Toolkit/checklist

$$
I=\sqrt{-1}
$$

Analytic function of complex number z must be of form $f(z)$, i.e. excludes $f\left(z, z^{*}\right)$.
Kronecker delta: $\delta_{i j}=1$ if $i=j, 0$ otherwise.
Completely antisymmetric tensor:

$$
\epsilon_{i j k}=\left\{\begin{array}{cc}
1 & \text { if } i j k=123 \text { or cyclic permutations thereof } \\
-1 & \text { if } i j k=321 \text { or cyclic permutations thereof } \\
0 & \text { otherwise }
\end{array}\right.
$$

Summation convention: $\sum_{i} A_{i} B_{i}=A_{i} B_{i}$, i.e. if same index (i) appears twice in term, sum over it, don't bother writing \sum. Note e.g. $A_{i j} \delta_{j k}=A_{i k}$.
If $A_{i j}=A_{j i}($ symmetric in $i, j), \epsilon_{i j k} A_{j k}=0$.
Scalar product: $A_{i} B_{i}$. (For complex A_{i}, B_{i}, scalar product defined as $A_{i}^{*} B_{i}$.)
Contraction of index k in $A_{i j k}$ with $B_{i}: A_{i j k} B_{k}=C_{i j}$, i.e. k becomes dummy index, rank of A reduced from 3 to 2 (a matrix).
A vector V is an n-tuple "down the page"

$$
V=\left(\begin{array}{c}
2+3 I \\
1-4 I \\
\vdots
\end{array}\right)
$$

Its transpose is $V^{T}=(2+3 I, 1-4 I, \ldots)$.
Its conjugate transpose is $V^{\dagger}=V^{T *}=(2-3 I, 1+4 I, \ldots)$
Scalar product: $A^{(\dagger)} \cdot B$.
Matrix A acting on vector $v: A_{i j} v_{j}=(A v)_{i}$ (and $\left.v_{j} A_{j i}=\left(v^{T} A\right)_{i}\right)$.
Two matrices $A, B:(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ (likewise for simple transpose ${ }^{T}$).

Unit matrix $\mathbf{1}$ (not 1): $\mathbf{1}_{i j}=\delta_{i j}$.
Hermitian matrix $H: H^{\dagger}=H$.
Unitary matrix U : $U^{\dagger} U=1$.
Orthogonal matrix $M: M^{T} M=1$.
Definition of "exponentiation" of a matrix $A: e^{A}=1+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots$ (this series is always convergent).
Note $e^{V A V^{-1}}=V e^{A} V^{-1}$ for any V (because $\left.V A^{n} V^{-1}=\left(V A V^{-1}\right)^{n}\right)$.
$e^{I A}$ unitary if A Hermitian (because $\left(e^{I A}\right)^{\dagger} e^{I A}=e^{-I A^{\dagger}} e^{I A}=e^{-I A} e^{I A}=\mathbf{1}$).
Trace of matrix $A: \operatorname{tr}[A]=A_{i i}$.
Determinant of matrix $n \times n A: \operatorname{det}(A)=\epsilon_{i j k \ldots . .} A_{i 1} A_{j 2} A_{k 3} \ldots=\frac{1}{n!} \epsilon_{i j k \ldots . . .} \epsilon_{a b c \ldots} A_{i a} A_{j b} A_{k c} \ldots$
Note $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(because $\left.\operatorname{det}(A B)=\frac{1}{n!} \epsilon_{i j k \ldots \ldots} \epsilon_{a b c \ldots}\left(A_{i m} B_{m a}\right)\left(A_{j n} B_{n b}\right)\left(A_{k p} B_{p c}\right) \ldots=\frac{1}{n!} n!\frac{1}{n!} \epsilon_{i j k \ldots} \epsilon_{d e f \ldots} A_{i d} A_{j e} A_{k f} \ldots \frac{1}{n} \epsilon_{q r s . . .} \epsilon_{a b c \ldots} B_{q a} B_{r b} B_{s c} \ldots\right)$.
If $A v=0$, then either $v=0$, or $v \neq 0$ and $\operatorname{det}(A)=0$
$(v_{m} \operatorname{det}(A)=\epsilon_{i j k \ldots .(}\left(v_{m} A_{i m}\right) A_{j 2} A_{k 3} \ldots=\epsilon_{i j k \ldots .} \underbrace{\left(\sum_{n} v_{n} A_{i n}\right)}_{=0} A_{j 2} A_{k 3} \ldots=0)$.
Linearly independent vectors $v_{i}: \sum_{i} \alpha_{i} v_{i}=0 \Longrightarrow \alpha_{i}=0$.
N linearly independent vectors v_{i} form complete basis in some N dimensional vector space. (i.e. any $V=\sum_{i} \alpha_{i} v_{i}$).
Any other basis of N linearly independent vectors v_{i}^{\prime} in this space is complete, i.e. any $V=\sum_{i} \alpha_{i}^{\prime} v_{i}^{\prime}$:
Can write $v_{i}^{\prime}=\sum_{j} C_{i j} v_{j}$, so $\alpha_{i}^{\prime}=\sum_{j} \alpha_{j}\left(C^{-1}\right)_{j i}$,
and C must be invertible for v_{i}^{\prime} to be linearly independent ($\alpha_{i}=0 \Longrightarrow \alpha_{i}^{\prime}=0$).

Eigenvalues λ_{k} and eigenvectors $w^{\{k\}}$ of matrix A from secular equation: $A w^{\{k\}}=\lambda_{k} w^{\{k\}}$.
Requirement of $\left(A-\lambda_{k} \mathbf{1}\right) w^{\{k\}}=0$ and $w^{\{k\}} \neq 0$: Characteristic equation $\left|A-\lambda_{k} \mathbf{1}\right|=0$.
If A is $N \times N$, this is polynomial in λ_{k} with N solutions $\longrightarrow N$ eigenvectors.

Hermitian A :

$\lambda_{k} \operatorname{real}\left(w^{\{k\} \dagger} \cdot A w^{\{k\}}=\lambda_{k} w^{\{k\} \dagger} \cdot w^{\{k\}}=\left(w^{\{k\} \dagger} \cdot A w^{\{k\}}\right)^{\dagger}=\lambda_{k}^{*} w^{\{k\} \dagger} \cdot w^{\{k\}}\right)$.
$w^{\{k\}}$ orthogonal $\left(w^{\{i\} \dagger} \cdot A w^{\{j\}}=\lambda_{i} w^{\{i\} \dagger} \cdot w^{\{j\}}=\lambda_{j} w^{\{i\} \dagger} \cdot w^{\{j\}}\right.$, so $i \neq j, \lambda_{i} \neq \lambda_{j} \Longrightarrow w^{\{i\} \dagger} \cdot w^{\{j\}}=0$ (choose this for $\left.\lambda_{i}=\lambda_{j}\right)$).
Normalize $w^{\{k\}}$ to be orthonormal: $w^{\{i\} \dagger} \cdot w^{\{j\}}=\delta_{i j}$. $w^{\{k\}}$ form complete basis $\left(\sum_{i} \alpha_{i} w^{\{i\}}=0 \Longrightarrow 0=\sum_{i} \alpha_{i} w^{\{j\} \dagger} \cdot w^{\{i\}}=\alpha_{j}\right)$.
Diagonalization of any matrix $A:\left(P^{-1} A P\right)=\Lambda$, where $\Lambda_{i j}=\lambda_{i} \delta_{i j}$ (no sum)
(equivalent to the secular equation above with $P_{i j}=w_{i}^{\{j\}}$).
Hermitian A : P is unitary $\left(\left(P^{\dagger} P\right)_{i j}=w_{k}^{\{i\} *} w_{k}^{\{j\}}=w^{\{i\} \dagger} \cdot w^{\{j\}}=\delta_{i j}\right)$.
Symmetric A : P is orthogonal.
For any $A, \operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}[A]}$
$(\operatorname{det}\left(e^{A}\right)=\operatorname{det}\left(P^{-1} e^{A} P\right)=\operatorname{det}\left(e^{P^{-1} A P}\right)=\operatorname{det} \underbrace{e^{\Lambda}}_{\text {diagonal }}=\left(e^{\Lambda}\right)_{11}\left(e^{\Lambda}\right)_{22} \ldots=e^{\operatorname{tr}[\Lambda]}=e^{\operatorname{tr}\left[P \Lambda P^{-1}\right]}=e^{\operatorname{tr}[A]})$.
Positive definite matrix $A: v^{\dagger} A v \geq 0$ for any vector v, with equality only when $v=0$.
If A Hermitian, eigenvalues $\lambda_{k}>0: 0 \leq \underbrace{v^{\dagger} P^{\dagger}}_{=v^{\prime \dagger}} \underbrace{P^{\dagger} A P}_{\text {diagonal, elements } \lambda_{k}} \underbrace{P v}_{=v^{\prime}}=\sum_{k} \lambda_{k}\left|v_{k}^{\prime}\right|^{2}$.

Use natural units where $c=\hbar=1$.

Spacetime indices are Greek letters, e.g. $\mu, \nu=0,1,2,3$
(spatial indices Roman, e.g. $i, j=1,2,3$).

4-vector $A \equiv A^{\mu}=\left(\mathbf{A}, A^{0}\right)$, where $\mathbf{A}=\left(A^{1}, A^{2}, A^{3}\right)$ is spatial 3-vector.

Metric tensor of special relativity:

$$
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{\mu \nu}
$$

Raising and lowering of indices: $g_{\mu \nu} A^{\mu \rho}=A_{\nu}{ }^{\rho}$ etc.
Note $g_{\mu \nu} g^{\nu \rho}=g_{\mu}{ }^{\rho}=\delta_{\mu}{ }^{\rho}$.
Define $x^{0}=+t$, so $x_{0}=-t$. Likewise $p^{0}=E$, $p_{0}=-E$ etc.
Scalar product of 4-vectors: $A \cdot B=A^{\mu} B_{\mu}=A_{\mu} B^{\mu}=g^{\mu \nu} A_{\mu} B_{\nu}=g_{\mu \nu} A^{\mu} B^{\nu}=A^{1} B^{1}+A^{2} B^{2}+A^{3} B^{3}-A^{0} B^{0}$.
Shorthand for spacetime differentiation: $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ and $\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}$.
d'Alembertian: $\partial^{2}=\partial_{\mu} \partial^{\mu}$.

Commutator of operators O_{i}, O_{j} (e.g. O_{i} can be matrices): $\left[O_{i}, O_{j}\right]=\left[O_{i}, O_{j}\right]_{-}=O_{i} O_{j}-O_{j} O_{i}$.
Anticommutator: $\left\{O_{i}, O_{j}\right\}=\left[O_{i}, O_{j}\right]_{+}=O_{i} O_{j}+O_{j} O_{i}$.
Dirac delta function $\delta(x-y)=\int \frac{d p}{2 \pi} e^{I p(x-y)}$:
$\int_{a}^{b} d x f(x) \delta(x-y)=f(y)$ if $a<y, b>y$ (otherwise $=0$).
(Continuous version of $f_{i} \delta_{i j}=f_{j}$.)
$\delta^{3}(\mathbf{x})=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right)$.

