ)2) z € (—00,00). (2.08)
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Figure 2. Normal distribution with 4 = 9 and o = 3, shown as curve, and Poisson
distribution with u = 9, shown as histogram.

A linear function y = az + b of a random variable z is again a random variable.
The expectation value and the variance are

2

By =0apz+b and o) =d%0] (2.09)

For a general transformation y = h(z) the p.d.f. of y is

o= [ su-maf@e= L2,

if the function y = h(z) is a one-to-one function.

In the case of a discrete variable r possible values can always be represented by a
set of consecutive integers, r € {a,a +1,a+2...,b—1,b}. The probability, that an
experiment yields the result r is denoted by the nonnegative number P(r). Expectation
values are defined in analogy to the case of continuous random variables, replacing

integrals by sums.

The Poisson distribution. If events occur at a constant rate, the probability of ob-
serving in a given time interval exactly r events, is given by the Poisson distribution.
For a Poisson distribution,

P(r|n) = e"“%— re{o,1...00) (2.11)

represents the probability of observing r events, if the mean value is p. The Poisson
distribution has only one parameter u, with E(r) = u and V(r) = u. The Poisson
distribution with 4 = 9 is shown in Figure 2 as a histogram. A comparison shows, that -
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for not too small mean values (say p > 5) the normal distribution represents a good
approximation to the Poisson distribution, except in the tails.

2.2 MULTIDIMENSIONAL RANDOM VARIABLES

For a twodimensional random variable with components z and y the probability to
observe (z,y) witha<z<bandc<y<dis

‘ d b
P(aSz<b,c_<_y<d)=//f(z,y)dzdy' (2.12)

with the twodimensional p.d.f. f(z,y), which obeys the normalization condition

f/ f(z,y)dzdy =1 (2.13)

with integration limits —oo0 and +00. Projections of the distribution f(z,y) are called
marginal distributions:

0= [ f@vi 4E@=[ f@w. (214

They represent the distributions of the r.v. z and y, resp., if the other variable ignored.
Sections through distributions f(z,y) are called conditional distributions. Given a fixed
value z = 2o, the conditional p.d.f. of y is

_ f(zo,y) _ f(zo,y)
PYIz0) = Ty = To(z0) (2.15)

From the marginal p.d.f f,(z) and the conditional density p(y|z) the joint p.d.f. is given

by
f(z,y) = p(ylz) fy(=) (2.16)
and the marginal p.d.f. k(y) is given by

fe0)= [ plela)fy(a) da. (2.17

This equation is similar to the basic equation (1.01); the difference is in the normal-
ization. While the distributions defined here are always normaliged, the distributions
appearing in equation (1.01) are for example cross sections and the integrals are true or
measured fotal cross sections.

The definitions of expectation values and variances are straightforward generalized
to multidimensional r.v.:

B) = [[ #1(z,) ds dy V(o) = [[ (=~ B@)*S(a,9) dady

(2.18)
50) = [[viwndzay V) = [[- B 5z 9 dsay.
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For a two dimensional p.d.f. there is an additional characteristic, the covariance
7ay = c00(2,9) = [ [ (2 - B(@)) (v - BWw) f(z, ) ds . (2.19)

The covariance can be expressed as 04y = pzy 1/0% + 02 with a correlation coefficient

Pazy, Which can take values between —1 and +1. The variables z and y are called
uncorrelated, if pzy = 0.

The p.d.f. of a random n-vector z, with components z;, 1 = 1...n may be written
as f(z). As a generalization of the variance one can define a covariance matrix by

V =V(2) = E((z - E(2)) (= - B(z))7), (2.20)

which is 2 symmetric n-n matrix. The diagonal elements V (z;) = o7 are called variances,
the off-diagonal elements V' (z;, z;) = oy, are called covariances. When parameter values
are quoted as the result of an experiment, usually only the square roots of the diagonal
elements are given as parameter errors. The confidence level for multidimensional regions
in parameter space depends however on the covariances of the parameters [18].

The n-dimensional normal distribution. The p.d.f. of the n-dimensional normal
(or gaussian) distribution depends on the n means, and on the n? elements of the
covariance matrix V (with (n? + n)/2 different elements):

1(2) = Garyerary (=5 = )"V (2 — ) (2:21)

The n-dimensional gaussian distribution is the simplest model for the p.d.f. of n corre-
lated random variables, since the only parameters are the n means and the (n? + n)/2
different elements of the covariance matrix.

The x? distribution. Ifz, ...z, are independent variables, which all follow the normal
distribution with mean 0 and variance 1, the sum u of the squares

u= Zn: z? (2.22)

=1

follows the x? distribution x2(n) with n degrees of freedom. The probability density is
given by '
%(%)n/z—le—-u/z

f(u): I‘(&)

2

(2.23)

The expectation value is n and the variance is 2n. The x? distribution is important
for statistical tests; tables are given in standard textbooks on statistics. The 95 %
confidence level of the x? distribution with one degree of freedom for example is 3.84.-
If z is a single variable, distributed normally with mean 0 and standard deviation o, a
measured value (%/0)? will be < 3.84 with 95 % probability. Thus a measured value
(2/0)? < 3.84 is compatible with zero in the 95 % confidence limit.
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Linear functions of random variables. A linear transformation y = Bz of a random
n-vector z with mean p; and covariance matrix V' (z) to a m-vector y is considered. The
expectation value uy of y and the covariance matrix V' (y) of y are given by:

py = Bu, and V(y)= BV(z)BT, ' (2.24)

where BT is the matrix transposed to the matrix B. The expression for V(y) is the
equation of standard error propagation.

2.3 PARAMETER ESTIMATION

The estimation of parameters from measured data is a standard problem in data
analysis. The application of the maximum likelihood method for a certain class of
problems is discussed below.

Assume, that the dependence of a cross section f(z) on a variable z has been
measured. There exists a model, which expresses f(z) as a sum of m known functions
pj(z) with coefficients a;:

£(2) = 3 aipi(a). (225)

The m parameters (or coefficients) have to be determined from the data, which are
given in form of histogram bin contents f;,5 = 1...n. Each bin of width A is centered
at a certain value z;. Neglecting the variation of the functions p;(z) within a bin, the
expected content of a histogram bin is

fi=A-f(z)=A- Eajp, (zi) = EA.Ja., with Aij =040 pi(zi). (2.26)

J=1 J=1

The observed content of a histogram bin will follow a certain probability distribution,
with a probability P( f,| fs) of observing fi, if the mean value is f;. The product of all n
probabilities,

= [[ P(filf) (2.27)
=1

is a function of the values of the parameters, and is called likelihood function. According
to the maximum likelihood method [16], the best estimates of the parameters a are given
by those values &, for which the likelihood function takes on its largest value.

In applications of the maximum likelihood method usually a search is made for the
minimum of the negative logarithm of the likelihood function:

S(a) = =Y _ W P(fi|f). (2.28)

£—1

Since the number of entries in a hlstogram bin will follow the Poisson distribution, the-
corresponding expression for P( f,| fi) can be inserted; dropping all constant terms, one
gets

S(a) = E Ef.lnfg | (2.29)
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Methods for the determination of the minimum usually are based on the approximation
of S(a) by a quadratic function, then the minimum can be determined by standard
matrix methods. The derivatives of S(a) w.r.b. the parameters at an approximate
solution @ are given by: :

95 _ ¥4, zn: ‘,‘4"" 75 _ 3 ke (2.30)

:-|
Q
8
Q
K
a

with f; calculated using the approximate solution @. In matrix notation the quadratic
approximation can be written in the form

5(a) = S(8) ~ (a~ 8)h+ 5(a~ &) H(a - &), (2.31)

where h and H with elements

as 9?8

hj - _—5;; ij = 6a,-6ak

(2.32)

are the (negative) gradient and the Hessian of S(a), respectively. The minimum of the
quadratic approximation above is defined by the condition V§ = 0,

—h+ H(a—-a) =0, (2.33)
which is solved by
g Gapp = G+ H™1h. (2.34)

Since the obtained result a4y, is based on the approximation of the true function S(a)
at @, several iterations have to be performed; in each iteration the result of the previous
iteration replaces G. Convergence may be assumed, if both the expected change of S(a)
in one iteration,

(AS)eap = ";‘(“app —a)Th (2.35)

and the actual change of S(a) are small compared to 1. The method is stable, if each
iteration includes a search for the minimum of the function

S(t) = S(@ + t(agpp — @)), (2.36)
depending on one parameter t. The result of the minimum search,
Amin = G + tmin(Bapp — @), (2.37)

then replaces a for the next iteration. It can be shown, that (negative) log likelihood
functions are in fact approximately quadratic function, at least near the solution; there-
fore the value t,,4y, is usually close to 1 and convergence with result 4 is reached within
few iterations.

A simpler method for the solution of the problem is based on the approximation of
the Poisson distribution by the gaussian distribution. Under the conditions mentioned
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in chapter 2.1 the Poisson probability may be approximated by tl;\e value of the gaussian
density with 0 = f;. Using the additional approximation ¢? = f; the problem becomes
easily solvable. Inserting for P(f;|f;) the expression for the gaussian density, S(a)
becomes - '

S(a)___.;_;(_f%‘?fiﬁ 2= f, (2.38)

which is (except for the trivial factor 1/2) the expression to be minimized according to
the least squares principle [17]. In this case the derivatives become

88 =, fi=£) 828 <~ AijAu
50 = —'Z:;A., 57 Fasdar = P (2.39)

In matrix notation the function S(a) can be written in the form
- ~\T 1 -\T -
S(a)=8@)—(a—a) h+ —2-(a—a.) H(a - &), (2.40)

identical to the Poisson case and therefore can be treated in the same way. However,
gince S(a) in this case is really quadratically in a, no iteration is necessary and the result

d=H"lh (2.41)

is obtained in one step, which does not require an approximate starting value @. Thus
the least squares method may be used fo calculate an approximate solution, required by
the method based on the Poisson distribution.

Since @ of equation above is a linear function of the gradient A, which itself is a
linear function of the measured data f,-, the simple formula of error propagation can be
used to calculate the covariance matrix V' (&). In order to derive the result with matrix
methods, a n-by-n weight matrix W is introduced, which is the inverse of the covariance
matrix V (f) of the measured data. Since the data are uncorrelated, the matrix V (f) is
a diagonal matrix with diagonal elements 02, and the weight matrix W is diagonal too,
with diagonal elements 1/0%. The (negative) gradient h and the Hessian H are given by
the matrix expressions

h=ATWS H=ATW 4, (2.42)
and the full solution can be written in the form
d=H ‘h=(ATWA)'ATW]. (2.43)
Using the formula of error propagation, the covariance matrix V() is
V(@) = (ATWA)- L ATWW W A(ATW A)~! = (ATWA)~ = H-'.  (2.44)

It can be shown that the same simple formula V(4) = H~! applies to the result, obtained
with the maximum likehood method based on the Poisson distribution. This is at least
true for the asymptotic case of high statistics, but is a good approximation already for
low statistics.
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3. PARAMETRIZATION OF FUNCTIONS
3.1 INTERPOLATING SPLINE FUNCTIONS

Spline functions [18] are smooth interpolating functions. Besides applications in
graphics, spline functions are increasingly used for numerical problems, for example in
methods of solving boundary-value problems of differential equations. The standard
application of spline functions is the interpolation between pairs (ys, z;) with z; € [a, b].
The set Y = {yo0,¥1...yn} of (n + 1) real numbers represents values of a function f(z)
at abscissa values z;, called knots. The set X = {zo,%;...Zn} with 2o =a and z, = b
can be considered as a partition of the interval [a,b]. A cubic spline function S(z) with
S(z;i) = i, 1 =0...n, is a twice continuously differentiable function on [a, b], coinciding
on every subinterval [z;,%;41],4=0...(n — 1) with a polynomial of third degree:

Si(z) = a; + bi(z — ;) + ci(z — 2)? + di(z — z;)3. (3.01)

At every inner knot z; the two polynomials of the adjacent subintervals agree in the
function values and in the values of the first two derivatives.

A cubic spline function with total 4n coefficients is not uniquely defined. The
requirements S(z;) = y; give (n+ 1) conditions for the coefficients, and with the (n — 1)
conditions at the inner knots on S(z), S’(z) and S"(z), there are in total (n + 1) +
3(n — 1) = 4n — 2 conditions for the 4n coefficients. Thus two degrees of freedom are
left, which have to be fixed by two additional conditions. Often used conditions are the
following:

(1)  S§"(z)=0 ; S"(zs)=0 (natural spline)
(I1) S'(zo) =9y ; S'(zn)=19, (complete spline).

A natural requirement for an interpolating function is a certain degree of smooth-
ness. Since the local curvature f”(z)/(1 + f'2(z))3/2 of a function f(z) can be approxi-
mated for |f'(z)| < 1 by f”, the integral

b
/a [f"(z)]? dz (3.02)

appears to be a reasonable quantitative measure of the smoothness of a function f(z).
This quantity will be called the (total) curvature of a function f(z) in an interval [a, 8]
in the following.

The natural spline (condition (I) above) is the smoothest function to interpolate

given support points (y;,z;) in the sense of the curvature (3.02). First a proof is given
for the statement:

b b b v
0< / |£"(z) - 8" (=) dz = f |£"(2)]? dz — f |5"(=)dz  (3.08)

for cubic spline functions S(z) under conditions (I) and (II), and twice continuously
differentiable functions f(z). The first integral of equation (3.03) can be rewritten in
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the form

b b b b
[ 11"@)-5"@P dz = [ 15 do [ |57 de-2 [ (7" ()~ 8"())8" (2) do
‘ * ‘ ‘ (3.04)
The last term is integrated by parts. For each subinterval [z;—;,z],s=1...n,

[ 1@ - s"(a)s" @)z =(7'z) - 8N G

1=1

- [0 @) - s de

g

= (7(=) = S'@NS" @, - (f(=) — SE)SO (=)
+ L " (f(e) - $(2))SPW(2)dz (3.05)

=1

And adding up all terms one gets with S (4)(1:) =0

b
o< [1f"(a) - 8"(a) ds
b b
= [1r@Faz - [ 18"z - 2(7') - 5'@)s" (),
+2) (f(e) - 8(2))8"(2)];;_, (3.06)

The last term (the sum) vanishes because of the interpolation condition §(z;) = y;, ¢+ =
0...n, and the term before vanishes under conditions (I) and (II). Thus the inequality

b b
fa 18" (z)dz < f 1" (@) P, (3.07)

follows and proves the statement (3.02). The inequality (3.07) implies that, among
all twice continuously differentiable functions f(z) with f(z;) = z; the spline function
S(z) with condition (I) (natural spline) minimizes the total curvature (3.03). It also
minimizes approximately the ’strain energy’ in a curved elastic bar

b ] 2
[ w7 309

and this property is the origin of the name ’spline’. As an example the interpolation of 10
given points (y;, z;) by a spline function is shown in Figure 3, and is compared with the
interpolation by a polynomial (of degree 9). The polynomial shows large osciallations
‘near the endpoints, typical for the interpolation of equidistant data by a high order
polynomial [19]. The advantages of the spline interpolation are apparent.
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Figure 8. Interpolation of 10 given points (y;, z;) by a cubic spline function (full curve)
and by a nineth order polynomial (dashed curve).

However, smoothness is not the only criterion for an interpolating function. A more
important criterion is the accuracy of approximation of a given function f(z) by S(z).
From an approximation point of view, the properties of spline functions with condition
(I) are not optimal (unless really f"(zo) = f"(zn) = 0). If the true slopes at the end
points are known, condition (II) gives a better approximation, and if the values of the
second derivatives are known at the end points, the condition

(1) S"(zo) =yg ; S"(zn) =yn

can be used. If nothing is known about end point derivatives, one can use as a general
condition

(IV) S"(z) continuous across z; and z,_; (not-a-knot condition).

The not-a-knot condition means, that the first and last inner knots are not active.

Spline functions S(z) have optimal approximation properties (for a quantitative
treatment see[18]). The difference |f(z) — S(z)| is bounded by a quantity proportional
to the fourth power of the knot spacing. Even the k-th derivatives of f(z) for k = 1,2
and 3 are well approximated (with a bound on the difference to the true derivative
proportional to the (4 — k)-th power of the knot spacing). The natural spline condition
(I) introduces an error proportional to the square of the knot spacing near the ends,
which is avoided by the not-a-knot condition (IV) and therefore this condition seems to
be preferable as a general condition. In fact the not-a-knot condition has been used for
the construction of the interpolating spline in Figure 3.

The determination of spline functions S(z) for given support points (y;,z;) is a
‘stable process for all conditions (I) - (IV); algorithms for the determination of the co-
efficients a;, b, ¢i, diy, $ = 1...(n — 1) can be found in [18], [20]. The construction of
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higher order spline functions is possible, in practice however there is rarely a reason to
go beyond cubic spline functions.

3.2 B-SPLINES

A representation of spline functions S(z), different from the one given by equation
(3.01), but equivalent, is provided by the so called basis splines or short B-splines [20].
A B-spline is itself a spline function. A single B-spline of order k is nonzero only in a
limited range of z (basis). A spline function §(z) of order k can be represented by s
sum of B-splines Bj x(z) according to

S(z) = ) _ a;B;x(a), (3.09)
i

where the functions B;x(z) are B-splines of order k. The representation of spline func-
tions by a linear combination of B-splines has numerical advantages in certain applica-
tions, for example least squares fits of a spline function to data become linear.

1 —
by(x) bolx) bzlx) byfx)...

2/3F

113

tv to t3 t, tg tg t7 g X
a

Figure 4. Sequence of cubic B-splines and equidistant knots.

B-splines are defined over a nondecreasing sequence {f;} of knots. Order k = 1
B-splines are defined by

L 1 t, <z <L tj+1
Bjy = {0 otherwise. (3.10)

Higher order B-splines B;x(z) (with k > 1) are defined by a recurrence relation, which
allows to compute Bj; x(z) by positive linear combinations of positive quantities:

z—1; tivk — 2
Bjx = 2—_~—~—1—-—-B,-,k_1(z) + " B k-1 (2). (3.11)
j+k—1— t5 tjvk — ti+1

B-splines Bj; x(z) have the property

N[>0 t; <z <tipk
Bjx(z) = {0 otherwise ! : (3.12)
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i.e. they take on only positive values (or zero). In any particular interval [t;,¢;41]
only the k B-splines B;_g41,x(z)- - Byx(z) may be nonzero. B-splines, as defined in-
equations (3.10) and (3.11), are normalized in the sense, that at any particular z-value
their sum is equal to 1:

i
ZB',k(z) = Z Bjk(z) =1 t <z <ties. (3.13)
7 j=l+1-k

In the following only cubic B-splines (k = 4) are considered. For the case of B-
splines By 4(z) with equidistant knots, which are often sufficient, explicit formulas are
given, denoting these special B-splines by b;(z). If m B-splines b;(z) are used for the
parametrization of a function for a < z < b, the distance between adjacent knots is
d = (b—a)/(m — 3). In total there are (m + 4) knots, with ¢4 = a , t;,41 = b and in
general t; = a+ (5 — 4)d (see Figure 4). The explicit formulas for the B-splines b;(z) in
terms of a variable z with 0 < 2 < 1 are:

122 z=(z—t;)/d t; <z <tj4y

[l +3(1 +2(1 - 2))2 z=(z—tjp1)/d  tj41 <2 <tjig
bi(z) = L1431 +2(1 -2))(1-2)] 2=(z—tjsa)/d tj+a<z <tj4s-

g(1-2)° z=(z—tj3)/d 43 <z <tjyaq

0 otherwise (3.14)

A single B-spline b;(z) together with the derivatives is shown in Figure 5.

The m coefficients for a spline function in the parametrization (3.09) with B-splines
b;(z), interpolating (m — 2) equidistant data points (ys,z;) with z; = ¢;, i =4,...m+1,
are determined by a set of linear equations. The first (m — 2) equations

6y; = a;—3 +4a;_3 + a1 Jj=4..m+1 (3.15)

are given by the interpolation conditions. The additional two conditions given by the
not-a-knot condition (see chapter 3.1) are
—a; +4a3 —6az +4a4 —as =0

(3.16)

In a parametrization (3.09) by B-splines, each function value S(z) at a certain z as well
as derivatives S’(z)... and the integral of §(z) over a z-region is a linear combination
of the coefficients a;. This property allows linear least squares fits to data (y;, z;) of
spline functions in the B-spline parametrization. Having determined the coefficients a;
together with their covariance matrix, error propagation for interpolated function values,
derivatives efc. is straightforward.

3.3 ORTHOGONAL FUNCTIONS

The concept of orthogonal functions is of particular importance in many fields of
numerical and statistical analysis. A system {p;(z)} of functions p;(z), defined for
a < z < b, is called orthogonal, if the inner product of each two functions (p,, px)

b
(piroe) = [ piOma()dz=0  for j#k. (3.17)



Figure 6. Single B-spline and derivatives, for equidistant knots with distance d =1
between adjacent knots.

Orthogonal functions are called normalized, if the values Nj, defined by

f ' p}(z)dz = N; (3.18)

are equal to 1 for all values of 5. By an orthogonalization procedure a system of orthog-
onal functions can be constructed from a system of linear independent functions [21]. A
piecewise continuous function g(z) can be expanded in terms of a system of normalized
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orthogonal functions,
00 b
oz =Y ami(a)  with o= [ pil)a(e)dz, (3.19)
=1 e

where the factors a; are called expansion coefficients or components of the function f(z)
with respect to the system {p,;(z)}. The deviation between the function f(z) and a
finite sum with n terms can be measured by the quadratic expression

b m 2
My, = / [f (=) - Z aJ'PJ'(z)] dz (3.20)
o yourt :

According to the principle of least squares the quantity M,, should be as small as
possible. It can be shown [21], that

m b .
i< [ 1) s (3:21)
3=1 @

A system of orthogonal functions is called complete, if for any positive number € there
is an index m, such that M,, < e. In practice usually only a small number of terms
is necessary, since the magnitude of |a,| falls rapidly with increasing index j above a
certain index. This feature allows an efficient representation of functions f(z) by finite
sums, which can be evaluated very fast, using recurrence relations for the evaluation of
the p;(z) [19)].

An important example of a complete orthogonal system of functions is given by the
functions 1, cos z, sin z, cos 2z, sin 2z, ..., which is orthogonal in the interval 0 < z < 2.
A periodic function, with period 27, can be expanded in a Fourier sum

f(z) = 229- + i(av cosvz + b, sinvz), (3.22)

v=1

where the expansion coefficients a,, and b, (Fourier coefficients) are given by the formu-

las:
1 2r . 2r

ay = — f(z) cosvz dz b, = 1 f(z)sinvzdz. (3.23)
T Jo T Jo
It can be shown, that the trigonometric interpolation (3.22) converges o the given
function f(z) at every point on the range [22]. The asymptotic behaviour of the Fourier
coefficients depends on the degree of differentiability of f(z):

: 1
\Y/ a?, + b?) =0 (I—;I;:"T) (3.24)
for a 2x-periodic function f(z) having an absolutely continuous r-th derivative [18].

Another interesting property.is the fact, that each term of the expansion represents an
independent contribution to the total curvature:

[ = xS vt + ). (3.5
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Equations (3.24) and (3.25) show, that for a smooth function f(z) (for example r > 3 in
equation (3.24)) the coefficients of the higher terms of the expansion, which have large
contributions to the curvature, fall rapidly with increasing index v. One method to
smooth a set of empirical data (y;, z;) with statistical fluctuations is the determination
of the Fourier coefficients (analysis), the attenuation of the coefficients with higher index
representing noise only, and the reconstruction (synthesis) according to equation (3.22)
[23].

A system of orthogonal polynomials can be constructed from the monomials 1, z,
z2.... For the region —1 < z < 1 the orthogonal polynomials are identical to the
Legendre polynomials (apart from constant factors). Orthogonal polynomials are often
used to approximate an empirical function given by a discrete set of points (y;, z;),
i = 1...n, if no specific parametrization is known. Following the least squares principle,
orthogonal polynomials for the discrete set can be constructed from a recurrence relation,
starting from a constant and a linear term, by the requirement

Zn: wip;(2i)pk (i) = &k, (3.26)

where w; is the weight of an individual data point, which can be defined by w; = 1/0?
for the standard deviation o; [17]. For the normalized orthogonal polynomials p;(z) the
coefficients a; of the approximation

f(z) =Y a;p() (3.27)
J
can be calculated by summation:

a5 =Y wip;(z:) ys. (3.28)

1=1

Because of the orthogonality of the functions p,(z), the covariance matrix V'(a) of the
coefficients is a unit matrix I (this corresponds to a least squares fit with H = I,
compare chapter 2.3). This property allows statistical x? tests on the significance of
each coefficient a;. If all coefficients a; for j > mq are compatible with zero, the discrete
set (yi, ;) can be approximated by mq terms of the expansion (3.27), the lowest order
polynomial consistent with the data.
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4. UNFOLDING OF CONTINUOUS DISTRIBUTIONS

4.1 UNFOLDING OF PERIODIC FUNCTIONS

In this chapter the difficulties inherent in unfolding procedures are discussed in a
special case, which makes them clearly apparent. Consider the case of a function f (a:)
in the range 0 < z < 2w, periodic with the period 2x, which is measured with a gaussian
resolution function. -

Using the formulae (3.23) for the determination of the Fourier coefficients, a piece-
wise continuous function f(z) can be expanded according to

f(z) = 9-29- + f:(a,, cos vz + by, sin vz) (4.01)

v=1

with a,, b, — 0 for v — o00. The folding by a gaussian resolution function with a
standard deviation o gives :

+-00

w=[ = exp( (v— )2) #(z) dz. (4.02)

—00
For a single term cos vz of the expansion (4.01) one gets
+oo — )2 2.2
\/—1- exp ( (yz :) ) cos vz dz = exp (—V 20 ) cos vy (4.03)

This means, that a single term in the expansion (4.01) has, after folding, the same form
as before. The amplitude however is attenuated by a factor exp(—v202/2), as shown in
Figure 6 for two terms of the expansion (4.01).

This interesting result which is true for all cosvz and sin vz terms, shows how to
unfold a measured periodic function. The measured function has to be expanded in the
form

o0
9(y) = %9- + Z(a,, cos vz + f3, sin vz) (4.04)
v=1

by formulae which are equivalent to formulae (3.23). Unfolding and reconstruction of
the original function. f(z) is then done by

V202 Vg2
G, = exp ( 5 ) a, b, = exp ( ) By (4.05)

These exact formulae show very clearly the difficulties of unfolding. The coefficients
a, and B, can only be determined with some statistical errors, while the true values
become smaller with increasing value of v; the multiplication in formulae (4.05) then
means the multiplication of the statistical errors with a rapidly increasing exponential
factor, and the unfolded result would soon be dominated by statistical fluctuations. The
reconstruction of the coefficients a,, b, above a certain value of the index v becomes
meaningless. This means that one either obtains very large unwanted fluctuations in




- 111 -

1.0
0.5
0
-05
-10
10
05
0
-05
-10

Figure 6. Graph of the functions cos z and cos 2z (full curves) and of the same functions
after folding with a gaussian resolution function with o2 = 3/4.

the solution, or one has to limit the number of Fourier terms which prevents the finer
structures to be resolved. The latter is of course expected as a consequence of the limited
resolution.

4.2 DISCRETIZATION

The fundamental equation (1.01) relates the true distribution f(z) to the distribu-
tion g(y) measured in an experiment. In actual experiments the measured distribution
usually contains some background contribution from other sources. It is assumed, that
the background b(y) can be either measured independently or calculated; in any case,
the background is assumed to be known. Thus, for a given true distribution f(z), the
expected distribution g(y) in the measured variables y can be written in the form:

b
9(y) = /; A(y,z) f(z)dz + b(y). (4.06)

The distribution §(y) actually measured differs from the expected distribution g(y) by
some statistical errors €(z). To obtain the true dependence f(z) from the data, equation
(4.06) has to be discretized, representing the continuous function f(z) by a finite set
of coefficients a;,a2...a;5...an,. The discretization, as described below, results in an

equation of the form

where g, a and b are vectors and A is a matrix, representing the response function .
A(y,z). As remarked in chapter 1, acceptance and resolution in high-energy physics
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experiments are usually defined only implicitly by MC-procedures and this fact has to
be taken into account in the discretization method.

The discretization of equation (4.06) is done in two steps. In a first step the function'
f(z) is parametrized by a sum

f@) =" a;p4(=), (4.08)

=1

using a certain set of basis functions p;(z) to be specified later. The parametrization
(4.08) allows to perform the integration:

b m b m
[ 4w s @iz =30 [ / A(y,x)p,-(x)dz} = D_aiA;(y)
a J=1 @ J=1

(4.09)
b
with 4,(5) = [ Ay, 2)ps()ds.
a
Now equation (4.06) can be rewritten in the form
m
9(y) =D a;4;(y) + b(y)- (4.10)

J=1

The expected distribution g(y) is expressed by a superposition of functions 4;(y), each
representing one term p;(z) in the representation (4.08).

The second discretization step is the representation of all y-dependent functions in
equation (4.10) by histograms, assuming a certain set of bin-limits yo,¥; ... ¥a:

Y

g = /,, ) gly)dy A= /; ,,-l Ai(y)dy b= /; b(y)dy.  (4.11)

-1 f=1

Using this discretization equation (4.06) can be written in the form of equation (4.07).
g and b are n-vectors, representing histograms of the measured quantity y. The vector a
is a m-vector of coefficients a;, and A is a n-by-m matrix of elements A;;; column A; of
matrix A represents the histogram in y for f(z) = p;(z). The elements A;; of matrix A
are defined by the MC-events. Each MC-event, with true value z, is added to histogram -
A;(y) with a weight proportional to p;(z). In order to avoid negative weights and to
simplify a proper normalization, the conditions :

pi(z) >0 Y piz) =1 (4.12)
i=1

are required. That is, the sum of all weights p;(z) for a given MC-event is equal to 1. In
addition an overall weight for the MC-events has to be defined, such that the resulting
distribution f(z) is correctly normalized. In particle reactions, where f(z) is a cross
section, the ratio of event number to cross section is called integrated luminosity [ L di:

N(z) = f(z) / L. (4.13)
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The integrated luminosity of the experiment has of course to be known, either from the
experimental conditions or by the measurement of a monitor reaction. For the MC event
simulation one can define a luminosity as well, by

Numc

Ly dt = —7— 4.14
if the MC events are generated according to fo(z). The simplest way is to use an unit
cross section fo(z) = 1. If in this case the ratio of the integrated luminosities

J Lezp dt
Tnedi (4.15)

is used as an overall weight of the MC events, the resulting f(z) will be directly the
correctly normalized cross section.

Some remarks are in order concerning the discretization. The choice of the basis
function p;(z) is an important point. The simplest choice compatible with the conditions
of eq.(4.12) is : .

gy J1 or t;1<z<i

pi(=) = {0 otherwise ’ (4.16)
with a set of knots %y, ¢;, ¢3 ... t,,. This choice has the property, that the coefficients
a; directly represent a histogram of the solution f(z). However, the function f(z)
would have discontinuities, and the step function approximation of the integrand in
eqation (4.09) is inaccurate. An obvious choice for the basis functions p;(z) are cubic
B-splines b,(z), which satisfy the requirements of eqation (4.12) and provide an accurate
integration. Note, that the step functions defined in eqation (4.16) are also B-splines, of
order k = 0, while cubic B-splines are of order k = 4. Besides the accurate integration
cubic B-splines have further advantages, to be discussed later. Using cubic B-splines,
the solution f(z) is a smooth curve, determined by the m coefficients a;. The final result
should of course be represented by data points with error bars. These data points can
be obtained by integration of f(z) over small regions in z,

fk = ( T f(z)dz) /(Ek - ék-—l) = Eq,/x

Tp~1

T

Pj(z)dw) [(z% — T-1), (4.17)

k-1

with the values fi representing average values of the function f(z) in [zx—, zx|. Since
the values fj are linear functions of the coefficients a;, the calculation of errors is straight-
forward.

In general it will be more efficient to generate MC event according to a distribution
fo(z), which is close to the true distribution f(z). The same definition of the integrated
MC luminosity may be used as before, but the resulting f(z) has to be multiplied by

fo(z).
4.3 UNFOLDING WITHOUT REGULARIZATION

The discretization derived in the preceeding chapter facilitates unfolding through a
fit of the linear expression ¢ = Aa+ b to the data §. The problem belongs to the class of
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problems discussed in chapter 2.3. The solution & obtained in the unfolding case usually
looks unsatisfactory: the resulting distribution

f(z) =) a;p() (4.17)
Jj=1

can show an oscillating behaviour, as mentioned in chapter 1 and discussed quantitatively
in chapter 4.1, with fluctuations much larger than any physically motivated expectations.

In order to analyse the reason for this unwanted behaviour in detail, the solution of
- the problem is derived in a different way. One iteration step of the algorithm of chapter
2.3 is considered, which consists in the determination of the minimum of the quadratic
approximation of the negative log likelihood function, starting from a previous estimate
a:

5(6) = S(@) ~ (a~ )+ 2(a— &) H(a — &). (4.18)

In the following the parameters are transformed to a new basis. Since the matrix H is
symmetric, it can be transformed to a diagonal matrix D,

D =UTHU,, (4.19)

where the matrix D contains in its diagonal the real eigenvalues D;; of H, which are
positive because the matrix H is positive definite; the matrix U; is an orthogonal matrix
with the property UTU, = I, and contains the eigenvectors u; corresponding to
the eigenvalues in its columns. The eigenvalues may be arranged in decreasing order
Dyy 2 Dgg > ... 2 Dy,py; in typical applications they decrease by several orders of
magnitudes. A diagonal matrix D'/2 with the property D!/2D'/2 = D can be defined,
which has the positive square roots of D;; in the diagonal. A transformation is defined
between the parameter vector a and another vector a; by

a=U D ?a,. | (4.20)

Inserting this expression into equation (4.18) one gets after omitting constant terms,
- 1
S(a,) = —aTD~PUT(Ha + h) + Eafal. (4.21)

From the minimum condition V.§ = 0 the solution
&, = D"Y?UT(Ha+h) (4.22)

is obtained directly. The remarkable feature of the parameters d;, achieved by the
transformation, is, that the covariance matrix V'(&,) is equal to the unit matrix J. This
means, that the different components (&,); of 4, are statistically independent and have
a variance of 1. The result obtained is of course equivalent to the solution derived in
chapter 2.4, which can be shown by a transformation back to a:

a=U,D"Y%, =U,D~*DBUT (H& + h) = H 'h. (4.23)
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This equation also shows, that the solution vector can be expressed as a linear combi-
nation of the eigenvectors u; (these are the columns of the matrix U;).

The statistical independence of the components of d; allows fo test the statistical
significance of every component independently. If the true value of a certain component
is zero (or small compared to 1), the measured value (&, ); will follow a standard gaussian

distribution, and (8,)2 will follow a x} distribution. Using a confidence level of 95 %,
one can consider the j-th component to be compatible with zero, if (&, )';’- < 3.84. If all
values (@;),; with 7 > mg are compatible with zero, they can be ignored, and the result
can be expressed as a linear combination of the first m, eigenvectors. In fact it turns
out that those insignificant components are the ones which cause the fluctuations in the
full solution. This is seen easily, if the equation (4.20) is rewritten to the form

m

3= (2)'/ (81); uj. (4.24)

Jj=1 DJJ

Because of the factor (1/D;;)!/ 2 (and the unit variance of (&,);) the insignificant com-
ponents get a large weight factor in the full solution.

A sharp cut-off in the amplitudes at a certain index my however also introduces
some fluctuations in the solution, known as ’Gibbs phenomenon’ in the theory of Fourier
analysis and reconstruction of periodic functions. A smooth cut-off reducing these os-
- cillations is provided by the regularization method, to be discussed in the next chapter.

4.4 UNFOLDING WITH REGULARIZATION

As explained in the preceeding chapter, unfolding by a straightforward fit without a
cut-off will produce a fluctuating result. Mathematically the fluctuations are caused by
insignificant components of the solution with their strong oscillations, which get a large
weight in the unfolding. The magnitude of the fluctuations can be measured by several
quantitities; one possible measure is the total curvature, introduced quantitatively in
equation (3.02):

r(a) = f [7(2)]? dz. (4.25)

One can also consider other measures of the smoothness of the solution, for example
based on the square of the first derivative of f(z) [12]. In this paper the discussion
is restricted to the measure defined by equation (4.25). This quantity will take on
large values for a strongly fluctuating solution, often orders of magnitudes larger than
physically motivated expectations. This expectation of a smooth solution, an implicit
a priori knowledge, can be used in the unfolding in the following way: a new function
R(a) is introduced by adding to the negative log likelihood function the total curvature
r(a), weighted by a factor 7:

R(a) = S(a) + %1‘ . r(a) (4.26)

(the factor 1 is introduced for later convenience). This method is called regularization
method and the factor 7 is called regularization parameter. If f(z) is parametrized by a
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sum of B-splines of order 4, the choice of equation (4.25) has the particular advantage,
that r(a) can be represented by a quadratic expression

r(a) =aTCa (4.27)

with a (constant) symmetric, positive semidefinite matrix C; such a regularization term
is easily accounted for in the minimization. Apart from some factor, which can be
absorbed in the regularization parameter 7, the matrix C has the form

( 2 -3 0 1 0 O ...\
-3 8 -6 0 1 o0
0 -6 14 -9 0 1
0 -9 16 -9 0
1 0 -9 16 -9
0 1 0 -9 16

- -

for cubic B-splines with equidistant knots.

© O =

Obviously, regularization terms can introduce a bias to the solution, which depends
on the magnitude of the regularization parameter 7. For 7 — 0 the effect of the reg-
ularization will vanish, and for 7 — oo the result will become a linear function for
r(a) defined by equation (4.25). As is shown below, the magnitude of 7 can be defined
such that the bias will be negligible small compared to statistical errors; in effect, the
regularization provides a smooth cut-off of higher order terms in the solution.

Using the transformation (4.20) from a to a,, already defined in chapter 4.3, the
espression (4.26) to be minimized can be rewritten in the form

R(a)) = —aT D-13UT (Ha + k) + %a'fal + -Zl;f T D-3UTCU, D20,  (4.28)
The regularization term can be written as

%r -aTCya, with C, = D~Y2uTcUu, D~/ (4.29)

The regularized solution can be calculated using one more transformation of the param-
eters. The matrix C) is transformed to a diagonal matrix S by

S = U.fCl Uz, (4.30)

where UTUY = Iup,; the eigenvalues S;; can be arranged in increasing order Sy; <
S22 < ...< Syum-. The additional transformation is defined by

a = Uga’ (4.31)
and is a pure rotation in parameter space. Note that because of the pure rotation
al a; = a'Ta’. The rotation yields :

%-r a7 Sa' (4.32)



-~ 117 -

for the regularization term and the function to be minimized becomes
S(a") = —aTUT D-V3UT (Ha + k) + -;-a’T(I+ rS)a. - (433)
The regularized solution derived from the condition V.§ = 0 is given by
8 =(I+r-8)"W0IDY?UT(Hi+h), (4.34)
whereas the unregularized solution (7 = 0), denoted by a bar, reads
@ = UID~?UT (Ha + h). (4.35)

Due to the orthogonality of the rotation matrix U, the covariance matrix V(a') is still a.
unit matrix. The result can be transformed back to the coefficients of the basis functions
pji(z) by

a= Ul.D-l,zUzﬁ', (4.36)

yielding .
f(=) =Y a;pi(a). (4.37)
J=1

An equivalent point of view is to consider the transformed set of basis functions p’(z),
and to write the result in the form

fle) = 3 aimio) (438)

where the functions p}(z) are linear combinations of the basis functions p;(z) and are
orthogonal and normaliged functions!. In this parametrization the curvature (4.25) is
given by -

m

[ 7@ as= Y- @s, (439)

j=1

A normalized orthogonal function p(z) usually has (j — 1) zeros in the range, and since
the eigenvalues S;; are sorted in increasing order, the contribution to the curvature rises
rapidly with increasing index j. The analysis of the values of the coefficients @' will
show, that for 5 > m they are compatible with zero within their statistical errors of 1.
With a sharp cut-off at j = my, the result is expressed by my statistically independent
contributions and can be converted to just my data points.

Now the effect of the regularization is considered. Equations (4.34) and (4.35) show,
that the coefficients of the regularized solution are
1

i = ——— a. 4.40
a’ 1 + TSJ.J‘ J ( )

1The linear combinations are detenninet.iﬁ by the combined effect of the transformations (4.20) and
(4.81).
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Thus the coefficients of the regularized solution are obtained by the multiplication of
the coefficients of the unregularized solution by a factor, which is close to 1 for all
indices j with S;; <« 7~!. Since the values of S;; increase rapidly, the attenuation
factor will approach gzero for S;; > r~! after a transition region, where S;; =~ 771,
Regularization thus means a smooth cut-off, avoiding the already mentioned ’Gibbs
phenomenon’. The sum of all factors can be considered as the effective number my of
independent contributions to the solution; for a given number mq the regularization
parameter 7 can be defined by

Mo = Z 1+ 'r.S',, | (4.41)

The parameter m¢o has to be large enough, such that no significant coeffients are at-
tenuated too much. A lower limit for my can be obtained from statistical tests on the
significance of the coefficients Zi' In typical apphcatxons the value of mg will be chosen
just above the lower limit.

Having fixed the value of the regularization parameter 7, the regularized solution
can be calculated using equation (4.40). Since the covariance matrix of @’ is the unit
matrix and the regularized solution is &' = (I + 7-S)~'@’, the covariance matrix of &' is

V@)=I+r-8)"2 (4.42)

The result can then be transformed back by the transformations defined in equations
(4.20) and (4.31).

The resulting coefficients have to be converted finally to a set of my data points!
fk, by integration of f (z) over small regions of z according to equation (4.17). The
choice of these regions has of course consequences for the correlations between the data
points, which should be as small as possible. One method to achieve this is the following.
Since the function p;, . ;(z) has just mo zeros, it seems optimal to define the mq regions
around the zeros, with the (mo — 1) z-values, where the function p}, ,;(z) has extreme
values, taken as limits. This has the effect of suppressing the contribution of the term
81y0+1Pimo+1(%), which is attenuated by a factor of roughly 1/2, and takes into account
the statistical precision and the resolution as a function of z. Each average value is
expressed by a linear combination of the coefficients &;- or d;, and error propagation is

straightforward. Using the unfolding result f (z) as a weighting factor for the MC-events,
the quality of the description of the measured distributions can be tested. This test can
be extended to measured variables not directly used in the unfolding fit.

Numerical example of unfolding with regularization. In this example the Monte
Carlo technique is used for the simulation of a measurement with limited acceptance and
limited resolution. The measurement of a variable z with 0 < z < 2 is simulated with
the following properties of the measurement: The acceptance probability is assumed to
be

Pace(z) =1 - -;—(z - 1)% (4.43)

1One could of course choose a larger number of data points, however the rank of the covariance matrix
of this set of data points will be mg.
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the true values z are transformed by the function

172
Yir =2 - 0.2 (4.44)

to a variable y,, which is then assumed to be measured with a gaussian resolution
function with a standard deviation o = 0.1, resulting in the measured variable y. The
assumed acceptance, the transformation function and the resolution function is shown
in Figure 7 a, the response of the simulated detector to §-function signals at z = 0.5,
z = 1.0 and z = 1.5 is shown in Figure 7 b.

The assumed true function is

f(z) = E 7 zk)2 7 (4.45)

in the region 0 < z < 2; the parameters used in the simulation are given in table 1.

k bx Tk gk

1.0 0.4 2.0
2 10.0 0.8 0.2
5.0 1.5 0.2

[y

@

Table 1. Parameters of true function.

A sample of 5000 random z-values is generated according to the function f(z). A
histogram of the sample is shown in Figure 8 a together with the function f(z). After
acceptance, transformation and smearing according to the assumptions made above 4475
y-values remain; a histogram of this sample, representing the result of the measurement,
is shown together with the original function f(z) in Figure 8 b.

The transformation restricts y, to 0 < y; < 1.8, with the additional effect, that
the two peaks become slightly narrower. The resolution function then broadens the
peaks, filling up the valley between the peaks.

Now the unfolding method with regularization is applied to the data. The number
of spline functions used in the discretization is m = 22. In table 2 several parameters of
the unfolding method are shown, including the coefficients of the transformed solution.
These values are also shown in Figure 9 a as bars. Asis seen, about half of the coefficients
are small and compatible with zero. The eigenvalues S, of the curvature matrix C, also
given in table 2, increase by many orders of magnitude. A few of the orthogonal functions
pj(z) are shown in Figure 10. The amplitudes of the functions, each representing one
standard deviation statistical error, increase with increasing index 5. The regularization
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PFigure 7. Acceptance, transformation and resolution, assumed in the simulation (a)
and response to §-functions at the values, indicate by arrows (b).

parameter 7 is determined in this example for mo = 12, the result obtained from equation
(4.41) is 7 = 0.4287 - 10~3. The coefficients of the regularized solution, obtained by
multiplying the coefficients Zi;- with the factors, as given by equation (4.40), and the
factors themselves are given in the last two columns of table 2. The coefficients of the
regularized solution are also shown in Figure 9 a. Figure 9 b shows the attenua.tmn
factor as a function of the index j.

Finally the set of coefficients is converted to data points, representing average values
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Figure 8. Histogram of the generated data (a) before and (b) after simulation of
acceptance, transformation and resolution. The original function is shown as curve.
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j S @, &, factor
1 0.02 64.62 6462  1.0000
2 0.09 170 170  1.0000
3 0.28 751 751  0.9999
4 0.79 9.86 9.85 0.9997
5 1.97 127 127 0.9992
6 4.86 11.23 11.21 0.9979
7 12.32 018 018  0.9947
8 29.61 3.72 3.67 0.9875
9 72.43 068  0.66  0.9699
10  183.90 004 004  0.9269
11 507.00 063 052 0.8214
12 1409.32 138  0.86  0.6233
13 354-10° 181 072  0.3974
14 11.86-10° 003  0.01  0.1644
15 41.45 - 10® 1.38 0.07 0.0533
16 98.04 - 10° 0.05 0.00 0.0232

17 129.89 - 10 1.27 0.02 0.0176
18 209.10 - 10° 0.41 0.00  0.0110
19 334.44 - 10° 0.52 0.00  0.0069
20 423.96 - 10° 1.59 0.01  0.0055
21 10.51 - 10° 0.80 0.00  0.0002
22 38.64 - 10° 0.30 0.00  0.0001

Table 2. Parameters of the unfolding solution.

for the unfolded f(z) in small z-regions. As explained above, the limits of these regions
are determined by the positions of the extrema of the function p}, (%), in this case of
the function p!3(z), which is shown in Figure 10 b, with the positions of the extrema
indicated. As can be seen from Figure 10 b, due to the definition of the region limits the
contribution of the function p),(z) itself will be very small for the average values. The
final result is shown in Figure 11 together with the original function f(z). The unfolded
data are within errors compatible with the function, in particular the valley between the
peaks, hardly visible in the *measured’ data (Figure 8 b), is reproduced. Of course the
statistical errors are much larger than in the histogram of the generated data in Figure
8 a. They illustrate the loss in statistical accuracy, that occurs due fo a measurement
with finite resolution.
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Figure 9. Plot of the coefficients of the normalized orthogonal functions of the solution
(a); the dashed bars represent the values after the regularization. The attenuation factor
is shown as a curve (b).
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Figure 10. Examples for the normalized orthogonal functions, which are used to rep-
resent the solution. :
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Figure 11. Result of unfolding with regularization, shown as data points together with
the original function. The horigontal bar gives the range, over which the data points
represents the average.

In conclusion, the regularization, which is the essential component of the unfolding
method derived here, is shown to result in a smooth cut-off of insignificant higher order
terms in the expansion of the unfolding solution in terms of orthogonal functions. The
inclusion of these higher order terms would produce a spurious oscillatory component
of the solution. Standard statistical tests are used for the determination of the regu-
larization weight; they ensure that a possible bias introduced by the regularization is
small compared to the statistical errors. The method also contains a prescription for
* the definition of a set { fk} of average function values of the unfolded solution, which
are only weakly correlated. It should be stressed, that unfolding cannot modify the
statistical accuracy of an experiment, which is always reduced by the effect of limited
resolution.
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