Introduction to Supersymmetry and Supergravity

Simon Albino
II. Institute for Theoretical Physics at DESY, University of Hamburg
simon@mail.desy.de
Every Wednesday and Thursday 8:30-10:00am, starting 3rd November, in room 2 , building $2 \mathrm{a}, \mathrm{DESY}$
Lecture notes at www.desy.de/~simon/teaching/susy.html

Abstract

These lectures give a fairly formal developement of supersymmetry, beginning with some technical footing in symmetries (internal and external) in general in relativistic quantum mechanics, and a brief outline of the standard model and its GUT extensions. Following the Haag-Lopuszanski-Sohnius theorem, we allow for fermionic symmetry generators, and determine their properties and algebra using the restrictions of the Coleman-Mandula theorem. As an illustration we construct the supersymmetric field theory Lagrangian for the chiral supermultiplet, then discuss the more formal approach to constructing general supersymmetric field theories using superfields in superspace, including the development of supersymmetric gauge theories. Spontaneous supersymmetry breaking is discussed in some detail. Using the superfield formalism, the minimally supersymmetric standard model is developed. Next we develop supergravity, firstly in the weak field case and then to all orders. Finally, the more advanced topics of higher dimensions, extended supersymmetry and duality are discussed. The lectures will mostly follow Volume III of S. Weinberg's "The Quantum Theory of Fields".

IMPORTANT

- Lecture notes are at www.desy.de/~simon/teaching/susy.html. They will change!
- If you get stuck, please email me at simon@mail.desy.de
- If you find a mistake, please email me at simon@mail.desy.de
- Please let me know by email that you will attend this course so I can put you on the mailing list (and thus notify you at the last minute of room changes, cancellations, help with problems etc.).
- Every second Thursday I will try to allocate time for you to ask more detailed questions, for you to work through and present derivations outlined in the lectures, and (if time) for you to present solutions to interesting problems.
- There is alot of algebra to deal with in SUSY...
so please think about the ratio of algebraic explanations to material that you would like!
- My suggestion: Try to derive some results in detail at home, and present your derivations every second Thursday.
- I am setting up an online forum where you can ask / answer SUSY questions.
- Usually in the lecture notes, I give the result first and then outline the derivation in smaller font below.
- I use the Einstein summation convention, i.e. and e.g. $\sum_{i=0}^{3} X_{\mu} X^{\mu} \rightarrow X_{\mu} X^{\mu}$ (and not just for spacetime indices).
- Any questions?

Contents

${ }_{1}$ Quantum mechanics of particles 2
1.1 Basic principles 2
1.2 Fermionic and bosonic particles 4
${ }_{2}$ Symmetries in QM 6
2.1 Unitary operators 6
2.2 (Matrix) Representations 10
2.3 External symmetries 16
2.3.1 Rotation group representations 16
2.3.2 Poincaré and Lorentz groups 20
2.3.3 Relativistic quantum mechanical particles 22
2.3.4 Quantum field theory 25
2.3.5 Causal field theory 27
2.3.6 Antiparticles 28
2.3.7 Spin in relativistic quantum mechanics 29
2.3.8 Irreducible representation for fields 31
2.3.9 Massive particles 32
2.3.10 Massless particles 33
2.3.11 Spin-statistics connection 35
2.4 External symmetries: fermions 37
2.4.1 Spin $\frac{1}{2}$ fields 37
2.4.2 Spin $\frac{1}{2}$ in general representations 44
2.4.3 The Dirac field 49
2.4.4 The Dirac equation 51
2.4.5 Dirac field equal time anticommutation relations 52
2.5 External symmetries: bosons 53
2.6 The Lagrangian Formalism 57
2.6.1 Generic quantum mechanics 57
2.6.2 Relativistic quantum mechanics 58
2.7 Path-Integral Methods 61
2.8 Internal symmetries 62
2.8.1 Abelian gauge invariance 64
2.8.2 Non-Abelian gauge invariance 66
2.9 The Standard Model 68
2.9.1 Higgs mechanism 70
2.9.2 Some remaining features 74
2.9.3 Grand unification 76
2.9.4 Anomalies 78
${ }_{3}$ Supersymmetry: development 79
3.1 Why SUSY? 79
3.2 Haag-Lopuszanski-Sohnius theorem and SUSY algebra 83
3.3 Supermultiplets 90
3.3.1 Field supermultiplets (the left-chiral supermultiplet) 95
3.4 Grassman variables 100
3.5 Superfields and Superspace 101
3.5.1 Chiral superfield 106
3.5.2 Supersymmetric Actions 111
3.6 Superspace integration 116
3.7 Supergraphs 117
3.8 SUSY current 124
3.9 Spontaneous supersymmetry breaking 128
3.9.1 O'Raifeartaigh Models 129
3.10 Supersymmetric gauge theories 130
3.10.1 Gauge-invariant Lagrangians 135
3.10.2 Spontaneous supersymmetry breaking in gauge theories 139
${ }_{4}$ The Minimally Supersymmetric Standard Model 143
4.1 Left-chiral superfields 143
4.2 Supersymmetry and strong-electroweak unification 147
4.3 Supersymmetry breaking in the MSSM 149
4.4 Electroweak symmetry breaking in the MSSM 157
4.5 Sparticle mass eigenstates ${ }^{162}$
${ }_{5}$ Supergravity 164
5.1 Spinors in curved spacetime 164
5.2 Weak field supergravity 168
5.3 Supergravity to all orders ${ }^{176}$
5.4 Anomaly-mediated SUSY breaking 183
5.5 Gravity-mediated SUSY breaking 184
${ }_{6}$ Higher dimensions 187
6.1 Spinors in higher dimensions 187
6.2 Algebra 190
6.3 Massless multiplets 194
${ }_{6.4} p$-branes 197

1 Quantum mechanics of particles

1.1 Basic principles

Physical states represented by directions of vectors (rays) $|i\rangle$ in Hilbert space of universe.
Write conjugate transpose $|i\rangle^{\dagger}$ as $\langle i|$, scalar product $|j\rangle^{\dagger} \cdot|i\rangle$ as $\langle j \mid i\rangle$.
Physical observable represented by Hermitian operator $A=A^{\dagger}$ such that $\langle A\rangle_{i}=\langle i| A|i\rangle$.
Functions of observables represented by same functions of their operators, $f(A)$.
Errors $\langle i| A^{2}|i\rangle-\langle A\rangle_{i}^{2}$ etc. vanish when $|i\rangle=|a\rangle$,
where $A|a\rangle=a|a\rangle$, i.e. $|a\rangle$ is A eigenstate, real eigenvalue a. $|a\rangle$ form complete basis.
If 2 observables A, B do not commute, $[A, B] \neq 0$, eigenstates of A do not coincide with those of B.
If basis $|X(a, b)\rangle$ are A, B eigenstates, any $|i\rangle=\sum_{X} C_{i X}|X\rangle$ obeys $[A, B]|i\rangle=0 \Longrightarrow[A, B]=0$.
If A, B commute, their eigenstates coincide.

$$
A B|a\rangle=B A|a\rangle=a B|a\rangle, \text { so } B|a\rangle \propto|a\rangle .
$$

Completeness relation: $\sum_{a}|a\rangle\langle a|=1$.
Expand $|i\rangle=\sum_{a} W_{i a}|a\rangle$ then act from left with $\left\langle a^{\prime}\right| \longrightarrow W_{i a^{\prime}}=\left\langle a^{\prime} \mid i\right\rangle$, so $|i\rangle=\sum_{a}|a\rangle\langle a \mid i\rangle$
Probability to observe system in eigenstate $|a\rangle$ of A to be in eigenstate $|b\rangle$ of $B: P_{a \rightarrow b}=|\langle b \mid a\rangle|^{2}$.
$P_{a \rightarrow b}$ are the only physically meaningful quantities, thus $|i\rangle$ and $e^{I \alpha}|i\rangle$ for any α represent same state.
$\sum_{a} P_{b \rightarrow a}=1$ for some state $|b\rangle$ as expected. $\quad|b\rangle=\sum_{a}\langle a \mid b\rangle|a\rangle$. Act from left with $\langle b|$ gives $1=\sum_{a}\langle a \mid b\rangle\langle b \mid a\rangle$.
Principle of reversibility: $P_{a \rightarrow b}=P_{b \rightarrow a} . \quad\langle b \mid a\rangle=\langle a \mid b\rangle^{*}$

Time dependence: Time evolution of states: $|i, t\rangle=e^{-I H t}|i\rangle, H$ is Hamiltonian with energy eigenstates.
Probability system in state $|i\rangle$ observed in state $|j\rangle$ time t later $=\left|M_{i \rightarrow j}\right|^{2}$, transition amplitude $M_{i \rightarrow j}=\langle j| e^{-I H t}|i\rangle$.
Average value of observable Q evolves in time as $\langle Q\rangle_{i}(t)=\langle i| e^{I H t} Q e^{-I H t}|i\rangle$.
Q is conserved $\Longleftrightarrow[Q, H]=0(\langle Q\rangle(t)$ independent of $t)$.

1.2 Fermionic and bosonic particles

Particle's eigenvalues $=\sigma$. Particle states $\left|\sigma, \sigma^{\prime}, \ldots\right\rangle$ completely span Hilbert space. Vacuum is $|0\rangle=| \rangle$. $\left|\sigma, \sigma^{\prime}, \ldots\right\rangle= \pm\left|\sigma^{\prime}, \sigma, \ldots\right\rangle$ for bosons/fermions. Pauli exclusion principle: $\left|\sigma, \sigma, \sigma^{\prime} \ldots\right\rangle=0$ if σ fermionic.

$$
\left|\sigma, \sigma^{\prime}, \ldots\right\rangle \text { and }\left|\sigma^{\prime}, \sigma, \ldots\right\rangle \text { are same state, }\left|\sigma, \sigma^{\prime}, \ldots\right\rangle=e^{I \alpha}\left|\sigma^{\prime}, \sigma, \ldots\right\rangle=e^{2 I \alpha}\left|\sigma, \sigma^{\prime}, \ldots\right\rangle \Longrightarrow e^{I \alpha}= \pm 1 .
$$

Creation/annihilation operators: $a_{\sigma}^{\dagger}\left|\sigma^{\prime}, \sigma^{\prime \prime}, \ldots\right\rangle=\left|\sigma, \sigma^{\prime}, \sigma^{\prime \prime}, \ldots\right\rangle$, so $\left|\sigma, \sigma^{\prime}, \ldots\right\rangle=a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger} \ldots|0\rangle$.
$\left[a_{\sigma}^{\dagger}, a_{\sigma^{\prime}}^{\dagger}\right]_{\mp}=\left[a_{\sigma}, a_{\sigma^{\prime}}\right]_{\mp}=0$ (bosons/fermions).
$\left|\sigma, \sigma^{\prime}, \ldots\right\rangle=a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|\ldots\rangle= \pm\left|\sigma^{\prime}, \sigma, \ldots\right\rangle= \pm a_{\sigma^{\prime}}^{\dagger} a_{\sigma}^{\dagger}|\ldots\rangle$
a_{σ} removes σ particle $\Longrightarrow a_{\sigma}|0\rangle=0$.
E.g. $\left(a_{\sigma}\left|\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle\right)^{\dagger} \cdot\left|\sigma^{\prime \prime \prime}\right\rangle=\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right|\left(a_{\sigma}^{\dagger}\left|\sigma^{\prime \prime \prime}\right\rangle\right)=0$ unless $\sigma=\sigma^{\prime}, \sigma^{\prime \prime \prime}=\sigma^{\prime \prime}$ or $\sigma=\sigma^{\prime \prime}, \sigma^{\prime \prime \prime}=\sigma^{\prime}$. i.e. $a_{\sigma}\left|\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle=\delta_{\sigma \sigma^{\prime \prime}}\left|\sigma^{\prime}\right\rangle \pm \delta_{\sigma \sigma^{\prime}}\left|\sigma^{\prime \prime}\right\rangle$.
$\left[a_{\sigma}, a_{\sigma^{\prime}}^{\dagger}\right]_{\mp}=\delta_{\sigma \sigma^{\prime}}$.
e.g. 2 fermions $a_{\sigma^{\prime \prime}}^{\dagger} \sigma_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle$: Operator $a_{\sigma}^{\dagger} a_{\sigma^{\prime}}$ replaces any σ^{\prime} with σ, must still vanish when $\sigma^{\prime \prime}=\sigma^{\prime \prime \prime}$.

Check: $\left(a_{\sigma}^{\dagger} a_{\sigma^{\prime}}\right) a_{\sigma^{\prime \prime}}^{\dagger} a_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle=-a_{\sigma}^{\dagger} a_{\sigma^{\prime \prime}}^{\dagger} a_{\sigma^{\prime}} a_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle+\delta_{\sigma^{\prime} \sigma^{\prime \prime}} a_{\sigma}^{\dagger} a_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle=-\left.\delta_{\sigma^{\prime} \sigma^{\prime \prime \prime}}\right|_{\sigma} ^{\dagger} a_{\sigma^{\prime \prime}}^{\dagger}|0\rangle+\delta_{\sigma^{\prime} \sigma^{\prime \prime}} a_{\sigma}^{\dagger} a_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle$.

Expansion of observables: $Q=\sum_{N=0}^{\infty} \sum_{M=0}^{\infty} C_{N M ; \sigma_{1}^{\prime} \ldots \sigma_{N}^{\prime} ; \sigma_{M} \ldots \sigma_{1}} a_{\sigma_{1}^{\prime}}^{\dagger} \ldots a_{\sigma_{N}^{\prime}}^{\dagger} a_{\sigma_{M}} \ldots a_{\sigma_{1}}$.
Can always tune the $C_{N M}$ to give any values for $\langle 0| a_{\sigma_{1}^{\prime}} \ldots a_{\sigma_{L}^{\prime}} Q a_{\sigma_{1}}^{\dagger} \ldots a_{\sigma_{K}}^{\dagger}|0\rangle$.

Commutations with additive observables: $\left[Q, a_{\sigma}^{\dagger}\right]=q(\sigma) a_{\sigma}^{\dagger}$ (no sum),

where Q is an observable such that for $\left|\sigma, \sigma^{\prime}, \ldots\right\rangle$, total $Q=q(\sigma)+q\left(\sigma^{\prime}\right)+\ldots$ and $Q|0\rangle=0$ (e.g. energy).
Check for each particle state: $Q a_{\sigma}^{\dagger}|0\rangle=q(\sigma) a_{\sigma}^{\dagger}|0\rangle+a_{\sigma}^{\dagger} Q|0\rangle=q(\sigma) a_{\sigma}^{\dagger}|0\rangle$,

$$
Q a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=a_{\sigma}^{\dagger} Q a_{\sigma^{\prime}}^{\dagger}|0\rangle+q(\sigma) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger} Q|0\rangle+q\left(\sigma^{\prime}\right) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle+q(\sigma) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=\left(q(\sigma)+q\left(\sigma^{\prime}\right)\right) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle \text { etc. }
$$

Note: Conjugate transpose is $\left[Q, a_{\sigma}\right]=-q(\sigma) a_{\sigma}$.

Number operator for particles with eigenvalues σ is $a_{\sigma}^{\dagger} a_{\sigma}$ (no sum). \quad E.g. $\left(a_{\sigma}^{\dagger} a_{\sigma}\right) a_{\sigma}^{\dagger} a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=2 a_{\sigma}^{\dagger} a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle$.

Additive observable: $Q=\sum_{\sigma} q(\sigma) a_{\sigma}^{\dagger} a_{\sigma} . \quad$ E.g. $Q=H$, (free) Hamiltonian, $q(\sigma)=E_{\sigma}$, energy eigenvalues.

2 Symmetries in QM

2.1 Unitary operators

Symmetry is powerful tool: e.g. relates different processes.
Symmetry transformation is change in our point of view (e.g. spatial rotation / translation), does not change experimental results. i.e. all $|i\rangle \longrightarrow U|i\rangle$ does not change any $|\langle j \mid i\rangle|^{2}$.

Continuous symmetry groups G require U unitary:
$\langle j \mid i\rangle \rightarrow\langle j| U^{\dagger} U|i\rangle=\langle j \mid i\rangle$, so $U^{\dagger} U=U U^{\dagger}=\mathbf{1}$, includes $U=\mathbf{1}$.
Wigner + Weinberg: General physical symmetry groups require U unitary,
or antiunitary: $\langle j \mid i\rangle \rightarrow\langle j| U^{\dagger} U|i\rangle=\langle j \mid i\rangle^{*}=\langle i \mid j\rangle$, e.g. (discrete) time reversal.
$\langle A\rangle$ unaffected (and $\langle f(A)\rangle$ in general), so must have $A \rightarrow U A U^{\dagger}$.

Transition amplitude $M_{i \rightarrow j}$ unaffected by symmetry transformation, i.e. $\langle j| U^{\dagger} e^{-I H t} U|i\rangle=\langle j| e^{-I H t}|i\rangle$,
which requires $[U, H]=0$ if time translation and symmetry transformation commute.

Parameterize unitary operators as $U=U(\alpha), \alpha_{i}$ real, $i=1, \ldots, d(\mathrm{G})$.
$d(\mathrm{G})$ is dimension of G , minimum no. of paramenters required to distinguish elements.
Choose group identity at $\alpha=0$, i.e. $U(0)=\mathbf{1}$.
So for small α_{i}, can write $U(\alpha) \approx 1+I t_{i} \alpha_{i}$.
t_{i} are the linearly independent generators of G. Since $U^{\dagger} U=1, t_{i}=t_{i}^{\dagger}$, i.e. t_{i} are Hermitian.
$[U, H]=0 \Longrightarrow\left[t_{i}, H\right]=0$, so conserved observables are generators.
Can replace all $t_{i} \rightarrow t_{i}^{\prime}=M_{i j} t_{j}$ if M invertible and real, because then $\alpha_{i}^{\prime}=\alpha_{j} M_{j i}^{-1}$ real.

In general, $U(\alpha) U(\beta)=U(\gamma(\alpha, \beta))$ (up to possible phase $e^{I \rho}$, removable by enlarging group).
$U(\alpha)=\exp \left[I t_{i} \alpha_{i}\right]$ if Abelian limit is obeyed: whenever $\beta_{i} \propto \alpha_{i}, U(\alpha) U(\beta)=U(\alpha+\beta)$
(usually true for physical symmetries, e.g. rotation about same line / translation in same direction).
Can write $U(\alpha)=[U(\alpha / N)]^{N}$, then for $N \rightarrow \infty$ is $\left[1+I t_{i} \alpha_{i} / N+O\left(1 / N^{2}\right)\right]^{N}=\exp \left[I t_{i} \alpha_{i}\right]+O\left(\frac{1}{N}\right)$.

Lie algebra: $\left[t_{i}, t_{j}\right]=I C_{i j k} t_{k}$, where $C_{i j k}$ are the structure constants appearing in $U(\alpha) U(\beta)=U\left(\alpha+\beta+\frac{1}{2} I C \alpha \beta+\right.$ cubic and higher $)$
(where $(C \alpha \beta)_{k}=C_{i j k} \alpha_{i} \beta_{j}$, and no $O\left(\alpha^{2}\right)$ ensures $U(\alpha) U(0)=U(\alpha)$, likewise no $O\left(\beta^{2}\right)$).
LHS: $e^{I \alpha t} e^{I \beta t} \approx\left[1+I \alpha t-\frac{1}{2}(\alpha t)^{2}\right] \times\left[1+I \beta t-\frac{1}{2}(\beta t)^{2}\right]$

$$
\approx 1+I(\alpha t+\beta t)-\frac{1}{2}\left[(\alpha t)^{2}+(\beta t)^{2}+\underline{2(\alpha t)(\beta t)}\right]
$$

RHS: $e^{I\left(\alpha+\beta+\frac{1}{2} I C \alpha \beta\right) t} \approx 1+I\left(\alpha+\beta+\frac{1}{2} I C \alpha \beta\right) t-\frac{1}{2}\left[\left(\alpha+\beta+\frac{1}{2} I C \alpha \beta\right) t\right]^{2}$

$$
\approx 1+I\left(\alpha t+\beta t+\underline{\frac{1}{2} I C \alpha \beta t}\right)-\frac{1}{2}\left[(\alpha t)^{2}+(\beta t)^{2}+\underline{(\alpha t)(\beta t)+(\beta t)(\alpha t)}\right],
$$

i.e. $\frac{1}{2} I C_{i j k} \alpha_{i} \beta_{j} t_{k}=\frac{1}{2}\left[\alpha_{i} t_{i}, \beta_{j} t_{j}\right]$.

Now take all α_{i}, β_{j} zero except e.g. $\alpha_{1}=\beta_{2}=\epsilon \rightarrow I C_{12 k} t_{k}=\left[t_{1}, t_{2}\right]$ etc., gives Lie algebra.

In fact, Lie algebra completely specifies group in non-small neighbourhood of identity.
This means that for $U(\alpha) U(\beta)=U(\gamma), \gamma=\gamma(\alpha, \beta)$ can be found from Lie algebra.
We have shown this above in small neighbourhood of identity, i.e. to 2 nd order in α, β, only.
Check to 3rd order: Write $X=\alpha_{i} t_{i}, Y=\beta_{i} t_{i}$, can verify Baker-Hausdorff formula

$$
\exp [I X] \exp [I Y]=\exp [\underbrace{I(X+Y)-\frac{1}{2}[X, Y]+\frac{I}{12}([X,[Y, X]]+[Y,[X, Y]])+\text { quadratic and higher }}_{\text {has the form } I \gamma_{i} t_{i}, \gamma_{i} \text { real }}] .
$$

Lie algebra implies: 1. $C_{i j k}=-C_{j i k}$ (antisymmetric in i, j). $\quad C_{i j k}$ can be chosen antisymmetric in i, j, k (see later).
2. $C_{i j k}$ real.

Conjugate of Lie Algebra is $\left[t_{j}^{\dagger}, t_{i}^{\dagger}\right]=-I C_{i j k}^{*} t_{k}^{\dagger}$, which is negative of Lie Algebra because $t_{i}^{\dagger}=t_{i}$.
Thus $C_{i j k}^{*} t_{k}=C_{i j k} t_{k}$, but t_{k} linearly independent so $C_{i j k}^{*}=C_{i j k}$.
3. $t^{2}=t_{j} t_{j}$ is invariant (commutes with all t_{i}, so transforming gives $e^{I \alpha_{i} t_{i}} t^{2} e^{-I \alpha_{k} t_{k}}=t^{2}$).

$$
\left[t^{2}, t_{i}\right]=t_{j}\left[t_{j}, t_{i}\right]+\left[t_{j}, t_{i}\right] t_{j}=I C_{j i k}\left\{t_{j}, t_{k}\right\}=0 \text { by (anti) symmetry in }(j, i) j, k .
$$

Examples: Rest mass, total angular momentum. $t_{j} t_{j}$ doesn't have to include all j, only subgroup.

2.2 (Matrix) Representations

Physically, matrix representation of any symmetry group G of nature formed by particles:
General transformation of $a_{\sigma}^{(\dagger)}: U(\alpha) a_{\sigma}^{\dagger} U^{\dagger}(\alpha)=D_{\sigma \sigma^{\prime}}(\alpha) a_{\sigma^{\prime}}^{\dagger}$, with invariant vacuum: $U(\alpha)|0\rangle=|0\rangle$.
$U(\alpha) a_{\sigma}^{\dagger}|0\rangle$ is 1 particle state, so must be linear combination of $a_{\sigma^{\prime}}^{\dagger}|0\rangle$, i.e. $U(\alpha) a_{\sigma}^{\dagger}|0\rangle=D_{\sigma \sigma^{\prime}}(\alpha) a_{\sigma^{\prime}}^{\dagger}|0\rangle$.
Thus $U(\alpha) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=D_{\sigma \sigma^{\prime \prime}}(\alpha) D_{\sigma^{\prime} \sigma^{\prime \prime \prime}}(\alpha) a_{\sigma^{\prime \prime}}^{\dagger} a_{\sigma^{\prime \prime \prime}}^{\dagger}|0\rangle$ etc.
$D(\alpha)$ matrices furnish a representation of G , matrix generators $\left(t^{i}\right)_{\sigma^{\prime} \sigma}$ with same Lie algebra $\left[t_{i}, t_{j}\right]_{\sigma \sigma^{\prime}}=I C_{i j k}\left(t_{k}\right)_{\sigma \sigma^{\prime}}$.
Since $U(\alpha) U(\beta)=U(\gamma)$, must have $D_{\sigma^{\prime \prime} \sigma^{\prime}}(\alpha) D_{\sigma^{\prime} \sigma}(\beta)=D_{\sigma^{\prime \prime} \sigma}(\gamma)$.
If Abelian limit of page 8 is obeyed, $D_{\sigma^{\prime} \sigma}(\alpha)=\left(e^{I \alpha_{i} t_{i}}\right)_{\sigma^{\prime} \sigma^{\prime}}$.
Similarity transformation $\left(t_{i}\right)_{\sigma \sigma^{\prime \prime \prime}} \rightarrow\left(t_{i}^{\prime}\right)_{\sigma \sigma^{\prime \prime \prime}}=V_{\sigma \sigma^{\prime}}\left(t_{i}\right)_{\sigma^{\prime} \sigma^{\prime \prime}}\left(V^{-1}\right)_{\sigma^{\prime \prime} \sigma^{\prime \prime \prime}}$ also a representation.
Particle states require V unitary.

$$
a_{\sigma}^{\dagger}|0\rangle \rightarrow a_{\sigma}^{\prime \dagger}|0\rangle=V_{\sigma \sigma^{\prime}} a_{\sigma^{\prime}}^{\dagger}|0\rangle \text {, then othogonality }\langle 0| a_{\sigma^{\prime}}^{\prime} a_{\sigma}^{\prime \dagger}|0\rangle=\delta_{\sigma^{\prime} \sigma} \text { requires } V^{\dagger} V=1
$$

But in general, representations don't have to be unitary.

In "reducible" cases, can similarity transform $t_{i} \rightarrow V t_{i} V^{-1}$ such that t_{i} is block-diagonal matrix,
each block furnishes a representation, e.g.:

$$
\left(t_{i}\right)_{\sigma^{\prime} \sigma}=\left(\begin{array}{cc}
\left(t_{i}\right)_{j k} & \mathbf{0} \\
\mathbf{0} & \left(t_{i}\right)_{\alpha \beta}
\end{array}\right)_{\sigma^{\prime} \sigma} .
$$

Particles of one block don't mix with those of other - can be treated as 2 separate "species".
Each block can have different t^{2}, corresponds to different particle species.

Irreducible representation: Matrices $\left(t_{i}\right)_{\sigma^{\prime} \sigma}$ not block-diagonalizable by similarity transformation.

In this sense, these particles are elementary.
Size of matrix written as $m(r) \times m(r)$, where r labels representation.
Corresponds to single species, single value of $t^{2}: t^{2}=C_{2}(r) \mathbf{1}\left(\right.$ consistent with $\left.\left[t^{2}, t_{i}\right]=0\right)$.
$C_{2}(r)$ is quadratic Casimir operator of representation r.

Fundamental representation of G : Generators written $\left(t_{i}\right)_{\alpha \beta}$.
Matrices representing elements used to define group G (also called defining representation).

Adjoint representation of $\mathrm{G}(r=A)$: Generators $\left(t_{j}\right)_{i k}=I C_{i j k}$, satisfy Lie algebra.
Use Jacobi identity

$$
\left[t_{i},\left[t_{j}, t_{k}\right]\right]+\left[t_{j},\left[t_{k}, t_{i}\right]\right]+\left[t_{k},\left[t_{i}, t_{j}\right]\right]=0 .
$$

From Lie algebra, $\left[t_{i},\left[t_{j}, t_{k}\right]\right]=I\left[t_{i}, C_{j k l} t_{l}\right]=-C_{j k l} C_{i l m} t_{m}$,
so Jacobi identity is $C_{j k l} C_{i l m}+C_{k i l} C_{j l m}+C_{i j l} C_{k l m}=0$ (after removing contraction with linearly independent t_{m}),
or, from $C_{i j k}=-C_{j i k},-I C_{k j l} I C_{l i m}+I C_{k i l} I C_{l j m}-I C_{i j l} I C_{k l m}=0$, which from $\left(t_{j}\right)_{i k}=I C_{i j k}$ reads $\left[t_{i}, t_{j}\right]_{k m}=I C_{i j l}\left(t_{l}\right)_{k m}$.

Conjugate representation has generators $-t_{i}^{*}=-t_{i}^{T}$ (obey the same Lie algebra as t_{i}).
If $-t_{i}^{*}=U t_{i} U^{\dagger}$ (U unitary), then $e^{-I \alpha_{i} t_{i}^{*}}=\left(e^{I \alpha_{i} t_{i}}\right)^{*}=U e^{I \alpha_{i} t_{i}} U^{\dagger}$,
i.e. conjugate representation \equiv original representation,\longrightarrow representation is real.

For invariant matrix \mathfrak{g} ("metric"), i.e. $e^{I \alpha_{i} t_{i}^{T}} \mathfrak{g} e^{I \alpha_{i} t_{i}}=\mathfrak{g}, G$ transformation leaves $\phi^{T} \mathfrak{g} \psi$ invariant.

Semi-simple Lie algebra: no t_{i} that commutes with all other generators (no $\mathrm{U}(1)$ subgroup).

Semi-simple group's matrix generators must obey $\operatorname{tr}\left[t_{i}\right]=0$.
Make all $\operatorname{tr}\left[t_{i}\right]=0$ except one, $\operatorname{tr}\left[t_{K}\right]$, via $t_{i}^{\prime}=M_{i j} t_{i}$ (this is just rotation of vector with components $\left.\operatorname{tr}\left[t_{i}\right]\right)$.
Determinant of $U(\alpha) U(\beta)=U(\gamma)$ is $e^{I \alpha_{i} \mathrm{tr}\left[t_{i}\right]} e^{I \beta_{i} \operatorname{tr}\left[t_{i}\right]}=e^{I \gamma_{i} \operatorname{tr}\left[t_{i}\right]}$, i.e. $\left(\alpha_{i}+\beta_{i}-\gamma_{i}\right) \operatorname{tr}\left[t_{i}\right]=0$.
But only $\operatorname{tr}\left[t_{K}\right] \neq 0$ (we assume), so $\alpha_{K}+\beta_{K}-\gamma_{K}=0$.
Must have $C_{i j K} \alpha_{i} \beta_{j}=0\left(\right.$ recall $\left.\gamma_{K} \simeq \alpha_{K}+\beta_{K}+C_{i j K} \alpha_{i} \beta_{j}\right)$,
or $C_{i j K}=C_{K i j}=0$ for all i, j, so from Lie group we have $\left[t_{K}, t_{i}\right]=0$ for all $i-$ not possible for semi-simple group.
So assumption was wrong, must have $\operatorname{tr}\left[t_{K}\right]=0$.

Normalization of generators chosen as $\operatorname{tr}\left[t_{i} t_{j}\right]=C(r) \delta_{i j}$.
$N_{i j}=\operatorname{tr}\left[t_{i} t_{j}\right]$ becomes $M_{i k} N_{k l}\left(M^{T}\right)_{l j}$ after basis transformation $t_{i} \rightarrow M_{i j} t_{j}$.
$N_{i j}$ components of real symmetric matrix N, diagonalizable via $M N M^{T}$ when M real, orthogonal.
Also N is positive definite matrix $\alpha^{T} N \alpha=\alpha_{i} \operatorname{tr}\left[t_{i} t_{j}\right] \alpha_{j}=\operatorname{tr}\left[\alpha_{i} t_{i} \alpha_{j} t_{j}\right]=\operatorname{tr}\left[\left(\alpha_{i} t_{i}\right)^{\dagger} \alpha_{j} t_{j}\right] \geq 0$
(because for any matrix $A, \operatorname{tr}\left[A^{\dagger} A\right]=A_{\beta \alpha}^{\dagger} A_{\alpha \beta}=A_{\alpha \beta}^{*} A_{\alpha \beta}=\sum_{\alpha \beta}\left|A_{\alpha \beta}\right|^{2} \geq 0$).
After diagonalization, $N_{i j}=0$ for $i \neq j$ and above implies $N_{i i}>0$ (no sum).
Then multiply each t_{i} by real number c_{i}, changes $N_{i i} \rightarrow c_{i}^{2} N_{i i}>0$.
Choose c_{i} such that each $N_{i i}$ (no sum over i) all equal to positive $C(r)$.

Representation dependence of quadratic Casimir operator: $C_{2}(r) m(r)=C(r) d(G)$.

Definition of quadratic Casimir operator gives $\operatorname{tr}\left[t^{2}\right]=C_{2}(r) m(r)$.
Normalization of generators $\operatorname{tr}\left[t_{i} t_{j}\right]=C(r) \delta_{i j} \Longrightarrow \operatorname{tr}\left[t^{2}\right]=C(r) d(G)$.

Example: 2 and 3 component repesentations of rotation group have different spins (i.e. $\left.C_{2}(r)\right) \frac{1}{2}$ and 1 .

Antisymmetric structure constants: $C_{i j k}=-\frac{I}{C(r)} \operatorname{tr}\left[\left[t_{i}, t_{j}\right] t_{k}\right]$.

From Lie algebra, $\operatorname{tr}\left[\left[t_{i}, t_{j}\right] t_{l}\right]=I C_{i j k} \operatorname{tr}\left[t_{k} t_{l}\right]=I C_{i j l} C(r)$.

Structure constants obey $C_{j k i} C_{l k i}=C(A) \delta_{j l}$.
In adjoint representation, quadratic Casimir operator on page 11 is $\left(t^{2}\right)_{j l}=C_{2}(A) \delta_{j l}=-C_{j i k} C_{k i l}$.
But $C_{2}(A)=C(A)$:
$C_{2}(A) m(A)=C(A) d(G)$ from representation dependence of quadratic Casimir operator on page 14,
and $m(A)=d(G)$.

2.3 External symmetries

2.3.1 Rotation group representations

(Spatial) rotation of vector $v \rightarrow R v$ preserves $v^{T} v$, so R orthogonal ($R^{T} R=\mathbf{1}$).
Rotation $|\boldsymbol{\theta}|$ about $\boldsymbol{\theta}: U(\boldsymbol{\theta})=e^{-I \boldsymbol{J} \cdot \boldsymbol{\theta}}$.

Lie algebra is $\left[J_{i}, J_{j}\right]=I \epsilon_{i j k} J_{k}$ for generators J_{1}, J_{2}, J_{3} (see later).

Or use J_{3} and raising/lowering operators $J_{ \pm}=\left(J_{1} \pm I J_{2}\right)$.

Irreducible spin j representations:

$\left(J_{3}^{(j)}\right)_{m^{\prime} m}=m \delta_{m^{\prime} m}$ and $\left(J_{ \pm}^{(j)}\right)_{m^{\prime} m}=[(j \mp m)(j \pm m+1)] \delta_{m^{\prime}, m \pm 1}$, where $m=-j,-j+1, \ldots, j$,
spin $j=0, \frac{1}{2}, 1, \ldots$, number of components n.o.c. $=2 j+1$ and $\boldsymbol{J}^{2}=j(j+1)$.
Let $|m, j\rangle$ be $J_{3}=m$ and $\boldsymbol{J}^{2}=F(j)$ orthonormal eigenstates $\left(\left[J_{3}, \boldsymbol{J}^{2}\right]=0\right)$.
$J_{ \pm}$changes m by ± 1 because $\left[J_{ \pm}, J_{3}\right]=\mp J_{ \pm}$, so $J_{ \pm}|m, j\rangle=C_{ \pm}(m, j)|m \pm 1, j\rangle$.
$C_{\mp}(m, j)=\sqrt{F(j)-m^{2} \pm m}$ (states absorb complex phase):
$\left|C_{\mp}(m, j)\right|^{2}=\langle m, j| J_{ \pm} J_{\mp}|m, j\rangle\left(J_{ \pm}^{\dagger}=J_{\mp}\right)$ and $J_{ \pm} J_{\mp}=J^{2}-J_{3}^{2} \pm J_{3}$.
Let j be largest m value for given $F(j)$
(m bounded because $m^{2}=\langle m, j| J_{3}^{2}|m, j\rangle=F(j)-\langle m, j| J_{1}^{2}+J_{2}^{2}|m, j\rangle<F(j)$).
$F(j)=j(j+1)$ because $J_{+}|j, j\rangle=0$, so $J_{-} J_{+}|j, j\rangle=\left(F(j)-j^{2}-j\right)|j, j\rangle=0$.
Let $-j^{\prime}$ be smallest m : $J_{-}\left|-j^{\prime}, j\right\rangle=0 \Longrightarrow F(j)=j^{\prime}\left(j^{\prime}+1\right)$, so $j^{\prime}=j$ (other possibility $-j^{\prime}=j+1>j$).
So $m=-j,-j+1, \ldots, j$, i.e. n.o.c. $=2 j+1$. Since n.o.c. is integer, $j=0, \frac{1}{2}, 1, \ldots$.

Spin decomposition of tensors: e.g. 2nd rank tensor $C_{i j}$ (n.o.c. $=9$), representations are $j=0,1,2$:
scalar $($ n.o.c. $=\mathbf{1})+$ antisymmetric rank 2 tensor (n.o.c. $=\mathbf{3})+$ symmetric traceless rank 2 (n.o.c. $=\mathbf{5})$ components.

$$
C_{i j}=\frac{1}{3} \delta_{i j} C_{k k}+\frac{1}{2}\left(C_{i j}-C_{j i}\right)+\frac{1}{2}\left(C_{i j}+C_{j i}-\frac{2}{3} \delta_{i j} C_{k k}\right) .
$$

Component irreducible representations signified by 1 $3+$ 5.

Counting n.o.c. shows they are equivalent respectively to
the $j=0(2 j+1=\mathbf{1}), j=1(2 j+1=\mathbf{3})$ and $j=2(2 j+1=\mathbf{5})$ representations:
$\frac{1}{3} \delta_{i j} C_{k k} \rightarrow \frac{1}{3} \delta_{i j} C_{k k}$ is like scalar $\equiv \operatorname{spin} 0$,
$\left.\left(\frac{1}{2}\left(C_{j k}-C_{k j}\right)\right)\right|_{i \neq k, j}=\frac{1}{2} \epsilon_{i j k} C_{j k} \rightarrow R_{i l} \frac{1}{2} \epsilon_{l j k} C_{j k}$ (because $\epsilon R^{2}=R \epsilon$) is like vector \equiv spin 1,
$\frac{1}{2}\left(C_{i j}+C_{j i}-\frac{2}{3} \delta_{i j} C_{i i}\right) \rightarrow R_{i l} R_{j m} \frac{1}{2}\left(C_{l m}+C_{m l}-\frac{2}{3} \delta_{l m} C_{k k}\right)$ is like rank 2 tensor \equiv spin 2.

Direct product: 2 particles, spins j_{1}, j_{2}, also in a representation:
$e^{I \boldsymbol{J} \cdot \boldsymbol{\theta}}\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle=\left(e^{I \boldsymbol{J}^{\left(j_{1}, j_{2}\right) \cdot \boldsymbol{\theta}}}\right)_{m_{1}^{\prime} m_{2}^{\prime} m_{1} m_{2}}\left|m_{1}^{\prime}, j_{1} ; m_{2}^{\prime}, j_{2}\right\rangle$ where $\boldsymbol{J}_{m_{1}^{\prime} m_{2}^{\prime} m_{1} m_{2}}^{\left(j_{1} j_{2}\right)}=\boldsymbol{J}_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)} \delta_{m_{2}^{\prime} m_{2}}+\delta_{m_{1}^{\prime} m_{1}} \boldsymbol{J}_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}$
From $e^{I J \cdot \boldsymbol{\theta}}\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle=\left(e^{I J^{\left(j_{1}\right)} \cdot \boldsymbol{\theta}}\right)_{m_{1}^{\prime} m_{1}}\left(e^{I J^{(j 2)} \cdot \boldsymbol{\theta}}\right)_{m_{2}^{\prime} m_{2}}\left|m_{1}^{\prime}, j_{1} ; m_{2}^{\prime}, j_{2}\right\rangle$, i.e. total rotation is rotation of each particle in turn.
Thus $J_{3}\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle=\left(m_{1}+m_{2}\right)\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle$,
so $\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle$ is combination of $J_{3}^{\left(j_{1}, j_{2}\right)}, \boldsymbol{J}^{\left(j_{1}, j_{2}\right) 2}$ eigenstates $\left|2 ; m_{1}+m_{2}, j\right\rangle$,
with $j=m_{1}+m_{2}, m_{1}+m_{2}+1, \ldots, j_{1}+j_{2}$. So $j_{\max }=j_{1}+j_{2}$.

Triangle inequality: representation for $\left(j_{1}, j_{2}\right)$ contains $j=\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots, j_{1}+j_{2}$.
Number of orthogonal eigenstates $\left|m_{1}, j_{1} ; m_{2}, j_{2}\right\rangle=$ Number of orthogonal eigenstates $|2 ; m, j\rangle$,
i.e. $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)=\sum_{j=j_{\text {min }}}^{j_{1}+j_{2}}(2 j+1)$ (now use $\left.\sum_{j=a}^{b} j=\frac{1}{2}(b-a+1)(b+a)\right)$ so $j_{\min }=\left|j_{1}-j_{2}\right|$.

Example: Representation for 2 spin 1 particles $\left(j_{1}, j_{2}\right)=(1,1)$:
From triangle inequality, this is \equiv sum of irreducible representations $j=0,1,2$.
Also from tensor representation on page 18: product of 2 vectors $u_{i} v_{j}$ (2nd rank tensor) is $\mathbf{3} \times \mathbf{3}=\mathbf{1}+\mathbf{3}+\mathbf{5}$.

2.3.2 Poincaré and Lorentz groups

Poincaré (inhomogeneous Lorentz) group formed by coordinate transformations $x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}+a^{\mu}$, preserving spacetime separation: $g_{\mu \nu} d x^{\mu} d x^{\nu}=g_{\mu \nu} d x^{\prime \mu} d x^{\prime \nu}$. Implies:

Transformation of metric tensor: $g_{\rho \sigma}=g_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda_{\sigma}^{\nu}$ or $\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu}=\Lambda_{\nu}{ }^{\mu}$.
Identity: $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}, a^{\mu}=0$.

Poincaré group defined by $U(\bar{\Lambda}, \bar{a}) U(\Lambda, a)=U(\bar{\Lambda} \Lambda, \bar{\Lambda} a+\bar{a})$.
This is the double transformation $x^{\prime \prime}=\bar{\Lambda} x^{\prime}+\bar{a}=\bar{\Lambda}(\Lambda x+a)+\bar{a}$.

Poincaré group generators: $J^{\mu \nu}$ and P^{μ}, appearing in $U(1+\omega, \epsilon) \simeq 1+\frac{1}{2} I \omega_{\mu \nu} J^{\mu \nu}-I \epsilon_{\mu} P^{\mu}$.
Obtained by going close to identity, $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}$ and $a_{\mu}=\epsilon_{\mu}$.

Choose $J^{\mu \nu}=-J^{\nu \mu}$.
Allowed because $\omega_{\rho \sigma}=-\omega_{\sigma \rho}$: Transformation of metric tensor reads $g_{\rho \sigma}=g_{\mu \nu}\left(\delta^{\mu}{ }_{\rho}+\omega_{\rho}^{\mu}\right)\left(\delta^{\nu}{ }_{\sigma}+\omega^{\nu}{ }_{\sigma}\right) \simeq g_{\sigma \rho}+\omega_{\rho \sigma}+\omega_{\sigma \rho}$.

Transformation properties of $P^{\mu}, J^{\mu \nu}: U(\Lambda, a) P^{\mu} U^{\dagger}(\Lambda, a)=\Lambda_{\rho}{ }^{\mu} P^{\rho}$

$$
\text { and } U(\Lambda, a) J^{\mu \nu} U^{\dagger}(\Lambda, a)=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu}\left(J^{\rho \sigma}-a^{\rho} P^{\sigma}+a^{\sigma} P^{\rho}\right)
$$

Apply Poincaré group to get $\underbrace{U(\Lambda, a) U(1+\omega, \epsilon)}_{=U(\Lambda(1+\omega), \Lambda \epsilon+a)} \underbrace{U^{\dagger}(\Lambda, a)}_{=U\left(\Lambda^{-1},-\Lambda^{-1} a\right)}=U\left(1+\Lambda \omega \Lambda^{-1}, \Lambda\left(\epsilon-\omega \Lambda^{-1} a\right)\right)$.
Expand both sides in $\omega, \epsilon: U(\Lambda, a)\left(1+\frac{1}{2} I \omega J-I \epsilon P\right) U^{\dagger}(\Lambda, a)=1+\frac{1}{2} I \Lambda \omega \Lambda^{-1} J-I \Lambda\left(\epsilon-\omega \Lambda^{-1} a\right) P$, equate coefficients of ω, ϵ.

So P^{μ} transforms like 4-vector, $J_{i j}$ like angular momentum.

Poincaré algebra: $I\left[J^{\rho \sigma}, J^{\mu \nu}\right]=-g^{\sigma \nu} J^{\rho \mu}-g^{\rho \mu} J^{\sigma \nu}+g^{\sigma \mu} J^{\rho \nu}+g^{\rho \nu} J^{\sigma \mu} \rightarrow$ (homogeneous) Lorentz group,

$$
I\left[P^{\mu}, J^{\rho \sigma}\right]=g^{\mu \rho} P^{\sigma}-g^{\mu \sigma} P^{\rho}, \text { and }\left[P^{\mu}, P^{\nu}\right]=0
$$

Obtained by taking $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\omega_{\nu}^{\mu}, a_{\mu}=\epsilon_{\mu}$ in transformation properties of $P^{\mu}, J^{\mu \nu}$, to first order in ω, ϵ gives

$$
\begin{aligned}
& P^{\mu}-\frac{1}{2} I \omega_{\rho \sigma}\left[P^{\mu}, J^{\rho \sigma}\right]+I \epsilon_{\nu}\left[P^{\mu}, P^{\nu}\right]=P^{\mu}+\frac{1}{2} \omega_{\rho \sigma} g^{\mu \sigma} P^{\rho}-\frac{1}{2} \omega_{\rho \sigma} g^{\mu \rho} P^{\sigma}, \text { and } \\
& J^{\mu \nu}+\frac{1}{2} I \omega_{\rho \sigma}\left[J^{\rho \sigma}, J^{\mu \nu}\right]-I \epsilon_{\rho}\left[P^{\rho}, J^{\mu \nu}\right]=J^{\mu \nu}-g^{\rho \mu} \epsilon_{\rho} P^{\nu}+g^{\rho \nu} \epsilon_{\rho} P^{\mu}+\frac{1}{2} \omega_{\rho \sigma}\left(g^{\rho \nu} J^{\sigma \mu}-g^{\sigma \nu} J^{\rho \mu}\right)+\frac{1}{2} \omega_{\rho \sigma}\left(g^{\sigma \mu} J^{\rho \nu}-g^{\rho \mu} J^{\sigma \nu}\right) .
\end{aligned}
$$

2.3.3 Relativistic quantum mechanical particles

Identify $H=P^{0}$, spatial momentum P^{i}, angular momentum $J_{i}=\frac{1}{2} \epsilon_{i j k} J^{j k}$ (i.e. $\left(J_{1}, J_{2}, J_{3}\right)=\left(J^{23}, J^{31}, J^{12}\right)$).
$[H, \boldsymbol{P}]=[H, \boldsymbol{J}]=0 \rightarrow \boldsymbol{P}, \boldsymbol{J}$ conserved. Rotation group $\left[J_{i}, J_{j}\right]=I \epsilon_{i j k} J_{k}$ is subgroup of Poincaré group.
Also define boost generator $\boldsymbol{K}=\left(J^{10}, J^{20}, J^{30}\right)$, obeys $\left[J_{i}, K_{j}\right]=I \epsilon_{i j k} K_{k}$ and $\left[K_{i}, K_{j}\right]=-I \epsilon_{i j k} J_{k}$.
\boldsymbol{K} not conserved: $\left[K_{i}, H\right]=I P_{i}$, because boost and time translation don't commute.
Explicit form of Poincaré elements: $U(\Lambda, a)=\underbrace{e^{-I P^{\mu} a_{\mu}}}_{\text {translate } a_{\mu}} \times \underbrace{e^{-I \boldsymbol{K} \cdot \hat{e} \beta}}_{\text {boost along } \hat{e} \text { by } V=\sinh \beta} \times \underbrace{e^{I \boldsymbol{J} \cdot \boldsymbol{\theta}}}_{\text {rotate }|\boldsymbol{\theta}| \text { about } \boldsymbol{\theta}}$
(V : magnitude of 4 -velocity's spatial part.)
Lorentz transformation of 4 -vectors: $\left(K_{i}\right)^{\mu}{ }_{\nu}=I\left(\delta_{0 \mu} \delta_{i \nu}+\delta_{i \mu} \delta_{0 \nu}\right)$ and $\left(J_{i}\right)^{\mu}{ }_{\nu}=-I \epsilon_{0 i \mu \nu}$.
Then $A_{\nu} \rightarrow A_{\nu}-\delta \omega_{i}\left(\delta_{i \nu} A_{0}+\delta_{0 \nu} A_{i}\right)-\delta \theta_{i} \epsilon_{i j \nu} A_{j}\left(1-\delta_{0 \nu}\right)$ as required.

$$
\left[e^{-I \boldsymbol{K} \cdot \hat{\boldsymbol{e}} \beta}\right]_{\nu}^{\mu}=\left[1-I K_{i} \hat{e}_{i} \sinh \beta-\left(K_{i} \hat{e}_{i}\right)^{2}(\cosh \beta-1)\right]_{\nu}^{\mu} \text { and }\left[e^{I \boldsymbol{J} \cdot \hat{\boldsymbol{\theta} \theta}}\right]_{\nu}^{\mu}=\left[1+I J_{i} \hat{\theta}_{i} \sin \theta-\left(J_{i} \hat{\theta}_{i}\right)^{2}(1-\cos \theta)\right]_{\nu}^{\mu} .
$$

Follows directly from $\left(K_{i} \hat{e}_{i}\right)^{3}=K_{i} \hat{e}_{i}$ and $\left(J_{i} \hat{\theta}_{i}\right)^{3}=J_{i} \hat{\theta}_{i}$.

Particles: Use $P^{\mu}, P^{2}=m^{2}$ eigenstates. Distinguish momentum \boldsymbol{p} from list σ, i.e. $a_{\sigma}^{\dagger} \rightarrow a_{\sigma}^{\dagger}(\boldsymbol{p})$.
Commutation relations for $a_{\sigma}^{(\dagger)}(\boldsymbol{p}):\left[a_{\sigma}^{\dagger}(\boldsymbol{p}), a_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]_{\mp}=\left[a_{\sigma}(\boldsymbol{p}), a_{\sigma^{\prime}}\left(\boldsymbol{p}^{\prime}\right)\right]_{\mp}=0$

$$
\text { and }\left[a_{\sigma}(\boldsymbol{p}), a_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]_{\mp}=\delta_{\sigma \sigma^{\prime}}\left(2 p^{0}\right) \delta^{(3)}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) .
$$

As on page 4, but with different normalization (Lorentz invariant).

Application of general transformation of $a_{\sigma}^{(\dagger)}$ on page 10 to Lorentz transformation complicated by mixing between σ and \boldsymbol{p}.

Simplify by finding 2 transformations, one that mixes σ and one that mixes \boldsymbol{p}, separately.

Lorentz transformation for $a_{\sigma}^{(\dagger)}(\boldsymbol{p}): U(\Lambda) a_{\sigma}^{\dagger}(\boldsymbol{p}) U^{\dagger}(\Lambda)=D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{\Lambda} \boldsymbol{p})$.
Same as general transformation on page 10 , but because $\sigma \rightarrow\{\sigma, \boldsymbol{p}\}$, mixing of σ with \boldsymbol{p} must be allowed.
Construction of W : Choose reference momentum k and transformation L to mix k but not σ (defines σ):
$L^{\mu}{ }_{\nu}(p) k^{\nu}=p^{\mu}$ and $U(L(p)) a_{\sigma}^{\dagger}(\boldsymbol{k})|0\rangle=a_{\sigma}^{\dagger}(\boldsymbol{p})|0\rangle$.
Then $W(\Lambda, p)=L^{-1}(\Lambda p) \Lambda L(p)$. W mixes σ but not k, i.e. belongs to little group of k : $W_{\nu}^{\mu} k^{\nu}=k^{\mu}$.
General transformation is $U(\Lambda) \underline{a_{\sigma}^{\dagger}(\boldsymbol{p})|0\rangle}=U(\Lambda) \underline{U(L(p)) a_{\sigma}^{\dagger}(\boldsymbol{k})|0\rangle}$, using definition of L.
Multiplying by $1=U(L(\Lambda p)) U\left(L^{-1}(\Lambda p)\right)$ gives
$U(\Lambda) a_{\sigma}^{\dagger}(\boldsymbol{p})|0\rangle=U(L(\Lambda p)) \underline{U\left(L^{-1}(\Lambda p)\right) U(\Lambda) U(L(p))} a_{\sigma}^{\dagger}(\boldsymbol{k})|0\rangle=U(L(\Lambda p)) \underline{U(W(\Lambda, p))} a_{\sigma}^{\dagger}(\boldsymbol{k})|0\rangle$.
But W doesn't change k, so $U(\Lambda) a_{\sigma}^{\dagger}(\boldsymbol{p})|0\rangle=U(L(\Lambda p)) D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{k})|0\rangle$.
Then $L(\Lambda p)$ changes k to Λp but doesn't change σ^{\prime}.

Poincaré transformation for $a_{\sigma}^{(\dagger)}(\boldsymbol{p}): U(\Lambda, a) a_{\sigma}^{\dagger}(\boldsymbol{p}) U^{\dagger}(\Lambda, a)=e^{-I \Lambda p \cdot a} D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{\Lambda} \boldsymbol{p})$.
In Lorentz transformation for $a_{\sigma}^{(\dagger)}(\boldsymbol{p})$, use $U(\Lambda, a)=e^{-I P^{\mu} a_{\mu}} U(\Lambda)$ (from explit form of Poincaré elements on page 22).

2.3.4 Quantum field theory

Lorentz invariant QM: $H=\int d^{3} x \mathscr{H}(x)$, scalar field $\mathscr{H}(x)$ (i.e. $U(\Lambda, a) \mathscr{H}(x) U^{\dagger}(\Lambda, a)=\mathscr{H}(\Lambda x+a)$), obeys cluster decomposition principle (two processes with large spatial separation evolve independently).

Causality: $[\mathscr{H}(x), \mathscr{H}(y)]=0$ when $(x-y)^{2} \geq 0$. Required for Lorentz invariance of S-matrix.
Intuitive reason: signal can't propagate between 2 spacelike separated events.

In QM (general): H built from $a_{\sigma}^{(\dagger)}$. In QFT: H built from $\mathscr{H}(x)$ built from products of
Fields $\psi_{l}^{-c}(x)=\int D^{3} p v_{l \sigma}(x ; \boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})$ and $\psi_{l}^{+}(x)=\int D^{3} p u_{l \sigma}(x ; \boldsymbol{p}) a_{\sigma}(\boldsymbol{p})$.
Lorentz invariant momentum space volume $D^{3} p=\frac{d^{3} p}{2 p^{0}}=d^{4} p \delta\left(p^{2}+m^{2}\right) \theta\left(p^{0}\right)$ obeys $D^{3} \Lambda p=D^{3} p$.
These fields should obey
Poincaré transformation for fields: $U(\Lambda, a) \psi_{l}^{(c) \pm}(x) U^{\dagger}(\Lambda, a)=D_{l l^{\prime}}\left(\Lambda^{-1}\right) \psi_{l^{\prime}}^{(c) \pm}(\Lambda x+a)$.
To calculate $u_{l \sigma}(x ; \boldsymbol{p})$ and $v_{l \sigma}(x ; \boldsymbol{p})$, take single particle species in representation labelled j, allow $a_{\sigma}^{c \dagger}(\boldsymbol{p}) \neq a_{\sigma}^{\dagger}(\boldsymbol{p})$.

```
x dependence of }u,v:\mp@subsup{u}{l\sigma}{}(x;\boldsymbol{p})=\mp@subsup{e}{}{Ip\cdotx}\mp@subsup{u}{l\sigma}{}(\boldsymbol{p}),\mp@subsup{v}{l\sigma}{}(x;\boldsymbol{p})=\mp@subsup{e}{}{-Ip\cdotx}\mp@subsup{v}{l\sigma}{}(\boldsymbol{p})
```

Take $\Lambda=1$ in Poincaré transformation for fields and for $a_{\sigma}^{(\dagger)}(\boldsymbol{p})$ on page 25 and 24,
e.g. $U(1, a) \psi_{l}^{+}(x) U^{\dagger}(1, a)=\int D^{3} p u_{l \sigma}(x ; \boldsymbol{p}) U(1, a) a_{\sigma}(\boldsymbol{p}) U^{\dagger}(1, a)=\int D^{3} p \underline{e^{I p \cdot a} u_{l \sigma}(x ; \boldsymbol{p})} a_{\sigma}(\boldsymbol{p})$
$=\psi_{l}^{+}(x+a)=\int D^{3} p \underline{u_{l \sigma}(x+a ; \boldsymbol{p})} a_{\sigma}(\boldsymbol{p})$, equate coefficients of $a_{\sigma}(\boldsymbol{p})$ (underlined), gives $u_{l \sigma}(x ; \boldsymbol{p}) e^{I p \cdot a}=u_{l \sigma}(x+a ; \boldsymbol{p})$.

Klein-Gordon equation: $\left(\partial^{2}-m^{2}\right) \psi_{l}^{ \pm(c)}(x)=0$.
Act on e.g. $\psi_{l}^{-c}(x)=\int D^{3} p e^{-I p \cdot x} v_{l}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})$ with $\left(\partial^{2}-m^{2}\right)$, use $p^{2}=-m^{2}$.
Transformation of $u, v: D_{l l^{\prime}}(\Lambda) u_{l^{\prime} \sigma}(\boldsymbol{p})=D_{\sigma^{\prime} \sigma}^{(j)}(W(\Lambda, p)) u_{l \sigma^{\prime}}(\boldsymbol{\Lambda} \boldsymbol{p}), D_{l l^{\prime}}(\Lambda) v_{l^{\prime} \sigma}(\boldsymbol{p})=D_{\sigma \sigma^{\prime}}^{(j)}\left(W^{-1}(\Lambda, p)\right) v_{l \sigma^{\prime}}(\boldsymbol{\Lambda} \boldsymbol{p})$.
E.g. consider v, use Poincaré transformation for fields and for $a_{\sigma}^{(\dagger)}(\boldsymbol{p})$ on page 25 and 24.

LHS: $U(\Lambda, a) \psi_{l}^{-c}(x) U^{\dagger}(\Lambda, a)=\int D^{3} p v_{l \sigma}(x ; \boldsymbol{p}) U(\Lambda, a) a_{\sigma}^{c \dagger}(\boldsymbol{p}) U^{\dagger}(\Lambda, a)=\int D^{3} p \underline{e^{-I \Lambda p \cdot a} v_{l \sigma}(x ; \boldsymbol{p}) D_{\sigma^{\prime} \sigma}^{(j)}(W(\Lambda, p))} a_{\sigma^{\prime}}^{c \dagger}(\Lambda \boldsymbol{p})$, and RHS: $D_{l l^{\prime}}\left(\Lambda^{-1}\right) \psi_{l^{\prime}}^{-c}(\Lambda x+a)=\int D^{3} p D_{l l^{\prime}}\left(\Lambda^{-1}\right) v_{l \sigma}(\Lambda x+a ; \boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})=\int D^{3} \Lambda p \underline{D_{l l^{\prime}}\left(\Lambda^{-1}\right) v_{l \sigma}(\Lambda x+a ; \boldsymbol{\Lambda} \boldsymbol{p})} a_{\sigma}^{c \dagger}(\boldsymbol{\Lambda} \boldsymbol{p}) \quad(p \rightarrow \Lambda p)$. Use $D^{3} \Lambda p=D^{3} p$, equate coefficient of $a_{\sigma}^{c \dagger}(\boldsymbol{\Lambda} \boldsymbol{p})$ (underlined), multiply by $D_{l^{\prime \prime} l}(\Lambda) D_{\sigma^{\prime \prime} \sigma}^{(j)}\left(W^{-1}(\Lambda, p)\right)$.
\boldsymbol{p} dependence of $u, v: u_{l \sigma}(\boldsymbol{p})=D_{l l^{\prime}}(L(p)) u_{l^{\prime} \sigma}(\boldsymbol{k}) .(\boldsymbol{p}$ dependence of v is the same.)

In transformation of u, v, take $p=k$ so $L(p)=1, \Lambda=L(q)$ so $\Lambda p=L(q) k=q$, then $W(\Lambda, p)=L^{-1}(\Lambda p) L(q)=1$.

2.3.5 Causal field theory

Since $\left[\psi_{l}^{+}(x), \psi_{l^{\prime}}^{-c}\left(x^{\prime}\right)\right]_{\mp} \neq 0$, causality on page 25 only gauranteed by taking $\mathscr{H}(x)$ to be functional of complete field $\psi_{l}(x)=\kappa \psi_{l}^{+}(x)+\lambda \psi_{l}^{-c}(x)$ (so representations $D_{l l^{\prime}}\left(\Lambda^{-1}\right)$ for $\psi_{l}^{+}(x)$ and $\psi_{l}^{-c}(x)$ the same), with

Causality: $\left[\psi_{l}(x), \psi_{l^{\prime}}(y)\right]_{\mp}=\left[\psi_{l}(x), \psi_{l^{\prime}}^{\dagger}(y)\right]_{\mp}=0$ when $(x-y)^{2}>0$ by suitable choice of κ, λ.

Now $\langle 0| H|0\rangle=\infty$, i.e. consistency with gravity not gauranteed by QFT.

In each term in H, last operator on right hand side is not always an annihilation operator.

Complete field: $\psi_{l}(x)=\int D^{3} p\left[\kappa e^{I p \cdot x} u_{l \sigma}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+\lambda e^{-I p \cdot x} v_{l \sigma}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$

2.3.6 Antiparticles

$\mathscr{H}(x)$ commutes with conserved additive $Q:[Q, \mathscr{H}(x)]=0$.
Imposed in order to satisfy $[Q, H]=0$.
This is achieved as follows:
Commutation of fields with conserved additive $Q:\left[Q, \psi_{l}(x)\right]=-q_{l} \psi_{l}(x)$, and
Field construction of $\mathscr{H}(x): \mathscr{H}=\sum \psi_{l_{1}}^{L_{1}} \psi_{l_{2}}^{L_{2}} \ldots \psi_{m_{1}}^{M_{1} \dagger} \psi_{m_{2}}^{M_{2} \dagger} \ldots$ with $q_{l_{1}}^{L_{1}}+q_{l_{2}}^{L_{2}}+\ldots-q_{m_{1}}^{M_{1}}-q_{m_{2}}^{M_{2}}-\ldots=0$
(M_{i}, L_{j} label particle species).

Antiparticles: For every particle species there is another species with opposite conserved quantum numbers.
Commutation of fields with conserved additive Q implies $\left[Q, \psi_{l}^{-c}(x)\right]=-q_{l} \psi_{l}^{-c}(x)$ and $\left[Q, \psi_{l}^{+}(x)\right]=-q_{l} \psi_{l}^{+}(x)$, but since $\left[Q, a_{\sigma}^{c \dagger}\right]=q_{\sigma}^{c} a_{\sigma}^{c \dagger}$ and $\left[Q, a_{\sigma}\right]=-q_{\sigma} a_{\sigma}$ (no sum) from page 5, $q_{l}=q_{\sigma}^{c}$ and $q_{l}=-q_{\sigma}$, i.e. $q_{\sigma}^{c}=-q_{\sigma}$.

2.3.7 Spin in relativistic quantum mechanics

Lorentz group algebra simplified by choosing generators $A_{i}=\frac{1}{2}\left(J_{i}-I K_{i}\right)$ and $B_{i}=\frac{1}{2}\left(J_{i}+I K_{i}\right)$, behaves like 2 independent rotations: $\left[A_{i}, A_{j}\right]=I \epsilon_{i j k} A_{k},\left[B_{i}, B_{j}\right]=I \epsilon_{i j k} B_{k}$ and $\left[A_{i}, B_{j}\right]=0$, i.e. relativistic particle of type (A, B) (i.e. in eigenstate of $\boldsymbol{A}^{2}=A(A+1), \boldsymbol{B}^{2}=B(B+1)$) $\equiv 2$ particles at rest, ordinary spins A, B (in representation sense).

In terms of degrees of freedom, $(A, B)=(\mathbf{2} \boldsymbol{A}+\mathbf{1}) \times(\mathbf{2} \boldsymbol{B}+\mathbf{1})$.

Triangle inequality: ordinary spin $\boldsymbol{J}=\boldsymbol{A}+\boldsymbol{B}$, so $j=|A-B|,|A-B|+1, \ldots, A+B$.
Derived on page 19 .
Can have eigenstates of $\boldsymbol{A}^{2}=A(A+1), \boldsymbol{B}^{2}=B(B+1)$ and $\boldsymbol{J}^{2}=j(j+1)$ simultaneously, because $\left[\boldsymbol{J}^{2}, A_{i}\right]=\left[\boldsymbol{J}^{2}, B_{i}\right]=0 . \quad$ Use $\boldsymbol{J}^{2}=(\boldsymbol{A}+\boldsymbol{B})^{2}$ and $\boldsymbol{A}, \boldsymbol{B}$ commutation relations.

Simultaneous eigenstate also with any $\boldsymbol{K}=I(\boldsymbol{A}-\boldsymbol{B})$ or \boldsymbol{K}^{2} not possible.

Example: $(A, B)=\left(\frac{1}{2}, \frac{1}{2}\right)$ is representation of 4 -vector: $\left(A_{3}\right)^{\mu}{ }_{\nu},\left(B_{3}\right)^{\mu}{ }_{\nu}$ can have eigenvalues $\pm \frac{1}{2}$ only.
From triangle inequality on page $29, j=0,1$.
Also follows from tensor representation on page 18: $\mathbf{2} \times \mathbf{2}=\mathbf{1}+\mathbf{3}$.

More generally, rank N tensor is $\left(\frac{1}{2}, \frac{1}{2}\right)^{N}=\sum_{A=0}^{\frac{N}{2}} \sum_{B=0}^{\frac{N}{2}}(A, B)$,
i.e. $\left(\frac{1}{2}, \frac{1}{2}\right)^{N}=\left(\frac{N}{2}, \frac{N}{2}\right)+$ lower spins, where $\left(\frac{N}{2}, \frac{N}{2}\right) \equiv$ traceless symmetric rank N tensor, $j=0, \ldots, N$.
$(N, 0)$ and $(0, N)$ are purely spin $j=N$.

2.3.8 Irreducible representation for fields

If particles created by $a_{\sigma}^{(c) \dagger}(\boldsymbol{p})$ have spin j (i.e. $\left[\boldsymbol{J}^{2}, a_{\sigma}^{(c) \dagger}(\boldsymbol{p})\right]=j(j+1) a_{\sigma}^{(c) \dagger}(\boldsymbol{p})$),
must take field with same spin j but any (A, B) consistent with triangle inequality on page 29:
$\psi_{a b}(x)=\int D^{3} p\left[\kappa e^{I p \cdot x} u_{a b}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+\lambda e^{-I p \cdot x} v_{a b \sigma}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]\left(l=a b, l^{\prime}=a^{\prime} b^{\prime}\right)$,
Lorentz transformation uses generators $\boldsymbol{A}_{a^{\prime} b^{\prime} a b}=\boldsymbol{J}_{a^{\prime} a}^{(A)} \delta_{b^{\prime} b}, \boldsymbol{B}_{a^{\prime} b^{\prime} a b}=\delta_{a^{\prime} a} \boldsymbol{J}_{b^{\prime} b}^{(B)}$
where $a=-A,-A+1, \ldots, A$ and $b=-B,-B+1, \ldots, B$.

2.3.9 Massive particles

Choose $k=(0,0,0, m)$ (momentum of particle at rest) Then W is an element of the spatial rotation group.

$L(p)$ in terms of $\boldsymbol{K}: L(p)=\exp [-I \hat{\boldsymbol{p}} \cdot \boldsymbol{K} \beta]$.

Then $W(R, p)=R$, i.e. rotation group apparatus of subsubsection 2.3.1 applies to relativistic particles too.
Conditions on u, v : $\boldsymbol{J}_{\sigma^{\prime} \sigma}^{(j)} u_{a b \sigma^{\prime}}(0)=\boldsymbol{J}_{a a^{\prime}}^{(A)} u_{a^{\prime} b \sigma}(0)+\boldsymbol{J}_{b b^{\prime}}^{(B)} u_{a b^{\prime} \sigma}(0),-\boldsymbol{J}_{\sigma^{\prime} \sigma}^{(j) *} v_{a b \sigma^{\prime}}(0)=\boldsymbol{J}_{a a^{\prime}}^{(A)} v_{a^{\prime} b \sigma}(0)+\boldsymbol{J}_{b b^{\prime}}^{(B)} v_{a b^{\prime} \sigma}(0)$.
In transformation of u, v on page 26 , take $\Lambda=R$ and $\boldsymbol{p}=0$ (i.e. $p=k$)
(so $\left.\boldsymbol{p}=\boldsymbol{k}, R p=p, L(p)=1, W(R, p)=L^{-1}(R p) R L(p)=L^{-1}(p) R=R\right)$, so e.g. $D_{l l^{\prime}}(R) v_{l^{\prime} \sigma}(0)=D_{\sigma \sigma^{\prime}}^{(j)}\left(R^{-1}\right) v_{l \sigma^{\prime}}(0)$, and use $D_{\sigma \sigma^{\prime}}^{(j)}\left(R^{-1}\right)=D_{\sigma^{\prime} \sigma}^{(j) *}(R)$ because irreducible representations of R are unitary (see form of $\left(J_{i}^{(j)}\right)_{\sigma^{\prime} \sigma}$ on page 17).

Take $l=a b$, so $D_{a b a^{\prime} b^{\prime}}(R) v_{a^{\prime} b^{\prime} \sigma}(0)=D_{\sigma^{\prime} \sigma}^{(j) *}(R) v_{a b \sigma^{\prime}}(0)$. Generators of $D^{(j) *}(R), D(R)$ are respectively $-\boldsymbol{J}^{(j) *}, \boldsymbol{A}+\boldsymbol{B}$.
u, v relation: $v_{a b \sigma}(0)=(-1)^{j+\sigma} u_{a b-\sigma}(0)$ up to normalization.
Conditions on u, v with (no sum over $\left.\sigma, \sigma^{\prime}\right)-\boldsymbol{J}_{\sigma \sigma^{\prime}}^{(j) *}=(-1)^{\sigma-\sigma^{\prime}} \boldsymbol{J}_{-\sigma,-\sigma^{\prime}}^{(j)}$ from page 17
gives $v_{a b} \sigma(0) \propto(-1)^{\sigma} u_{a b-\sigma}(0)$, absorb proportionality constant into u, v.
The \boldsymbol{p} dependence of u, v are the same, so $v_{a b \sigma}(\boldsymbol{p})=(-1)^{j+\sigma} u_{a b-\sigma}(\boldsymbol{p})$.

Take reference vector $k=(0,0,1,1)$.
Little group transformation: $W(\theta, \mu, \nu) \simeq 1+I \theta J_{3}+I \mu M+I \nu N$ with $M=J_{2}+K_{1}, N=-J_{1}+K_{2}$.
W has 3 degrees of freedom: For $\left(t_{i}\right)^{\mu}{ }_{\nu} k^{\nu}=0$, take $t_{i}=\left(J_{3}, M, N\right)$, check with Lorentz transformation of 4 -vectors on page 22 .

Choice of states: $\left(J_{3}, M, N\right)|k, \sigma\rangle=(\sigma, 0,0)|k, \sigma\rangle$.

Since $[M, N]=0$, try eigenstates for which $M|k, m, n\rangle=m|k, m, n\rangle, N|k, m, n\rangle=n|k, m, n\rangle$.
Then m, n continuous degrees of freedom, unobserved: $\left[J_{3}, M\right]=I N$, so $M\left(1-I \theta J_{3}\right)|k, m, n\rangle=(m-n \theta)\left(1-I \theta J_{3}\right)|k, m, n\rangle$,
i.e. $\left(1-I \theta J_{3}\right)|k, m, n\rangle$ is eigenvector of M, eigenvalue $m-n \theta$.

Similarly, $\left[J_{3}, N\right]=-I M$, so $\left(1-I \theta J_{3}\right)|k, m, n\rangle$ is eigenvector of N, eigenvalue $n+m \theta$.
Avoid this problem by taking $m=n=0$, so left with states $J_{3}|k, \sigma\rangle=\sigma|k, \sigma\rangle$.
Since $J_{3}=\boldsymbol{J} \cdot \hat{\boldsymbol{k}}, \sigma$ is helicity, component of spin in direction of motion.
Representation for massless particles: $D_{\sigma^{\prime} \sigma}(W)=e^{I \theta \sigma} \delta_{\sigma^{\prime} \sigma}$.
$U(W)|k, \sigma\rangle=\left(1+I \theta J_{3}+I \mu M+I \nu N\right)|k, \sigma\rangle=(1+I \theta \sigma)|k, \sigma\rangle$. For finite $\theta, U(W)|k, \sigma\rangle=e^{I \theta \sigma}|k, \sigma\rangle$.
p dependence of $u: u_{l \sigma}(\boldsymbol{p})=D_{l l^{\prime}}(L(p)) u_{l^{\prime} \sigma}(\boldsymbol{k})$. $(\boldsymbol{p}$ dependence of v is the same.) As on page 26.

Little group transformation of $u, v: u_{l}{ }_{\sigma}(\boldsymbol{k}) e^{I \theta(W, k) \sigma}=D_{l l^{\prime}}(W) u_{l^{\prime}}{ }_{\sigma}(\boldsymbol{k}), v_{l \sigma}(\boldsymbol{k}) e^{-I \theta(W, k) \sigma}=D_{l l^{\prime}}(W) v_{l^{\prime}}{ }_{\sigma}(\boldsymbol{k})$.
Transformation of u, v on page 26 reads $u_{l} \sigma(\boldsymbol{\Lambda} \boldsymbol{p}) e^{I \theta(\Lambda, p) \sigma}=D_{l l^{\prime}}(\Lambda) u_{l^{\prime}}{ }_{\sigma}(\boldsymbol{p})$. Take $\Lambda=W, p=k$.
Rotation of $u, v:\left(J_{3}\right)_{l l^{\prime}} u_{l^{\prime}}{ }_{\sigma}(\boldsymbol{k})=\sigma u_{l} \sigma(\boldsymbol{k}),\left(J_{3}\right)_{l l^{\prime}} v_{l^{\prime}}{ }_{\sigma}(\boldsymbol{k})=-\sigma v_{l}{ }_{\sigma}(\boldsymbol{k})$.
Take W to be just rotation about 3 -axis $\left(W(\theta, \mu, \nu) \simeq 1+I \theta J_{3}\right.$, i.e. $\left.\mu=\nu=0\right)$ in little group transformation of u, v.
M, N transformation of $u, v: M_{l l^{\prime}} u_{l^{\prime}}(\boldsymbol{k})=N_{l l^{\prime}} u_{l^{\prime}} \sigma(\boldsymbol{k})=0$. Same for v.
Take $W=(1+I \mu M+I \nu N)$ in little group transformation of u, v.
u, v relation: $v_{l \sigma}(\boldsymbol{p})=u_{l}^{*}{ }_{\sigma}(\boldsymbol{p})$.
Implied (up to proportionality constant) by rotation (note $\left(J_{3}\right)_{l \prime}$ is imaginary) and M, N transformation of u, v.

Allowed helicities for fields in given (A, B) representation: $\sigma= \pm(B-A)$ for particle/antiparticle.
$\boldsymbol{J}=\boldsymbol{A}+\boldsymbol{B}$, and e.g. $A_{a b a^{\prime} b^{\prime}}^{3}=a \delta_{a a^{\prime}} \delta_{b b^{\prime}}$, so rotation of u is $\sigma u_{a b \sigma}(\boldsymbol{k})=(a+b) u_{a b} \sigma(\boldsymbol{k})$.
M, N transformation of u is $M_{a b a^{\prime} b^{\prime}} u_{a^{\prime} b^{\prime}} \sigma=N_{a b a^{\prime} b^{\prime}} u_{a^{\prime} b^{\prime} \sigma}=0$. Using $M=I A_{-}-I B_{+}$and $N=-A_{-}-B_{+}$,

i.e. must have $a=-A, b=B$ or $u_{a b}=0$. So $\sigma=B-A$. Similar for v, gives $\sigma=A-B$.

2.3.11 Spin-statistics connection

Determine which of \mp for given j is possible for causality on page 27 to hold. Demand more general condition
$\left[\psi_{a b}(x), \tilde{\psi}_{\tilde{a} \tilde{b}}^{\dagger}(y)\right]_{\mp}=\int D^{3} p \pi_{a b, \tilde{a} \tilde{b}}(\boldsymbol{p})\left[\kappa \tilde{\kappa}^{*} e^{I p \cdot(x-y)} \mp \lambda \tilde{\lambda}^{*} e^{-I p \cdot(x-y)}\right]=0$ for $(x-y)^{2}>0$,
where $\psi_{a b}, \tilde{\psi}_{\tilde{a} \tilde{b}}$ for same particle species and $\pi_{a b, \tilde{a} b}(\boldsymbol{p})=u_{a b \sigma}(\boldsymbol{p}) \tilde{u}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})=v_{a b \sigma}(\boldsymbol{p}) \tilde{v}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})$.
In field on page 31, use commutation relations for $a_{\sigma}^{(\dagger)}(\boldsymbol{p})$ on page 23.
$u_{a b \sigma}(\boldsymbol{p}) \tilde{u}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})=v_{a b \sigma}(\boldsymbol{p}) \tilde{u}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})$ holds for massive particles from u, v relation on page 32.
$\left(u_{a b \sigma}(\boldsymbol{p}) \tilde{u}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})=\left[v_{a b \sigma}(\boldsymbol{p}) \tilde{v}_{\tilde{a} \tilde{b} \sigma}^{*}(\boldsymbol{p})\right]^{*}\right.$ in massless case from u, v relation on page 34).
Relation between κ, λ of different massive fields: $\kappa \tilde{\kappa}^{*}= \pm(-1)^{2 \tilde{A}+2 B} \lambda \tilde{\lambda}^{*}$.
Explicit calculation shows $\pi_{a b, \tilde{a} \tilde{b}}(\boldsymbol{p})=P_{a b, \tilde{a} \dot{b}}(\boldsymbol{p})+2 \sqrt{\boldsymbol{p}^{2}+m^{2}} Q_{a b, \tilde{a}}(\boldsymbol{p})$,
where $(P, Q)(\boldsymbol{p})$ are polynomial in \boldsymbol{p}, obey $(P, Q)(-\boldsymbol{p})=(-1)^{2 \tilde{A}+2 B}(P,-Q)(\boldsymbol{p})$.
Take $(x-y)^{2}>0$, use frame $x^{0}=y^{0}$, write $\Delta_{+}(x)=\int D^{3} p e^{I p \cdot x}$:
$\left[\psi_{a b}, \tilde{\psi}_{\tilde{a} \tilde{b}] \mp}=\left[\kappa \tilde{\kappa}^{*} \mp(-1)^{2 \tilde{A}+2 B} \lambda \tilde{\lambda}^{*}\right] P_{a b, \tilde{a} \hat{b}}(-I \nabla) \Delta_{+}(\boldsymbol{x}-\boldsymbol{y}, 0)+\left[\kappa \tilde{\kappa}^{*} \pm(-1)^{2 \tilde{A}+2 B} \lambda \tilde{\lambda}^{*}\right] Q_{a b, \tilde{a}(}(-I \boldsymbol{\nabla}) \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})\right.$.
Commutator must vanish for $\boldsymbol{x} \neq \boldsymbol{y}$, so coefficient of P zero.

Relations between κ, λ of single field: $|\kappa|^{2}=|\lambda|^{2}$ and $\pm(-1)^{2 A+2 B}=1$.
For $A=\tilde{A}, B=\tilde{B}$, relation between κ, λ of different fields reads $|\kappa|^{2}= \pm(-1)^{2 A+2 B}|\lambda|^{2}$.
Spin-statistics: Bosons (fermions) have even (odd) $2 j$ and vice versa.
From triangle inequality on page 29,
$j-(A+B)$ is integer, so $\pm(-1)^{2 j}=1$, i.e. in $\left[\psi_{a b}, \tilde{\psi}_{\tilde{a} \tilde{\tilde{b}}}\right]_{\mp}$, must have $-(+)$ for even (odd) $2 j$.
Relation between κ, λ of single massive field: $\lambda=(-1)^{2 A} e^{I c} \kappa, c$ is the same for all fields.
Divide relation between κ, λ of different massive fields on page 35 by $|\tilde{\kappa}|^{2}=|\tilde{\lambda}|^{2}: \frac{\kappa}{\tilde{\kappa}}= \pm(-1)^{2 \tilde{A}+2 B} \frac{\lambda}{\tilde{\lambda}}=(-1)^{2 A+2 \tilde{A}} \frac{\lambda}{\tilde{\lambda}}$.
Absorb κ into field, $e^{I c}$ into $a_{\sigma}^{c \dagger}(\boldsymbol{p})$ (does not affect commutation relations on page 23). $(-1)^{2 A}$ can't be absorbed into $a_{\sigma}^{c \dagger}(\boldsymbol{p})$ since this is independent of A, nor absorbed into v since this is already chosen. So

Massive irreducible field: $\psi_{a b}(x)=\int D^{3} p\left[e^{I p \cdot x} u_{a b}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+(-1)^{2 A} e^{-I p \cdot x} v_{a b}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$, or more fully as $\psi_{a b}(x)=\int D^{3} p D_{a b a^{\prime} b^{\prime}}^{(j)}(L(p))\left[e^{I p \cdot x} u_{a^{\prime} b^{\prime}}(0) a_{\sigma}(\boldsymbol{p})+(-1)^{2 A+j+\sigma} e^{-I p \cdot x} u_{a^{\prime} b^{\prime}-\sigma}(0) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$.

Use u, v relation on page 32 .

2.4 External symmetries: fermions

2.4.1 Spin $\frac{1}{2}$ fields

$2 j$ is odd \longrightarrow particles are fermions. $j=\frac{1}{2}$ representations include $(A, B)=\left(\frac{1}{2}, 0\right)$ and $(A, B)=\left(0, \frac{1}{2}\right)$. In each case, group element acts on 2 component spinor $X^{(A, B)}\left(X^{(A, B)}\right.$ is e.g. a field operator), with 2 components $X_{a b}^{(A, B)}$:

$$
\begin{aligned}
& X^{\left(\frac{1}{2}, 0\right)} \equiv X_{L}=\left(X_{\frac{1}{2}, 0}^{\left(\frac{1}{2}, 0\right)}, X_{-\frac{1}{2}, 0}^{\left(\frac{1}{2}, 0\right)}\right) \text { ("left-handed") and } \\
& X^{\left(0, \frac{1}{2}\right)} \equiv X_{R}=\left(X_{0, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}, X_{0,-\frac{1}{2}}^{\left(0, \frac{1}{2}\right)}\right) \text { ("right-handed") }
\end{aligned}
$$

"Handedness" / chirality refers to eigenstates of helicity for massless particles (see later).

Lorentz transformation of spinors: $U(\Lambda) X_{L / R} U^{\dagger}(\Lambda)=h_{L / R}(\Lambda) X_{L / R}$ (D acts on the $2 a, b$ components).
From explicit form of Lorentz group elements on page $22, h_{L / R}(\Lambda)=e^{I \boldsymbol{J}^{\left(\frac{1}{2}, 0\right) /\left(0, \frac{1}{2}\right)} \cdot \boldsymbol{\theta}} e^{-I \boldsymbol{K}^{\left(\frac{1}{2}, 0\right) /\left(0, \frac{1}{2}\right)} \cdot \hat{\boldsymbol{e}} \beta}$, where
Lorentz group generators for spinors: $J_{i}^{\left(\frac{1}{2}, 0\right)}=\frac{1}{2} \sigma_{i}, K_{i}^{\left(\frac{1}{2}, 0\right)}=I \frac{1}{2} \sigma_{i}, J_{i}^{\left(0, \frac{1}{2}\right)}=\frac{1}{2} \sigma_{i}, K_{i}^{\left(0, \frac{1}{2}\right)}=-I \frac{1}{2} \sigma_{i}$,
where σ_{i} are the Pauli σ matrices $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ and $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, which obey
Rotation group algebra: $\left[\frac{1}{2} \sigma_{i}, \frac{1}{2} \sigma_{j}\right]=I \epsilon_{i j k} \frac{1}{2} \sigma_{k}$.
Follows from $J_{i}=J_{i}^{(A)}+J_{i}^{(B)}$ and $K_{i}=I\left(J_{i}^{(A)}-J_{i}^{(B)}\right)$ on page 29,
and $J_{i}^{(0)}=0$ and $J_{i}^{\left(\frac{1}{2}\right)}=\frac{1}{2} \sigma_{i}$ from irreducible representation for spin j on page 17 .
Explicit form of $h_{L / R}: h_{L / R}=e^{I \frac{1}{2} \sigma_{i} \theta_{i}} e^{\mp \frac{1}{2} \sigma_{i} \hat{e}_{i} \beta}$. Note σ matrices are Hermitian.
Product of σ matrices: $\sigma_{i} \sigma_{j}=\delta_{i j}+I \epsilon_{i j k} \sigma_{k}$. Follows by explicit calculation.
Direct calculation of $h_{L / R}: h_{L / R}=\left(\cos \frac{\theta}{2}+I \sigma_{i} \hat{\theta}_{i} \sin \frac{\theta}{2}\right)\left(\cosh \frac{\beta}{2} \mp \sigma_{i} \hat{e}_{i} \sinh \frac{\beta}{2}\right)$.
From product of σ matrices, $T^{2}=1$ where $T=\sigma_{i} \hat{e}_{i}\left(T=\sigma_{i} \hat{\theta}_{i}\right)$. Then $e^{x T}=\cosh x+T \sinh x\left(e^{I x T}=\cos x+I T \sin x\right)$.

Write $h_{L}=h$ and $X_{L}=X$ which has components $X_{a}=\left(X_{1}, X_{2}\right)$, which transforms as 1. $X_{a}^{\prime}=h_{a}^{b} X_{b}$.
Can also define spinor transforming with h^{*} : Use dotted indices for h^{*}, so $2 . X_{\dot{a}}^{\prime \dagger}=h_{\dot{a}}^{*} \dot{b} X_{\dot{b}}^{\dagger}$.

Then $h_{R}=h^{*-1 T} . \quad$ From explicit form of $h_{L / R}$ on page 38.
$\underline{\text { Use upper indices for } h^{-1}}$, and X_{R} has components $X^{\dagger \dot{a}}=\left(X^{\dagger \dot{1}}, X^{\dagger \dot{2}}\right), \quad$ Dotted indices because h^{*} is used.
transformation is $4 . X^{\prime \dagger \dot{a}}=\left(h^{*-1 T}\right)^{\dot{a}}{ }_{\dot{b}} X^{\dagger \dot{b}}$, where we define $\left(h^{T}\right)^{a}{ }_{b}=h_{b}{ }^{a}$.
Conjugate of this turns dotted indices into undotted indices, so $3 . X^{\prime a}=\left(h^{-1 T}\right)^{a}{ }_{b} X^{b}$.

Conjugate of spinors: $\left(X^{a}\right)^{\dagger}=X^{\dagger \dot{a}},\left(X_{a}\right)^{\dagger}=X_{\dot{a}}^{\dagger}$. Definition of $X^{\dagger \dot{a}}$ in terms of $X^{a}, X_{\dot{a}}^{\dagger}$ in terms of X_{a}.
Check that if X_{a} transforms as transformation 1., $X_{\dot{a}}^{\dagger}$ transforms as transformation 2.: $X_{\dot{a}}^{\dagger}=\left(X_{a}^{\prime}\right)^{\dagger}=\left(h_{a}^{b} X_{b}\right)^{\dagger}=h_{\dot{a}}^{* \dot{b}} X_{\dot{b}}^{\dagger}$.

Spinor metric: $\epsilon^{a b}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \epsilon_{a b}=-\epsilon^{a b}$. Note $\epsilon_{a b} \epsilon^{b c}=\delta_{a}{ }^{c} . \epsilon$ is unitary matrix.

Pseudo reality: $\epsilon^{a c}\left(\sigma_{i}\right)_{c}{ }^{d} \epsilon_{d b}=-\left(\sigma_{i}^{T}\right)^{a}{ }_{b}$.
Follows by explicit calculation. Since $\sigma_{i}^{*}=\sigma_{i}^{T}$, shows rotation group representation by σ matrices is real (see page 12).
$X_{\dot{a}}^{\dagger}$ is $\left(0, \frac{1}{2}\right)$, i.e. right-handed, like $X^{\dagger \dot{a}}$.
Pseudo reality above implies $\epsilon^{\dot{c} c} h_{c}^{* \dot{c}} \epsilon_{d \dot{b}}=\left(h^{*-1 T}\right)^{\dot{a}}$, i.e. h^{*}, h_{R} same up to unitary similarity transformation.
For unitary representations, follows because $A=B^{\dagger}$ from definition on page 29 , so conjugation makes $\left(\frac{1}{2}, 0\right) \rightarrow\left(0, \frac{1}{2}\right)$.

This means dotted indices are for right-handed $\left(\left(0, \frac{1}{2}\right)\right)$ fields.
(Similarly, undotted indices are for left-handed $\left(\left(\frac{1}{2}, 0\right)\right)$ fields.)

Metric condition: $h_{\dot{e}}^{*} \dot{d}_{\dot{d} \dot{b}}\left(h^{* T}\right)^{\dot{f}}{ }_{\dot{f}}=\epsilon_{\dot{e} \dot{f}}$.
Follows from $\epsilon^{\dot{c} c} h_{\dot{c}}^{* \dot{d}} \epsilon_{d \dot{b}}=\left(h^{*-1 T}\right)^{\dot{a}}{ }_{b}$ result above. Thus ϵ is the group's invariant matrix \mathfrak{g} ("metric") on page 12.

Raising and lowering of spinor indices: $X^{a}=\epsilon^{a b} X_{b}$. This is definition of X^{a} in terms of X_{a}.
Follows that $X_{a}=\epsilon_{a b} X^{b}$. Same definition / behaviour for dotted indices.
Check that if X_{a} transforms as transformation 1. on page 39, X^{a} transforms as transformation 3.: $X^{\prime a}=\epsilon^{a b} X_{b}^{\prime}=\epsilon^{a b} h_{b}{ }^{c} X_{c}$.
From pseudo reality, $\epsilon^{a b} h_{b}{ }^{c} \epsilon_{c d}=\left(h^{-1 T}\right)^{a}{ }_{d}$, or $\epsilon^{a b} h_{b}{ }^{c}=\left(h^{-1 T}\right)^{a}{ }_{b} \epsilon^{b c}$, so $X^{\prime a}=\left(h^{-1 T}\right)^{a}{ }_{b} \epsilon^{b c} X_{c}=\left(h^{-1 T}\right)^{a}{ }_{b} X^{b}$.

Right-handed from left-handed fields: $X^{\dagger \dot{a}}=\left(\epsilon^{a b} X_{b}\right)^{\dagger}$
So all fields can be expressed in terms of left-handed fields.

Scalar from 2 spinors: $X Y=X^{a} Y_{a}=-Y_{a} X^{a}=Y^{a} X_{a}=-X_{a} Y^{a}=Y X$.

$$
X^{a \prime} Y_{a}^{\prime}=\left(h^{-1 T}\right)^{a}{ }_{c} X^{c} h_{a}{ }^{b} Y_{b}=\left(h^{-1}\right)_{c}{ }^{a} h_{a}{ }^{b} X^{c} Y_{b} . X, Y \text { anticommute (spinor operators). } X^{a} Y_{a}=-X_{a} Y^{a} \text { because } \epsilon^{a b} \epsilon_{a c}=-\delta^{b}{ }_{c} .
$$

Hermitian conjugate of scalar: $(X Y)^{\dagger}=\left(X^{a} Y_{a}\right)^{\dagger}=\left(Y_{a}\right)^{\dagger}\left(X^{a}\right)^{\dagger}=Y_{\dot{a}}^{\dagger} X^{\dagger \dot{a}}=Y^{\dagger} X^{\dagger}$.

4-vector σ matrices $\sigma_{a \dot{b}}^{\mu}: \quad \sigma_{a \dot{b}}^{i}=\left(\sigma_{i}\right)_{a \dot{b}}, \sigma_{a \dot{b}}^{0}=\left(\sigma_{0}\right)_{a \dot{b}}$ and $\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

4-vector σ matrices with raised indices: $\bar{\sigma}^{\mu \dot{a} b}=\epsilon^{b c} \sigma_{c \dot{d}}^{\mu} \dot{\epsilon}^{\dot{\epsilon} \dot{d}}$, so $\bar{\sigma}^{i} \dot{a} b=-\left(\sigma_{i}\right)^{\dot{a} b}, \bar{\sigma}^{0} \dot{a} b=\left(\sigma_{0}\right)^{\dot{a} b}$.
Second result follows from definition by explicit calculation.
Inner product of 4-vector σ matrices: $g_{\rho \omega} \sigma_{e \dot{f}}^{\omega} \bar{\sigma}^{\rho \dot{b} a}=-2 \delta_{e}^{a} \delta_{\dot{f}}^{\dot{b}}$.
Outer product of 4-vector σ matrices: $\sigma_{a \dot{b}}^{\nu} \bar{\sigma}^{\rho \dot{b} a}=-2 g^{\nu \rho}$.

```
Xa}\mp@subsup{\sigma}{a\dot{b}}{\mu}\mp@subsup{Y}{}{\dagger\dot{b}}\mathrm{ is a 4-vector.
```

Need to show $X^{\prime a} \sigma_{a \dot{b}}^{\mu} Y^{\prime \dagger \dot{b}}=\Lambda^{\mu}{ }_{\nu} X^{a} \sigma_{a b}^{\nu} \dot{b}^{\dagger \dot{b}}$. Since $X^{\prime a} \sigma_{a \dot{b}}^{\mu} Y^{\prime \dagger \dot{b}}=\left(h^{-1 T}\right)^{a}{ }_{c} X^{c} \sigma_{a \dot{b}}^{\mu}\left(h^{*-1 T}\right)^{\dot{b}}{ }_{\dot{d}} Y^{\dagger \dot{d}}$,
need to show $\left(h^{-1}\right)_{a}^{c} \sigma_{c \dot{d}}^{\mu}\left(h^{*-1 T}\right)^{\dot{j}}{ }_{\dot{b}}=\Lambda^{\mu}{ }_{\nu} \sigma_{a \dot{b}}^{\nu}$. Contracting with $\bar{\sigma}^{\rho} \dot{b a}$ and using outer product of 4-vector σ matrices
gives $\Lambda^{\mu \rho}=-\frac{1}{2} \bar{\sigma}^{\rho} \dot{b} a\left(h^{-1}\right)_{a}{ }^{c} \sigma_{c \dot{d}}^{\mu}\left(h^{*-1 T}\right)^{\dot{d}} \dot{b}=-\frac{1}{2} \operatorname{tr}\left[\bar{\sigma}^{\rho} h^{-1} \sigma^{\mu} h^{*-1 T}\right]$, which is equivalent because σ matrices linearly independent (or multiply this by $g_{\rho \omega} \sigma_{e f}^{\omega}$ and use inner product of 4 -vector σ matrices). Check group property:
$\Lambda^{\mu}{ }_{\nu} \Lambda^{\prime \nu}{ }_{\rho}=\frac{1}{2} \operatorname{tr}\left[\bar{\sigma}^{\mu} h^{-1}(\Lambda) \sigma^{\nu} h^{*-1 T}(\Lambda)\right] \frac{1}{2} \operatorname{tr}\left[\bar{\sigma}^{\nu} h^{-1}\left(\Lambda^{\prime}\right) \sigma^{\rho} h^{*-1 T}\left(\Lambda^{\prime}\right)\right]=\frac{1}{2} \bar{\sigma}_{i j}^{\mu} h_{j k}(\Lambda) \sigma_{\mu k l} h_{l i}^{\dagger}(\Lambda) \bar{\sigma}_{m n}^{\nu} h_{n p}\left(\Lambda^{\prime}\right) \sigma_{\rho p q} h_{q m}^{\dagger}\left(\Lambda^{\prime}\right)$. From
inner product of 4-vector σ matrices, $\bar{\sigma}_{m n}^{\nu} \sigma_{\mu k l}=-2 \delta_{m l} \delta_{k n}$, so $\Lambda^{\mu}{ }_{\nu} \Lambda^{\prime \nu}{ }_{\rho}=-\frac{1}{2} \bar{\sigma}^{\mu} \dot{b a}\left(h^{-1}\left(\Lambda^{\prime}\right) h^{-1}(\Lambda)\right)_{a}{ }_{a} \sigma_{\rho c \dot{d}}\left(h^{*-1 T}(\Lambda) h^{*-1 T}\left(\Lambda^{\prime}\right)\right)^{d}{ }_{b}$

Convenient to put left- (X) and right-handed (Z) fields together as 4 component spinor:
$\psi^{T}=\left(C_{1} X_{\frac{1}{2}, 0}^{\left(\frac{1}{2}, 0\right)}, C_{1} X_{-\frac{1}{2}, 0}^{\left(\frac{1}{2}, 0\right)}, C_{2} Z_{0, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}, C_{2} Z_{0,-\frac{1}{2}}^{\left(0, \frac{1}{2}\right)}\right)$, where C_{1}, C_{2} scalar constants.

Lorentz group generators: $J_{i}=\left(\begin{array}{cc}\frac{1}{2} \sigma_{i} & 0 \\ 0 & \frac{1}{2} \sigma_{i}\end{array}\right)$ and $K_{i}=\left(\begin{array}{cc}I \frac{1}{2} \sigma_{i} & 0 \\ 0 & -I \frac{1}{2} \sigma_{i}\end{array}\right)$.
Follows from Lorentz group generators for spinors on page 38.
This is the chiral (Weyl) representation,
others representations from similarity transformation: $J_{i}^{\prime}=V J_{i} V^{-1}, K_{i}^{\prime}=V K_{i} V^{-1}, X^{\prime}=V X$ etc.

Preferable to express in terms of left-handed fields only:
$\psi=\binom{X_{a}}{\left(\epsilon^{b c} Y_{c}\right)^{\dagger}}=\binom{X_{a}}{Y^{\dagger \dot{b}}}$, where $Y=Z^{\dagger}$ is left-handed like X

2.4.2 Spin $\frac{1}{2}$ in general representations

Any 4×4 matrix can be constructed from sums/products of gamma matrices (next page):
Gamma matrices (chiral representation): $\gamma^{0}=-I\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\gamma^{i}=-I\left(\begin{array}{cc}0 & \sigma_{i} \\ -\sigma_{i} & 0\end{array}\right)$, or $\gamma^{\mu}=-I\left(\begin{array}{cc}0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0\end{array}\right)$.
Gamma matrix in different representations related by similarity transformation $\gamma^{\prime \mu}=V \gamma^{\mu} V^{-1}$.
Anticommutation relations for $\gamma^{\mu}:\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$. This is representation independent.
Check by explicit calculation in chiral representation, use rotation group algebra on page 38 .
Define $\gamma_{5}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=-I \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} . \quad$ Check last representation-independent equality explicitly in chiral representation.
Then $P_{L}=\frac{1}{2}\left(1+\gamma_{5}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$ projects out left-handed spinor: $P_{L}\binom{X_{a}}{\left(\epsilon^{b} Y_{c}\right)^{\dagger}}=\binom{X_{a}}{0}$,
similarly $P_{R}=\frac{1}{2}\left(1-\gamma_{5}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ projects out right-handed spinor: $P_{R}\binom{X_{a}}{\left(\epsilon^{b c} Y_{c}\right)^{\dagger}}=\binom{0}{\left(\epsilon^{b c} Y_{c}\right)^{\dagger}}$.
Note $P_{L / R}$ are projection operators: $P_{L / R}^{2}=P_{L / R}, P_{L / R} P_{R / L}=0$.

Any 4×4 matrix is linear combination of $\mathbf{1}, \gamma^{\mu},\left[\gamma^{\mu}, \gamma^{\nu}\right], \gamma^{\mu} \gamma_{5}, \gamma_{5}$.
Because these are 16 non-zero linearly independent 4×4 matrices.
Non-zero because their squares, calculated from anticommutation relations on page 44, are non-zero.
Linearly independent because they are orthogonal if we define scalar product of any two to be trace of their matrix product:
$\operatorname{tr}\left[\mathbf{1} \gamma^{\mu}\right]=0$, because $\operatorname{tr}\left[\gamma^{\mu}\right]=0$ in chiral representation, therefore in any other representation.
$\operatorname{tr}\left[\mathbf{1}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right]=0$ by (anti)symmetry. From anticommutation relations, $\operatorname{tr}\left[\mathbf{1} \gamma^{\mu} \gamma_{5}\right]=-\operatorname{tr}\left[\gamma_{5} \gamma^{\mu}\right]=-\operatorname{tr}\left[\gamma^{\mu} \gamma_{5}\right]=0$
and also $\operatorname{tr}\left[\mathbf{1} \gamma_{5}\right]=\operatorname{tr}\left[\gamma_{5}\right]=0$ by commuting γ^{0} from left to right.
Next, $\operatorname{tr}\left[\gamma^{\rho}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right]=0$: From anticommutation relations, $\gamma_{5}^{2}=-\gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-\gamma^{0}{ }^{2} \gamma^{12} \gamma^{2}{ }^{2} \gamma^{32}=1$.
So $\operatorname{tr}\left[\gamma^{\rho}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right]=\operatorname{tr}\left[\gamma_{5}^{2} \gamma^{\rho}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right]=-\operatorname{tr}\left[\gamma_{5} \gamma^{\rho}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{5}\right]=\operatorname{tr}\left[\gamma_{5} \gamma^{\rho}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{5}\right]$.
To show $\operatorname{tr}\left[\gamma^{\rho} \gamma^{\mu} \gamma_{5}\right]=0$, first consider case $\rho=\mu$. Then $\gamma^{\rho} \gamma^{\mu}=g^{\rho \rho}$, and result is $\alpha \operatorname{tr}\left[\gamma_{5}\right]=0$.
If e.g. $\rho=1, \mu=2, \operatorname{tr}\left[\gamma^{\rho} \gamma^{\mu} \gamma_{5}\right]=I \operatorname{tr}\left[\gamma^{0} \gamma^{3}\right]=0 . \operatorname{tr}\left[\gamma^{\mu} \gamma_{5}\right]=0$ already shown.
$\operatorname{tr}\left[\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma^{\rho} \gamma_{5}\right]=0$ from anticommutation relations. $\operatorname{tr}\left[\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{5}\right]=0$ because $\operatorname{tr}\left[\gamma^{\rho} \gamma^{\mu} \gamma_{5}\right]=0$. Finally $\operatorname{tr}\left[\gamma^{\mu} \gamma_{5} \gamma_{5}\right]=\operatorname{tr}\left[\gamma^{\mu}\right]=0$.

So all spinorial observables expressible as representation independent sums/products of gamma matrices.

Lorentz group generators from $\gamma^{\mu}: J^{\mu \nu}=-\frac{I}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

Explicit calculation in chiral representation, $J_{i}=\frac{1}{2} \epsilon_{i j k} J_{j k}, \boldsymbol{K}=\left(J^{10}, J^{20}, J^{30}\right)$,
Lorentz group generators on page 43, Gamma matrices on page 44.
Similarity transformation on page 43 equivalent to similarity transformation on page 44.
Infinitesimal Lorentz transformation of $\gamma^{\mu}: I\left[J^{\mu \nu}, \gamma^{\rho}\right]=g^{\nu \rho} \gamma^{\mu}-g^{\mu \rho} \gamma^{\nu}$,
Follows from anticommutation relations for γ^{μ} on page 44 and Lorentz group generators from γ^{μ} above.
Lorentz transformation of $\gamma^{\mu}: D(\Lambda) \gamma^{\mu} D^{-1}(\Lambda)=\Lambda_{\nu}{ }^{\mu} \gamma^{\nu}$, i.e. γ^{μ} transforms like a vector.
Agrees with infinitesimal Lorentz transformation of γ^{μ}, because for infinitesimal case,
LHS is $\left(1+\frac{1}{2} I \omega_{\rho \sigma} J^{\rho \sigma}\right) \gamma^{\mu}\left(1-\frac{1}{2} I \omega_{\omega \eta} J^{J \eta}\right)=\gamma^{\mu}-\frac{1}{2} I \omega_{\rho \sigma}\left[\gamma^{\mu}, J^{\rho \sigma}\right]$, and RHS is $\left(\delta_{\nu}{ }^{\mu}+\omega_{\nu \sigma} g^{\mu \sigma}\right) \gamma^{\nu}=\gamma^{\mu}-\frac{1}{2} \omega_{\rho \sigma}\left(g^{\mu \rho} \gamma^{\sigma}-g^{\mu \sigma} \gamma^{\rho}\right)$.

Lorentz transformation of vector: $\gamma^{\mu}(\Lambda p)_{\mu}=D(\Lambda) \gamma^{\mu} p_{\mu} D^{-1}(\Lambda)$.
From Lorentz transformation of γ^{μ} above.
Reference boost: $\frac{\gamma^{\mu} p_{\mu}}{m}=-D(L(p)) \gamma^{0} D^{-1}(L(p))$. Equivalent of $p=L(p) k$ on page $24,-\gamma^{0} m=\gamma^{\mu} k_{\mu}$.
In Lorentz transformation of vector, take $p=k, \Lambda=L(q)$. Then $\gamma^{\mu} q_{\mu}=D(L(q)) \gamma^{\mu} k_{\mu} D^{-1}(L(q))=-D(L(q)) \gamma^{0} m D^{-1}(L(q))$.

Parity transformation matrix: $\beta=I \gamma^{0}=\left(\begin{array}{ll}0 & \mathbf{1} \\ \mathbf{1} & 0\end{array}\right)$. Note $\beta^{2}=\mathbf{1}$.

Pseudo-unitarity of Lorentz transformation: $J^{\mu \nu \dagger}=\beta J^{\mu \nu} \beta, D^{\dagger}=\beta D^{-1} \beta$.

$\beta \gamma^{0} \beta=\gamma^{0}=-\gamma^{0 \dagger}$ and $\beta \gamma^{i} \beta=-\gamma^{i}=-\gamma^{i \dagger}$, or $\beta \gamma^{\mu} \beta=-\gamma^{\mu \dagger}$. Then use Lorentz group generators from γ^{μ} on page 46.
Infinitesimal D^{\dagger} is $1-\frac{1}{2} I \omega_{m u \nu} J^{\mu \nu \dagger}=\beta\left(1-\frac{1}{2} I \omega_{\text {mu }} J^{\mu \nu}\right) \beta$.
Adjoint spinor: $\bar{X}=X^{\dagger} \beta$. Allows construction of scalars, vectors etc. from spinors:
Covariant products: $\bar{X} Y$ is scalar, $\bar{X} \gamma^{\mu} Y$ is vector
First case: $\overline{X^{\prime}} Y^{\prime}=X^{\prime \dagger} \beta Y^{\prime}=X^{\dagger} D^{\dagger} \beta D Y$.
From pseudo-unitarity of Lorentz transformation, $D^{\dagger} \beta=\beta D^{-1} \beta^{2}=\beta D^{-1}$, so $\overline{X^{\prime}} Y^{\prime}=X^{\dagger} \beta D^{-1} D Y=X^{\dagger} \beta Y=\bar{X} Y$.
Second case: $\overline{X^{\prime}} \gamma^{\mu} Y^{\prime}=X^{\dagger} D^{\dagger} \beta \gamma^{\mu} D Y=X^{\dagger} \beta D^{-1} \gamma^{\mu} D Y$. Lorentz transformation of γ^{μ} on page 46 can be rewritten $D^{-1} \gamma^{\mu} D=\left(\Lambda^{-1}\right)_{\nu}^{\mu} \gamma^{\nu}=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}$, so $\overline{X^{\prime}} \gamma^{\mu} Y^{\prime}=\Lambda^{\mu}{ }_{\nu} X^{\dagger} \beta \gamma^{\nu} Y=\Lambda^{\mu}{ }_{\nu} \bar{X} \beta \gamma^{\nu} Y$.

Vanishing products: $\bar{\psi}_{R / L} \psi_{L / R}$ and $\bar{\psi}_{L / R} \gamma^{\mu} \psi_{L / R}$, where $\psi_{L / R}=P_{L / R} \psi$ (see page 44 for $P_{L / R}$).
Using $\gamma_{5}^{\dagger}=\gamma_{5}$ in chiral representation and $P_{L / R} \beta=\beta P_{R / L}$ gives $\bar{\psi}_{R} \psi_{L}=\psi^{\dagger} P_{L} \beta P_{L} \psi=\psi^{\dagger} \beta P_{R} P_{L} \psi=0$ (because $P_{L / R} P_{R / L}=0$).
Similarly, using $\gamma^{\mu} \gamma_{5}=-\gamma_{5} \gamma^{\mu}$, one has $\bar{\psi}_{L} \gamma^{\mu} \psi_{L}=\psi^{\dagger} P_{R} \beta \gamma^{\mu} P_{L} \psi=\psi^{\dagger} \beta \gamma^{\mu} P_{R} P_{L} \psi=0$.

Problems 1

1: If the parameterization α_{i} of group elements $U(\boldsymbol{\alpha})$, chosen such that $U(\mathbf{0})=1$, can be chosen such that the Abelian limit $U(\boldsymbol{\alpha}) U(\boldsymbol{\beta})=U(\boldsymbol{\alpha}+\boldsymbol{\beta})$ is obeyed for $\beta_{i}=c \alpha_{i}$, show that $U(\alpha)=\exp \left[I t_{i} \alpha_{i}\right]$. Hint: Use the Abelian limit to write $U(\boldsymbol{\alpha})=\left[U\left(\frac{\alpha}{N}\right)\right]^{N}$, take $N \rightarrow \infty$, expand $U\left(\frac{\alpha}{N}\right)=1+I t_{i} \frac{\alpha_{j}}{N}+O\left(\frac{1}{N^{2}}\right)$ and use $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ and the binomial theorem $(x+y)^{N}=\sum_{k=0}^{N} \frac{N!}{k!(N-k)!} x^{k} y^{N-k}$.
2: Show that the symmetry transformation $U(\boldsymbol{\alpha}) a_{\sigma}^{\dagger} a_{\sigma^{\prime}}^{\dagger} \ldots|0\rangle=D_{\sigma \sigma^{\prime \prime}}(\boldsymbol{\alpha}) D_{\sigma^{\prime} \sigma^{\prime \prime \prime}}(\boldsymbol{\alpha}) a_{\sigma^{\prime \prime}}^{\dagger} a_{\sigma^{\prime \prime \prime}}^{\dagger} \ldots|0\rangle$ and $U(\boldsymbol{\alpha})|0\rangle=|0\rangle$ is uniquely satisfied by the condition $U(\boldsymbol{\alpha}) a_{\sigma}^{\dagger} U^{\dagger}(\boldsymbol{\alpha})=D_{\sigma \sigma^{\prime}}(\boldsymbol{\alpha}) a_{\sigma^{\prime}}^{\dagger}$. Show that the matrices D furnish a representation of the group defined by $U($ namely $\gamma(\boldsymbol{\alpha}, \boldsymbol{\beta})$ in $U(\boldsymbol{\gamma}(\boldsymbol{\alpha}, \boldsymbol{\beta}))=U(\boldsymbol{\alpha}) U(\boldsymbol{\beta}))$.
3: Show that a semi-simple group's matrix generators t_{i} all obey $\operatorname{tr}\left[t_{i}\right]=0$.
4: Use the Lorentz group algebra $I\left[J^{\rho \sigma}, J^{\mu \nu}\right]=-g^{\sigma \nu} J^{\rho \mu}-g^{\rho \mu} J^{\sigma \nu}+g^{\sigma \mu} J^{\rho \nu}+g^{\rho \nu} J^{\sigma \mu}$ to derive the rotation group algebra $\left[J_{i}, J_{j}\right]=I \epsilon_{i j k} J_{k}$, where $\left(J_{1}, J_{2}, J_{3}\right)=\left(J^{23}, J^{31}, J^{12}\right)$.
5: Using the explicit result for the generator of 4 -vector boosts, namely $\left(K_{i}\right)^{\mu}{ }_{\nu}=I\left(\delta_{0 \mu} \delta_{i \nu}+\delta_{i \mu} \delta_{0 \nu}\right)$, show that the explicit calculation of a general boost is $\left[e^{-I K \cdot \hat{e} \beta}\right]_{\nu}^{\mu}=\left[1-I K_{i} \hat{e}_{i} \sinh \beta-\left(K_{i} \hat{e}_{i}\right)^{2}(\cosh \beta-1)\right]_{\nu}^{\mu}$. Hint: Show by explicit calculation the result $\left(K_{i} \hat{e}_{i}\right)^{3}=K_{i} \hat{e}_{i}$ and then use it.
6: Define a field $\psi_{l}^{c-}(x)=\int D^{3} p v_{l \sigma}(x ; \boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})$, where $v_{l \sigma}(x ; \boldsymbol{p})$ is such that $\psi_{l}^{c-}(x)$ has the transformation property $U(\Lambda, a) \psi_{l}^{c-}(x) U^{\dagger}(\Lambda, a)=D_{l l^{\prime}}\left(\Lambda^{-1}\right) \psi_{l^{\prime}}^{c-}(\Lambda x+a)$. Show that $D_{l l^{\prime}}(\Lambda) v_{l^{\prime} \sigma}(\boldsymbol{p})=D_{\sigma \sigma^{\prime}}^{(j)}\left(W^{-1}(\Lambda, p)\right) v_{l \sigma^{\prime}}(\boldsymbol{\Lambda} \boldsymbol{p})$, where $v_{l \sigma}(\boldsymbol{p})=$ $v_{l \sigma}(0 ; \boldsymbol{p})$. For a massive particle, for reference momentum $k=(0,0,0,1)$ and for L a pure boost, show that this implies that $-\boldsymbol{J}_{\sigma^{\prime} \sigma}^{(j) *} v_{a b} \sigma^{\prime}(0)=\boldsymbol{J}_{a a^{\prime}}^{(A)} v_{a^{\prime} b}(0)+\boldsymbol{J}_{b b^{\prime}}^{(B)} v_{a b^{\prime}} \sigma(0)$. Hint: Take $\Lambda=R$ and $p=k$.
7: Show that $J_{i}^{\left(\frac{1}{2}, 0\right)}=\frac{1}{2} \sigma_{i}$ and $K_{i}^{\left(\frac{1}{2}, 0\right)}=I \frac{1}{2} \sigma_{i}$. Hint: Use $\boldsymbol{J}=\boldsymbol{A}+\boldsymbol{B}$ and $\boldsymbol{K}=I(\boldsymbol{A}-\boldsymbol{B})$, and the irreducible representation for $A=\frac{1}{2}$ and $B=0$.
8: A left-handed 2-component spinor operator X transforms according to $U(\Lambda) X U^{\dagger}(\Lambda)=h(\Lambda) X$, where the 2×2 matrix $h=e^{I \frac{1}{2} \sigma_{i} \theta_{i}} e^{-\frac{1}{2} \sigma_{i} \hat{e}_{i} \beta}$. Show that $h^{*-1 T}=e^{I \frac{1}{2} \sigma_{i} \theta_{i}} \frac{1}{2} \sigma_{i} \hat{e}_{i} \beta$ (the equivalent matrix for right-handed spinors). Hint: The Pauli matrices are Hermitian.
9: Show that $\gamma^{\mu}(\Lambda p)_{\mu}=D(\Lambda) \gamma^{\mu} p_{\mu} D^{-1}(\Lambda)$. Hint: Consider the infinitessimal case, which follows if $I\left[J^{\mu \nu}, \gamma^{\rho}\right]=g^{\nu \rho} \gamma^{\mu}-$ $g^{\mu \rho} \gamma^{\nu}$. To prove the latter, use $J^{\mu \nu}=-\frac{I}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ and $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$.
10: Show that $\bar{X} \gamma^{\mu} Y$ is a 4 -vector, where $\bar{X}=X^{\dagger} \beta$ with $\beta=I \gamma^{0}$.

2.4.3 The Dirac field

Group 4 possibilities for $u_{a b \sigma}^{(A, B)}$ together as 4 component spinor: $u_{\sigma}^{T}=\left(u_{\frac{1}{2}, 0, \sigma}^{\left(\frac{1}{2}, 0\right)}, u_{-\frac{1}{2}, 0, \sigma}^{\left(\frac{1}{2}, 0\right)}, u_{0, \frac{1}{2}, \sigma}^{\left(0, \frac{1}{2}\right)}, u_{0,-\frac{1}{2}, \sigma}^{\left(0, \frac{1}{2}\right)}\right)$.
Likewise, $v_{\sigma}^{T}=\left(-v_{\frac{1}{2}, 0, \sigma}^{\left(\frac{1}{2}, 0\right)},-v_{-\frac{1}{2}, 0, \sigma}^{\left(\frac{1}{2}, 0\right)}, v_{0, \frac{1}{2}, \sigma}^{\left(0, \frac{1}{2}\right)}, v_{0,-\frac{1}{2}, \sigma}^{\left(0, \frac{1}{2}\right)}\right)$.
First $2 v$ components multiplied by $(-1)^{2 A}=-1$ to remove it from massive irreducible field on page 36 .

Dirac field: $\psi(x)=\binom{X_{a}}{\left(\epsilon^{b c} Y_{c}\right)^{\dagger}}=\int \frac{d^{3} p}{(2 \pi)^{3}}\left[e^{I p \cdot x} u_{\sigma}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+e^{-I p \cdot x} v_{\sigma}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$
(Note $D^{3} p \rightarrow d^{3} p$ for convention.)
Anticommutation relations for $\operatorname{spin} \frac{1}{2}:\left[a_{\sigma}(\boldsymbol{p}), a_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]_{+}=(2 \pi)^{3} \delta_{\sigma \sigma^{\prime}} \delta^{(3)}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right)$ (i.e. no $2 p^{0}$ factor).
\boldsymbol{p} dependence of $\operatorname{spin} \frac{1}{2} u, v: u_{\sigma}(\boldsymbol{p})=\sqrt{\frac{m}{p^{0}}} D(L(p)) u_{\sigma}(0)$ and $v_{\sigma}(\boldsymbol{p})=\sqrt{\frac{m}{p^{0}}} D(L(p)) v_{\sigma}(0)$.
This is just the \boldsymbol{p} dependence of u, v on page 26 .

Condition on spin $\frac{1}{2} u, v$: $-\frac{1}{2} \sigma_{i \sigma^{\prime} \sigma^{*}}^{*} v_{0 b \sigma^{\prime}}^{\left(0, \frac{1}{2}\right)}(0)=\frac{1}{2} \sigma_{i b b^{\prime}} v_{0 b^{\prime}}^{\left(0, \frac{1}{2}\right)}(0), \frac{1}{2} \sigma_{i \sigma^{\prime} \sigma} u_{0 b \sigma^{\prime}}^{\left(0, \frac{1}{2}\right)}(0)=\frac{1}{2} \sigma_{i b b^{\prime}} u_{0 b^{\prime} \sigma}^{\left(0, \frac{1}{2}\right)}(0)$.
From conditions on u, v on page 32 and Lorentz group generators on page 43. Recall $A_{i}=\frac{1}{2}\left(J_{i}-I K_{i}\right)$ and $B_{i}=\frac{1}{2}\left(J_{i}+I K_{i}\right)$.
Spin $\frac{1}{2} u, v$ relation: v_{1} or $2 \sigma(0)=-(-1)^{\frac{1}{2}+\sigma} u_{1}$ or $2-\sigma(0)$ and $v_{3 \text { or } 4 \sigma}(0)=(-1)^{\frac{1}{2}+\sigma} u_{3}$ or $4-\sigma(0)$.
From u, v relation on page 32, $v_{a 0}^{\left(\frac{1}{2}, 0\right)}(0)=(-1)^{\frac{1}{2}+\sigma} u_{a 0}^{\left(\frac{1}{2}, 0\right)}(0)$ and $v_{0 b \sigma}^{\left(0, \frac{1}{2}\right)}(0)=(-1)^{\frac{1}{2}+\sigma} u_{0 b-\sigma}^{\left(0, \frac{1}{2}\right)}(0)$.
Then multiply $v_{a 0}^{\left(\frac{1}{2}, 0\right)} \sigma(0)$ by $(-1)^{2 A}=-1$ as discussed on page 49.
Form of $u, v: u_{\sigma=\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right), u_{\sigma=-\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right), v_{\sigma=\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 0 & -1\end{array}\right), v_{\sigma=-\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right)$.
Solution to condition on $\operatorname{spin} \frac{1}{2} v$ is $v_{0,-\frac{1}{2}, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}=-v_{0, \frac{1}{2}, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}$ and $v_{0, \frac{1}{2}, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}=v_{0,-\frac{1}{2}, \frac{1}{2}}^{\left(0, \frac{1}{2}\right)}=0$. Components for u constrained similarly.
Use spin $\frac{1}{2} u, v$ relation, and adjust normalizations of $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) parts individually.
Massless $u, v: u_{\sigma=\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right), u_{\sigma=-\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right), v_{\sigma=\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right), v_{\sigma=-\frac{1}{2}}^{T}(0)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)$.
From allowed helicities for fields in given (A, B) representation on page 34, e.g. for $\left(\frac{1}{2}, 0\right)$ field such as neutrino, only
allowed $\sigma=0-\frac{1}{2}$ for particle and $\sigma=\frac{1}{2}-0$ for antiparticle, i.e. $\psi_{L}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}}\left[e^{I p \cdot x} u_{-\frac{1}{2}}^{\left(\frac{1}{2}, 0\right)}(\boldsymbol{p}) a_{-\frac{1}{2}}(\boldsymbol{p})+e^{-I p \cdot x} v_{\frac{1}{2}}^{\left(\frac{1}{2}, 0\right)}(\boldsymbol{p}) a_{\frac{1}{2}}^{c^{\dagger}}(\boldsymbol{p})\right]$.
Majorana particle $=$ antiparticle: $a_{\sigma}^{c \dagger}(\boldsymbol{p})=a_{\sigma}^{\dagger}(\boldsymbol{p})$, so $\psi_{M}^{T}=\left(X_{a}, X^{\dagger \dot{b}}\right)$ (i.e. $Y_{a}=X_{a}$ on page 49).

2.4.4 The Dirac equation

Representation independent definition of $\operatorname{spin} \frac{1}{2} u, v:\left(I \gamma^{\mu} p_{\mu}+m\right) u_{\sigma}(\boldsymbol{p})=0$ and $\left(-I \gamma^{\mu} p_{\mu}+m\right) v_{\sigma}(\boldsymbol{p})=0$.
For u and v, reference boost on page 46 gives $-I \frac{\gamma^{\mu} p_{\mu}}{m} u_{\sigma}(\boldsymbol{p})=D(L(p)) \beta D^{-1}(L(p)) u_{\sigma}(\boldsymbol{p})=\sqrt{\frac{m}{p^{0}}} D(L(p)) \beta u_{\sigma}(0)$,
last step from \boldsymbol{p} dependence of $\operatorname{spin} \frac{1}{2} u, v$ on page 49 .
In the chiral representation, and therefore any other representation, $\beta u_{\sigma}(0)=u_{\sigma}(0)$ and $\beta v_{\sigma}(0)=-v_{\sigma}(0)$,
so $-I \frac{\gamma^{\mu} p_{\mu}}{m} u_{\sigma}(\boldsymbol{p})=\sqrt{\frac{m}{p^{0}}} D(L(p)) u_{\sigma}(0)=u_{\sigma}(\boldsymbol{p})$, last step from \boldsymbol{p} dependence of spin $\frac{1}{2} u$,v again, likewise $-I \frac{\gamma^{\mu} p_{\mu}}{m} v_{\sigma}(\boldsymbol{p})=-v_{\sigma}(\boldsymbol{p})$.

Dirac equation: $\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi_{l}^{ \pm(c)}(x)=0$.
Act on Dirac field on page 49 with $\left(\gamma^{\mu} \partial_{\mu}+m\right)$, then use representation independent definition of spin $\frac{1}{2} u, v$.

Consistent with Klein-Gordon equation $\left(\partial^{2}-m^{2}\right) \psi^{ \pm(c)}(x)=0$.
From page 26. To check, act on Dirac equation from left with $\left(\gamma^{\nu} \partial_{\nu}-m\right): 0=\left(\gamma^{\nu} \partial_{\nu}-m\right)\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi^{ \pm(c)}$
$=\left(\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}-m^{2}\right) \psi^{ \pm(c)}=\left(\frac{1}{2}\left\{\gamma^{\nu}, \gamma^{\mu}\right\} \partial_{\nu} \partial_{\mu}-m^{2}\right) \psi^{ \pm(c)}=\left(g^{\mu \nu} \partial_{\nu} \partial_{\mu}-m^{2}\right) \psi^{ \pm(c)}$
using anticommutation relations for γ^{μ} on page 44.

2.4.5 Dirac field equal time anticommutation relations

Projection operators from $u, v: u_{l \sigma}(\boldsymbol{p}) \bar{u}_{l^{\prime}}(\boldsymbol{p})=\frac{1}{2 p^{0}}\left(-I \gamma^{\mu} p_{\mu}+m\right)_{l l^{\prime}}, v_{l \sigma}(\boldsymbol{p}) \bar{v}_{l^{\prime}} \sigma(\boldsymbol{p})=\frac{1}{2 p^{0}}\left(-I \gamma^{\mu} p_{\mu}-m\right)_{l l^{\prime}}$.
Define $N_{l l^{\prime}}(p)=u_{l} \sigma(\boldsymbol{p}) \bar{u}_{l^{\prime}} \sigma(\boldsymbol{p})=\frac{m}{p^{0}}\left[D(L(p)) u_{\sigma}(0)\right]_{l}\left[u_{\sigma}^{\dagger}(0) D^{\dagger}(L(p)) \beta\right]_{l^{\prime}}$ from \boldsymbol{p} dependence of spin $\frac{1}{2} u, v$ on page 49 .
So from pseudo-unitarity of Lorentz transformation on page 47, $N(p)=\frac{m}{p^{0}} D(L(p)) N(0) D^{-1}(L(p))$.
Explicit calculation from the form of u, v on page 50 gives $N(0)=\frac{1}{2}(\beta+\mathbf{1})$ which is true in any representation.
So $N(p)=\frac{1}{2 p^{0}} D(L(p))\left(I \gamma^{0} m+m\right) D^{-1}(L(p))$, then use reference boost on page 46 .

Equal time anticommutation relations: $\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}^{\dagger}(\boldsymbol{y}, t)\right]_{+}=\delta_{l l^{\prime}} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$.

Define $R_{l l^{\prime}}=\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}^{\dagger}(\boldsymbol{y}, t)\right]_{+}=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{I \boldsymbol{p} \cdot(\boldsymbol{x}-\boldsymbol{y})}\left[u_{l \sigma}(\boldsymbol{p})[\bar{u}(\boldsymbol{p}) \beta]_{l^{\prime} \sigma}+v_{l \sigma}(-\boldsymbol{p})[\bar{v}(-\boldsymbol{p}) \beta]_{l^{\prime} \sigma}\right]$, using Dirac field and anticommutation relations for spin $\frac{1}{2}$ on page 49. Then in " v " term, take $\boldsymbol{p} \rightarrow-\boldsymbol{p}$.

From projection operators from $u, v, R=\int \frac{d^{3} p}{(2 \pi)^{2} p^{p}} e^{I \boldsymbol{p} \cdot(\boldsymbol{x}-\boldsymbol{y})}\left[\left(I \gamma^{0} p^{0}-I \boldsymbol{\gamma} \cdot \boldsymbol{p}+m\right)+\left(I \gamma^{0} p^{0}+I \boldsymbol{\gamma} \cdot \boldsymbol{p}-m\right)\right] \beta=\mathbf{1} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$.

2.5 External symmetries: bosons

Scalar boson field: $\psi(x)=\int \frac{d^{3} p}{(2 \pi)^{\frac{3}{2}}\left(2 p^{\rho^{\frac{1}{2}}}\right.}\left[e^{I p \cdot x} a(\boldsymbol{p})+e^{-I p \cdot x} a^{c \dagger}(\boldsymbol{p})\right]$.

From general form of irreducible field on page 36, where $u(\boldsymbol{p})=u(0)$ and $v(\boldsymbol{p})=u(\boldsymbol{p})$, absorb overall $u(0)$ into field.

Vector boson field $\left(\frac{1}{2}, \frac{1}{2}\right)$, spin $1: \psi^{\mu}(x)=\int \frac{d^{3} p}{(2 \pi)^{\frac{3}{2}}\left(2 p^{0}\right)^{\frac{1}{2}}}\left[e^{I p \cdot x} u_{\sigma}^{\mu}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+e^{-I p \cdot x} v_{\sigma}^{\mu}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right], u_{\sigma}^{0}(0)=v_{\sigma}^{0}(0)=0$.

Conditions on u, v on page 32 (using $\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{J})$ give e.g. $\left(J_{k}^{(j)}\right)_{\sigma^{\prime} \sigma} u_{\sigma^{\prime}}^{\mu}=\left(J_{k}\right)^{\mu}{ }_{\nu} u_{\sigma}^{\nu}$, so $\left(J_{k}^{(j)} J_{k}^{(j)}\right)_{\sigma^{\prime} \sigma} u_{\sigma^{\prime}}^{\mu}=\left(J_{k} J_{k}\right)^{\mu}{ }_{\nu} u_{\sigma}^{\nu}$.
$\operatorname{But}\left(J_{k}^{(j)} J_{k}^{(j)}\right)_{\sigma^{\prime} \sigma}=j(j+1) \delta_{\sigma^{\prime} \sigma}$ and $\left(J_{k} J_{k}\right)^{i}{ }_{j}=2 \delta^{i}{ }_{j},\left(J_{k} J_{k}\right)^{0}{ }_{\mu}=0$ from Lorentz transformation of 4-vectors on page 22,
so $j(j+1) u_{\sigma}^{i}(0)=2 u_{\sigma}^{i}(0), j(j+1) u_{\sigma}^{0}(0)=0$, i.e. $j=0$ and $u_{\sigma}^{i}(0)=0$ or $j=1$ and $u_{\sigma}^{0}(0)=0$.

Projection operator for vector boson $\left(\frac{1}{2}, \frac{1}{2}\right), \operatorname{spin} 1: u_{\sigma}^{\mu}(\boldsymbol{p}) u_{\sigma}^{\nu *}(\boldsymbol{p})=v_{\sigma}^{\mu}(\boldsymbol{p}) v_{\sigma}^{\nu *}(\boldsymbol{p})=g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m^{2}}$.
From conditions on u, v, page $32,\left(J_{3}\right)^{j}{ }_{i} u_{0}^{i}(0)=\left(J_{3}^{(1)}\right)_{\sigma^{\prime} 0} u_{\sigma^{\prime}}^{j}(0)$. But $\left(J_{3}^{(1)}\right)_{\sigma^{\prime} 0}=0,\left(J_{3}\right)^{j}{ }_{i}=-I \epsilon_{3 j i}$, so $u_{0}^{1}(0)=u_{0}^{2}(0)=0$, i.e. $u_{0}(0)=(2 m)^{-1 / 2}(0,0,1,0)$ by choice of normalization. $J_{1}^{(1)} \pm I J_{2}^{(1)}$ gives $u_{ \pm 1}(0)=(2 m)^{-1 / 2}(\pm 1,-I, 0,0) / \sqrt{2}$.

Similarly, $v_{\sigma}(0)=u_{\sigma}^{*}(0)$. Explicitly show that $u_{\sigma}^{\mu}(0) u_{\sigma}^{\nu *}(0)$ projects onto space orthogonal to time direction,
i.e. $u_{\sigma}^{\mu}(0) u_{\sigma}^{\nu *}(0)=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. But $u_{\sigma}^{\mu}(\boldsymbol{p})=L^{\mu}{ }_{\nu}(\boldsymbol{p}) u_{\sigma}^{\nu}(0)(\boldsymbol{p}$ dependence of u, v, page 26),
so $\Pi^{\mu}{ }_{\nu}(\boldsymbol{p})=u_{\sigma}^{\mu}(\boldsymbol{p})\left(u_{\nu}^{*}\right)_{\sigma}(\boldsymbol{p})=L^{\nu}{ }_{\rho}(p) L_{\nu}{ }^{\alpha}(p) \Pi^{\rho}{ }_{\alpha}(\mathbf{0})$ projects onto space orthogonal to p,
i.e. $\Pi^{2}(\boldsymbol{p})=\Pi(\boldsymbol{p})$ because $\Pi^{2}(\mathbf{0})=\Pi(\mathbf{0})$ and $p \Pi(\boldsymbol{p}) q=0$ for any q :

Finally, write $q=\alpha p+\beta \Pi^{\mu}{ }_{\nu}(p) q^{\nu}$ and show $\beta=1$:
$q^{2}=\alpha^{2} p^{2}+\beta^{2} \Pi^{\mu}{ }_{\nu}(p) q^{\nu} \Pi_{\mu}{ }^{\rho}(p) q_{\rho}$, i.e. $\Pi^{\mu}{ }_{\nu}(p) q^{\nu} \Pi_{\mu}{ }^{\rho}(p) q_{\rho}=\frac{1}{\underline{\beta^{2}}}\left(q^{2}-\alpha^{2} p^{2}\right)$.
$\operatorname{But} \Pi^{\mu}{ }_{\nu}(p) q^{\nu} \Pi_{\mu}{ }^{\rho}(p) q_{\rho}=q^{\nu} \Pi_{\nu}{ }^{\rho}(p) q_{\rho}=q^{\nu}\left(q_{\nu}-\alpha p_{\nu}\right) \frac{1}{\beta}=\underline{\frac{1}{\beta}}\left(q^{2}-\alpha^{2} p^{2}\right)$, i.e. $\frac{1}{\beta^{2}}=\frac{1}{\beta}$.

Projection operator shows there is problem for $m \rightarrow 0$. From allowed helicities for fields in given
(A, B) representation on page 34, can't construct $\left(\frac{1}{2}, \frac{1}{2}\right) 4$-vector field, where helicity $\sigma=0$,
from massless helicity $\sigma= \pm 1$ particle. But can construct 4-component field:
Massless helicity ± 1 field: $A^{\mu}(x)=\int D^{3} p\left[e^{I p \cdot x} u_{\sigma}^{\mu}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+e^{-I p \cdot x} v_{\sigma}^{\mu}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$, where $\sigma= \pm 1$.
Lorentz transformation of massless helicity ± 1 polarization vector: $e^{-I \theta \sigma} u_{\sigma}(\boldsymbol{p})=\Lambda^{-1} u_{\sigma}(\boldsymbol{\Lambda} \boldsymbol{p})+\omega(W, \boldsymbol{k}) p$.
Simplest approach: take p dependence and rotation of u on page 34 to be true, gives $u_{\sigma}^{\mu}(\boldsymbol{k}) \propto(1, I \sigma, 0,0)$.
Then M, N transformation on page 34 cannot be true, in fact $M u_{\sigma} \propto(0,0,1,1) \propto k$ and likewise for N.
Then $D(W) u_{\sigma}(\boldsymbol{k})=\left(1+I \theta J_{3}+I \mu M+I \nu N\right) u_{\sigma}(\boldsymbol{k})=u_{\sigma}(\boldsymbol{k})(1+I \sigma \theta)+(\mu+I \sigma \nu)(0,0,1,1)=\ldots=e^{I \theta \sigma}\left[u_{\sigma}(\boldsymbol{k})+\omega(W, \boldsymbol{k}) k\right]$.
Since $D(\Lambda)=\Lambda$, multiplying this from the left by $e^{-I \theta \sigma} \Lambda^{-1} D(\Lambda L(p)) D\left(W^{-1}\right)=e^{-I \theta \sigma} \Lambda^{-1} L(\Lambda p)$ gives result.
Lorentz transformation of massless helicity ± 1 field: $U(\Lambda) A^{\mu}(x) U^{\dagger}(\Lambda)=\Lambda_{\nu}^{\mu} A^{\nu}(\Lambda x)+\partial^{\mu} \alpha(x)$.
Use Lorentz transformation of $u_{\mu \sigma}$ above in $U(\Lambda) A^{\mu}(x) U^{\dagger}(\Lambda)=\int D^{3} p\left[e^{I p \cdot x} u_{\sigma}^{\mu}(\boldsymbol{p}) e^{-I \theta(\Lambda, p) \sigma} a_{\sigma}(\boldsymbol{\Lambda} \boldsymbol{p})+e^{-I p \cdot x} v_{\sigma}^{\mu}(\boldsymbol{p}) e^{I \theta(\Lambda, p) \sigma} a_{\sigma}^{c \dagger}(\boldsymbol{\Lambda} \boldsymbol{p})\right]$.
As for Poincaré transformation for fields on page 25, up to gauge transformation.
This implies $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is Lorentz covariant, as expected:
it is antisymmetric, i.e. is $(1,0)$ or $(0,1)$ if $F^{\mu \nu}= \pm \frac{I}{2} \epsilon^{\mu \nu \lambda \rho} F_{\lambda \rho}$, so from $\sigma= \pm(A-B)$, can have $\sigma= \pm 1$.

Brehmstrahlung: Adding emission of massless helicity $\pm j$ boson with momentum $q \simeq 0$
to process with particles n with momenta p_{n} modifies amplitude by factor $\propto u_{\mu_{1} \mu_{2} \ldots \mu_{j} \sigma}(\mathbf{q}) \sum_{n} \eta_{n} \frac{g_{n} p_{n}^{\mu_{1}} p_{n}^{\mu_{2}} \ldots p_{n}^{\mu_{j}}}{p_{n} \cdot q}$, where g_{n} is coupling of these bosons to fermion n, and $\eta_{n}= \pm 1$ for outgoing / incoming particles.

Lorentz invariance condition: $q_{\mu_{1}} \sum_{n} \eta_{n} \frac{g_{n} p_{n}^{\mu_{1}} p_{n}^{\mu_{2}} \ldots p_{n}^{\mu_{j}}}{p_{n} \cdot q}=0$.

Can show this for massless helicity ± 1 boson: Lorentz transformation of polarization vector on page 55 implies amplitude not Lorentz invariant unless this is true.

Einstein's principle of equivalence: Helicity ± 2 bosons have identical coupling to all fermions .

For soft emssion of graviton from process involving multiple fermions of momentum p_{n},
Lorentz invariance condition reads $\sum_{n} \eta_{n} g_{n} p_{n}^{\mu_{2}}=0$. But momentum conservation is $\sum_{n} \eta_{n} p_{n}^{\mu_{2}}=0$, so g_{n} same for all particles.

Constraint on particle spins: Massless particles must have helicity ≤ 2 and ≥-2.

Lorentz invariance condition can be written $\sum_{n} \eta_{n} g_{n} p_{n}^{\mu_{2}} \ldots p_{n}^{\mu_{j}}=0$.
For $j>2$ this overconstrains $2 \rightarrow 2$ processes, since momentum conservation alone \Longrightarrow it depends on scattering angle only.

2.6 The Lagrangian Formalism

2.6.1 Generic quantum mechanics

Lagrangian formalism is natural framework for QM implementation of symmetry principles.
Can be applied to canonical fields (e.g. Standard Model):
Fields $\psi_{l}(\boldsymbol{x}, t)$ behave as canonical coordinates, i.e. with conjugate momenta $p_{l}(\boldsymbol{x}, t)$ such that
$\left[\psi_{l}(\boldsymbol{x}, t), p_{l^{\prime}}(\boldsymbol{y}, t)\right]_{\mp}=I \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \delta_{l l^{\prime}}$ and $\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}(\boldsymbol{y}, t)\right]_{\mp}=\left[p_{l}(\boldsymbol{x}, t), p_{l^{\prime}}(\boldsymbol{y}, t)\right]_{\mp}=0$ as usual in QM.
In practice, find suitable $p_{l}(\boldsymbol{x}, t)$ by explicit calculation of $\left[\psi_{l}(x), \psi_{l^{\prime}}^{\dagger}(y)\right]_{\mp}$.
Lagrangian formalism: Define action $\mathscr{A}[\psi, \dot{\psi}]=\int_{-\infty}^{\infty} d t L[\psi(t), \dot{\psi}(t)]$, where L is Lagrangian.
Laws of physics obeyed when action is stationary, i.e. coordinates obey field equations $\frac{d}{d t} \frac{\partial L}{d \dot{\psi}_{l}}=\frac{\partial L}{\partial \psi_{l}}$.
Alternatively, define $p_{l}=\frac{\delta L}{\delta \dot{\psi}_{l}}$ and Hamiltonian $H[\psi(t), p(t)]=\int d^{3} x p_{l}(\boldsymbol{x}, t) \dot{\psi}_{l}(\boldsymbol{x}, t)-L[\psi(t), \dot{\psi}(t)]$.
Then action stationary when coordinates obey field equations $\dot{p}_{l}=-\frac{\delta H}{\delta \psi_{l}}$.

2.6.2 Relativistic quantum mechanics

Take $L[\psi(t), \dot{\psi}(t)]=\int d^{3} x \mathscr{L}\left(\psi(x), \partial_{\mu} \psi(x)\right)$,
where Lagrangian density $\mathscr{L}(x)$ is scalar so $\mathscr{A}=\int d^{4} x \mathscr{L}(x)$ is Lorentz invariant.
In practice, determine \mathscr{L} from classical field theory, e.g. electrodynamics,
then $\mathscr{L}\left(\psi(x), \partial_{\mu} \psi(x)\right)=p_{l}(x) \dot{\psi}_{l}(x)-\mathscr{H}(\psi(x), p(x))$ and p_{l} from $\mathscr{L}: p_{l}(x)=\frac{\partial \mathscr{L}(x)}{\partial \dot{\psi}_{l}(x)}$.
Stationary \mathscr{A} requirement gives field equations $\partial_{\mu} \frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \psi_{l}\right)}=\frac{\partial \mathscr{L}}{\partial \psi_{l}}$ (Euler-Lagrange equations),
e.g. Klein-Gordon equation for free spin 0 field, Dirac equation for free spin $\frac{1}{2}$ field etc.
(some definition of derivative with respect to operator field ψ_{l} must be given here).
\mathscr{A} must be real. Let \mathscr{A} depend on N real fields. Stationary real and imaginary parts of $\mathscr{A} \rightarrow 2 N$ field equations.

Noether's theorem: Symmetries imply conservation:
\mathscr{A} invariant under $\psi_{l}(x) \rightarrow \psi_{l}(x)+I \alpha \mathscr{F}_{l}[\psi ; x] \rightarrow$ conserved current $J^{\mu}(x), \partial_{\mu} J^{\mu}=0$, for stationary \mathscr{A}.
If α made dependent on x, \mathscr{A} no longer invariant. But change must be $\underline{\delta \mathscr{A}=\int d^{4} x J^{\mu} \partial_{\mu} \alpha}$
so that $\delta \mathscr{A}=0$ when α constant: Ignore l label, use discrete lattice in 1-D of N points so e.g. $\psi(x) \rightarrow \psi_{i}$ and $\delta \mathscr{A}=\sum_{i} \frac{\partial \mathscr{A}}{\partial \psi_{i}} F_{i} \alpha_{i}$. and write $\frac{\partial \mathscr{A}}{\partial \psi_{i}} F_{i}=\left(J_{i}-J_{i+1}\right)$ (no sum) for $i=1, \ldots, N-1$, and $\frac{\partial \mathscr{A}}{\partial \psi \psi_{N}} F_{N}=\left(J_{N}-K\right)$.

But symmetry of action gives $\sum_{i} \frac{\partial \mathscr{A}}{\partial \psi_{i}} F_{i}=0$, so $K=J_{N+1}$. (Indices are cyclical, i.e. $X_{N+1}=X_{1}, X_{0}=X_{N}$ etc.)
Thus $\delta \mathscr{A}=\sum_{i} \frac{\partial \mathscr{A}}{\partial \psi_{i}} F_{i} \alpha_{i}=\sum_{i}\left(J_{i}-J_{i+1}\right) \alpha_{i}=\sum_{i} J_{i}\left(\alpha_{i}-\alpha_{i-1}\right)$. Returning to continuous case, $\delta \mathscr{A}=\int d x \frac{\delta \mathscr{A}}{\delta \psi(x)} F(x)=\int d x J(x) \frac{d \alpha}{d x}$. Thus $\delta \mathscr{A}=-\int d^{4} x \alpha \partial_{\mu} J^{\mu}$. Now take \mathscr{A} stationary: $\delta \mathscr{A}=0$ even though α depends on x, so $\partial_{\mu} J^{\mu}=0$.

Explicit result for Noether current when \mathscr{L} is invariant: $J^{\mu}=\frac{\partial \mathscr{L}}{\partial \partial_{\mu} \psi_{l}} \mathscr{F}_{l}$.

$\mathscr{A}=\int d^{4} x \mathscr{L}$ so, for x-dependent $\alpha, \delta \mathscr{A}=I \int d^{4} x\left[\frac{\partial \mathscr{L}}{\partial \psi_{l}} \mathscr{\mathscr { F }}_{l} \alpha+\frac{\partial \mathscr{L}}{\partial \partial_{\mu} \psi_{l}} \partial_{\mu}\left(\mathscr{F}_{l} \alpha\right)\right]$. But $0=\delta \mathscr{L}=\left(\frac{\partial \mathscr{L}}{\partial \psi_{l}} \mathscr{F}_{l}+\frac{\partial \mathscr{L}}{\partial \partial_{\mu} \psi_{l}} \partial_{\mu} \mathscr{F}_{l}\right) I \alpha$,
so $\delta \mathscr{A}=\int d^{4} x I \underline{\frac{\partial \mathscr{L}}{\partial \partial_{\mu} \psi_{l}} \mathscr{F}_{l}} \partial_{\mu} \alpha$, then compare with $\delta \mathscr{A}=\int d^{4} x \underline{J^{\mu}} \partial_{\mu} \alpha$ (from above).
Conserved charge: $F=\int d^{3} x J^{0}$ obeys $\frac{d F}{d t}=0$.
Use $\partial_{\mu} J^{\mu}=0$ and $\int d^{3} x \nabla \mathbf{J}=0$ because \mathbf{J} vanishes at infinity.

Scalar boson $(0,0)$: $\mathscr{L}_{\text {scalar }}=-\frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi-\frac{1}{2} m^{2} \psi^{2}$.
Scalar boson field on page 53 implies $[\psi(\boldsymbol{x}, t), \dot{\psi}(\boldsymbol{y}, t)]_{-}=\delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$, i.e. $p=\dot{\psi}$, consistent with p_{l} from \mathscr{L} on page 58 .
Field equations on page 58 give Klein-Gordon equation $\left(\partial^{2}-m^{2}\right) \psi=0$ as required. Note ψ is a single operator.

Dirac fermion $\left(\frac{1}{2}, 0\right)+\left(0, \frac{1}{2}\right): \mathscr{L}_{\text {Dirac }}=-\bar{\psi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi$.
Recall ψ is a column of 4 operators, and covariant quantities on page 47 .
Recall equal time anticommutation relations on page 52, $\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}^{\dagger}(\boldsymbol{x}, t)\right]_{+}=\delta_{l l^{\prime}} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$, so $p=\psi^{\dagger}$, consistent with p_{l} from \mathscr{L} on page 58. Field equations give Dirac equation $\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi=0$ as required.

Vector boson $\left(\frac{1}{2}, \frac{1}{2}\right)$, spin 1: $\mathscr{L}_{\text {spin } 1 \text { vector }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} m^{2} \psi_{\mu} \psi^{\mu}$, where $F_{\mu \nu}=\partial_{\mu} \psi_{\nu}-\partial_{\nu} \psi_{\mu}$.
From vector boson field and projection operator for vector boson $\left(\frac{1}{2}, \frac{1}{2}\right)$, spin 1 , on pages 53 and 54 ,
$\left[\psi_{i}(\boldsymbol{x}, t), \dot{\psi}_{j}(\boldsymbol{y}, t)+\partial_{j} \psi^{0}(\boldsymbol{y}, t)\right]_{-}=\delta_{i j} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$, i.e. conjugate momentum to ψ_{i} is $p_{i}=\dot{\psi}_{i}+\partial_{i} \psi^{0}=F^{i 0}$, consistent with p_{l} from \mathscr{L} on page 58. ψ_{0} is auxilliary field because $p_{0}=\frac{\partial \mathscr{L}}{\partial \dot{\psi}^{0}}=F_{00}=0$.

Also $\partial_{\mu} \psi^{\mu}=0$ and Klein-Gordon equation $\left(\partial^{2}-m^{2}\right) \psi^{\mu}=0$, which is found from field equations on page 58.

2.7 Path-Integral Methods

Follows from Lagrangian formalism. Assume H is quadratic in the p_{l}.
Gives direct route from Lagrangian to calculations, all symmetries manifestly preserved along the way.
Can work in simpler classical limit then return to QM later.
Result is that bosons described by ordinary numbers, fermions by Grassmann variables.

LSZ reduction gives S-matrix from vacuum matrix elements of-time ordered product of functions of fields,
given by path integral as $\frac{\left.\langle 0, \text { out }| T\left\{\psi_{l_{A}}\left(x_{A}\right), \psi_{l_{B}}\left(x_{B}\right), \ldots\right\} \mid 0, \text { in }\right\rangle}{\langle 0, \text { out }| 0, \text { in }\rangle}=\frac{\int \prod_{x, l} d \psi_{l}(x) \psi_{l_{A}}\left(x_{A}\right) \psi_{l_{B}}\left(x_{B}\right) \ldots e^{I \mathscr{A}[[\psi]}}{\int \prod_{x, l} d \psi_{l}(x) e^{I \mathscr{A}[\psi]}}$.
Contribution mostly from field configurations for which \mathscr{A} is minimal, i.e. fluctuation around classical result.

Noether's theorem again (see page 59): \mathscr{A} invariant under $\psi_{l}(x) \rightarrow \psi_{l}(x)=\psi_{l}(x)+I \alpha \mathscr{F}_{l}[\psi ; x]$.
So if α dependent on $x, \int \prod_{x, l} d \psi_{l}(x) \exp [I \mathscr{A}] \rightarrow \int \prod_{x, l} d \psi_{l}(x) \exp \left[I\left(\mathscr{A}-\int d^{4} x \partial_{\mu} J^{\mu}(x) \alpha(x)\right)\right]$
assuming measure $\prod_{x, l} d \psi_{l}(x)$ invariant. This is just change of variables, so $\left\langle\partial_{\mu} J^{\mu}(x)\right\rangle=0$.

2.8 Internal symmetries

Consider unitary group representations.

Unitary $\mathrm{U}(N)$: elements can be represented by $N \times N$ unitary matrices $U\left(U^{\dagger} U=\mathbf{1}\right)$.
Dimension $d(\mathrm{U}(N))=N^{2}$.
$2 N^{2}$ degrees of freedom in complex $N \times N$ matrix, $U^{\dagger} U=1$ is N^{2} conditions
or N^{2} Hermitian $N \times N$ matrices: N diagonal reals, $N^{2}-N$ off-diagonal complexes but lower half conjugate to upper.

Special unitary $\mathrm{SU}(N)$: same as $\mathrm{U}(N)$ but U 's have unit determinant $(\operatorname{det}(U)=1)$.
Thus $\operatorname{tr}\left[t_{i}\right]=0$, i.e. group is semi-simple.
$d(\mathrm{SU}(N))=N^{2}-1$.
Fundamental representation denoted \boldsymbol{N}.
Normalization of fundamental representation: $\operatorname{tr}\left[t_{i} t_{j}\right]=\frac{1}{2} \delta_{i j}$ (i.e. $C(\boldsymbol{N})=\frac{1}{2}$).
$\mathbf{U}(1)$ (Abelian group): elements can be represented by phase $e^{I q \alpha}$.
One generator: the real number q (the charge).
$\mathbf{S U}(2)$: Fundamental representation denoted $\mathbf{2}$, spin $\frac{1}{2}$ representation of rotation group.
$\mathrm{SU}(2)$ is actually the universal covering group of rotation group. 3 generators $t_{i}=\frac{\sigma_{i}}{2},\left[t_{i}, t_{j}\right]=I \epsilon_{i j k} t_{k}$.
Adjoint representation denoted 3. $C(\mathbf{3})=2$.

$$
\epsilon_{j k i} \epsilon_{l k i}=(d(\mathrm{SU}(2))-1) \delta_{j l}=2 \delta_{j l} .
$$

$\mathbf{2}$ representation is real, $\mathbf{2}=\overline{\mathbf{2}}$ (i.e. $-\frac{\sigma_{i}^{*}}{2}=U \frac{\sigma_{i}}{2} U^{\dagger}$, pseudoreal), and $\mathfrak{g}_{\alpha \beta}=\epsilon_{\alpha \beta}$ and $\delta_{\alpha \beta}$.
$\mathrm{SU}(3): 8$ generators $\frac{\lambda_{i}}{2}$, structure constants $f_{i j k}$.
Fundamental representation 3: λ_{i} are 3×3 Gell-Mann matrices. Adjoint representation 8. $C(\mathbf{8})=3$.
$\mathbf{3}$ representation is complex, $\mathbf{3} \neq \overline{\mathbf{3}}$.
Example: $\mathbf{3} \times \overline{\mathbf{3}}=\mathbf{8}+\mathbf{1}$, i.e. quark and antiquark can be combined to behave like gluon or colour singlet.

2.8.1 Abelian gauge invariance

Global gauge invariance: Consider complex fermion / boson field $\psi_{l}(x)$, arbitrary spin.
Each operator in $\mathscr{L}_{\text {free }}$ is product of $\left(\partial_{\mu}\right) \psi_{l}$ with $\left(\partial^{\mu}\right) \psi_{l}^{\dagger}$,
invariant under $\mathrm{U}(1)$ transformation $\psi_{l} \rightarrow e^{I q \alpha} \psi_{l}$ (whence $\partial_{\mu} \psi_{l} \rightarrow e^{I q \alpha} \partial_{\mu} \psi_{l}$)
if α independent of spacetime coords.
Local gauge invariance: Find \mathscr{L} invariant when $\alpha=\alpha(x)$. Leads to renormalizable interacting theory.
In $\mathscr{L}_{\text {free }}, \partial_{\mu} \psi_{l} \rightarrow \partial_{\mu} e^{I q \alpha} \psi_{l}=e^{i q \alpha}\left[\partial_{\mu} \psi_{l}+\underline{I q\left(\partial_{\mu} \alpha\right) \psi_{l}}\right] \neq e^{I q \alpha} \partial_{\mu} \psi_{l}, \therefore$ replace ∂_{μ} by 4 -vector "derivative" D_{μ},
such that D_{μ} gauge transformation $D_{\mu} \psi_{l} \rightarrow e^{I q \alpha} D_{\mu} \psi_{l}$. Then $D_{\mu} \psi_{l}\left(D^{\mu} \psi_{l}\right)^{\dagger}$ invariant.
Simplest choice: $D_{\mu}-\partial_{\mu}$ is 4-component field:
Covariant derivative: $D_{\mu}=\partial_{\mu}-I q A_{\mu}(x)$.

Gauge transformation: $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha$ whenever $\psi_{l} \rightarrow e^{I q \alpha} \psi_{l}$.
Write transformation as $A_{\mu} \rightarrow A_{\mu}^{\prime}(\alpha)$. Require $D_{\mu} \psi_{l} \rightarrow D_{\mu}^{\prime} e^{i q \alpha} \psi_{l}=e^{i q \alpha} D_{\mu} \psi_{l}$,
i.e. $e^{I q \alpha}\left[\partial_{\mu} \psi_{l}-I q\left(\partial_{\mu} \alpha\right) \psi_{l}-I q A_{\mu}^{\prime} \psi_{l}\right]=e^{I q \alpha}\left[\partial_{\mu} \psi_{l}-I q A_{\mu} \psi_{l}\right]$, so $A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \alpha$.

Use D_{ν} to find invariant (free) Lagrangian for A_{μ}, quadratic in $\left(\partial_{\nu}\right) A_{\mu}$:
From D_{μ} gauge transformation, $D_{\mu} D_{\nu} \ldots \psi_{l} \rightarrow e^{I q \alpha} D_{\mu} D_{\nu} \ldots \psi_{l}$. Products $D_{\mu} D_{\nu} \ldots$ contain spurious $\partial_{\rho} \mathrm{s}$, but $F_{\mu \nu}$ from $D_{\mu}: q F_{\mu \nu}=I\left[D_{\mu}, D_{\nu}\right]$, where electromagnetic field strength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.

$$
\left[D_{\mu}, D_{\nu}\right] \psi_{l}=(\underbrace{\left[\partial_{\mu}, \partial_{\nu}\right]}_{=0}+I q\left(\left[\partial_{\mu}, A_{\nu}\right]-\left[\partial_{\nu}, A_{\mu}\right]\right)-q^{2} \underbrace{\left[A_{\mu}, A_{\nu}\right]}_{=0}) \psi_{l} .
$$

$F_{\mu \nu}$ is gauge invariant.

$$
F_{\mu \nu} \psi_{l} \rightarrow F_{\mu \nu}^{\prime} e^{I q \alpha} \psi_{l}=e^{I q \alpha} F_{\mu \nu} \psi_{l} \text {, i.e. } F_{\mu \nu}^{\prime}=F_{\mu \nu} \text {, or } F_{\mu \nu} \rightarrow F_{\mu \nu} \text {. Also check explicitly from } F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \text {. }
$$

Conversely, choose A^{μ} to be massless helicity ± 1 field, whose Lorentz transformation on page 55 implies Lorentz invariant free Lagrangian for A^{μ} must be gauge invariant.
$F_{\mu \nu}$ in representation of $\mathrm{U}(1)$: Since $F_{\mu \nu} \rightarrow F_{\mu \nu}, F_{\mu \nu}$ transforms in adjoint representation of $\mathrm{U}(1)$.
Example: QED Lagrangian for fermions: $\mathscr{L}_{\text {Dirac, QED }}=\underbrace{-\bar{\psi}\left(\gamma^{\mu} D_{\mu}+m\right) \psi}_{\mathscr{L}_{\text {Dirac, free }}+I q \bar{\psi} \gamma^{\mu} A_{\mu} \psi}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$.
Interactions due to $I q \bar{\psi} \gamma^{\mu} A_{\mu} \psi$. Most general Lagrangian locally gauge invariant under $\mathrm{U}(1)\left(\psi \rightarrow e^{I q \alpha} \psi, A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha\right)$, assuming P, T invariance and no mass dimension >4 terms (Wilson: no contribution).

2.8.2 Non-Abelian gauge invariance

Global gauge invariance: Each term in $\mathscr{L}_{\text {free }}$ proportional to $\left(\partial^{\mu}\right) \psi_{l} \gamma\left(\partial_{\mu}\right) \psi_{l^{\prime} \gamma}^{\dagger}, \gamma=1, \ldots, N$.
Then $\mathscr{L}_{\text {free }}$ invariant under $\psi_{l \gamma} \rightarrow U_{\gamma \delta} \psi_{l \delta}$, where $U=\exp \left[I \alpha_{i} t_{i}\right], \alpha_{i}$ spacetime independent.
So ψ_{γ} is in fundamental representation of group $G=\operatorname{SU}(N)$ formed by matrices $U_{\gamma \delta}, i=1, \ldots, d(G)$.

Local gauge invariance: Spacetime derivatives in Lagrangian appear as

Covariant derivative: $D_{\mu}=\partial_{\mu}-I A_{\mu}(x)$ with $A^{\mu}=A_{i}^{\mu} t_{i}$,
t_{i} contain couplings, A_{i}^{μ} for $i=1, \ldots, d(G)$ are (for) massless helicity ± 1 gauge fields.

To achieve $D_{\mu} \psi \rightarrow U D_{\mu} \psi$, require
Transformation of covariant derivative: $D_{\mu} \rightarrow U D_{\mu} U^{\dagger}$, which requires
Transformation of gauge fields: $A_{\mu} \rightarrow U A_{\mu} U^{\dagger}-I\left(\partial_{\mu} U\right) U^{\dagger}$.

Non-Abelian field strength: $T_{i} F_{\mu \nu}^{i}=F_{\mu \nu}=I\left[D_{\mu}, D_{\nu}\right]=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-I\left[A_{\mu}, A_{\nu}\right]$.
$F_{\mu \nu}$ in adjoint representation: $F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger}$.
In infinitesimal case, $F^{i} t_{i}{ }_{\alpha \beta} \rightarrow F^{i}\left[\left(1+I \alpha_{k} t_{k}\right) t_{i}\left(1-I \alpha_{k} t_{k}\right)\right]_{\alpha \beta}=F^{i}\left[t_{i}+I \alpha_{k}\left[t_{k}, t_{i}\right]\right]_{\alpha \beta}$
$=F^{i}\left[t_{i}+I \alpha_{k}\left(I C_{k i j}\right) t_{j}\right]_{\alpha \beta}=F^{i}\left[t_{i \alpha \beta}+I \alpha_{k}\left(t_{j i}^{k}\right) t_{j \alpha \beta}\right]=F^{i} t_{j \alpha \beta}\left[\delta_{j i}+I \alpha_{k}\left(t_{j i}^{k}\right)\right]=F^{i} t_{j}{ }_{\alpha \beta} U_{j i}=U_{i j} F_{j} t_{i \alpha \beta}$, i.e. $F^{i} \rightarrow U_{i j} F^{j}$.

Example: QCD Lagrangian for fermions: $\mathscr{L}_{\text {Dirac, } \mathrm{QCD}}=-\bar{\psi}_{\alpha}\left(\gamma^{\mu} D_{\alpha \beta}+m\right) \psi_{\beta}-\frac{1}{4} F_{\mu \nu}^{i} F^{i}{ }^{\mu \nu}$.
More general result is $-\frac{1}{4} g_{i j} F_{\mu \nu}^{i} F^{j \mu \nu}$, but can always diagonalize and rescale so $g_{i j} \rightarrow \delta_{i j}$.

2.9 The Standard Model

Symmetry of vacuum is $\mathrm{G}=\mathrm{SU}(3)_{\text {colour }} \times \mathrm{U}(1)_{\text {e.m. }}$. gauge group.
SM: At today's collider energies, some "hidden" (broken) symmetries become apparent:
$\mathrm{G}=\mathrm{SU}(3)_{\text {colour }} \times \mathrm{SU}(2)_{\text {weak }}$ isospin $\times \mathrm{U}(1)_{\text {weak hypercharge }}$.
Table 2.9.1: SM fermions and their $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ representations, written as $\left(\mathrm{SU}(3)_{C}\right.$ rep., $\mathrm{SU}(2)_{L}$ rep., $\mathrm{U}(1)_{Y}$ hypercharge $=$ generator $/[$ coupling $\equiv Y]$). The $\operatorname{SU}(3)_{C}$ charges (3 for quarks, none for leptons) are not shown but, since $\mathrm{SU}(2)_{L}$ is broken, particles differing only in T_{3} (component of weak isospin $\left.\operatorname{SU}(2)_{L}\right)$ are shown explicitly, namely $u_{L} / \nu_{e}\left(T_{3}=1 / 2\right)$ and $d_{L} / e_{L}\left(T_{3}=-1 / 2\right)$. Recall $\psi_{L / R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi$. Note e.g. u_{L} annihilates u_{L}^{-}and creates u_{R}^{+}, and ν_{e} is left-handed.

Names	Label	Representation under $\operatorname{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$
Quarks	$\mathscr{Q}_{L}=\left(u_{L}, d_{L}\right)$	$\left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right)$
	u_{R}^{\dagger}	$\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{2}{3}\right)$
	d_{R}^{\dagger}	$\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}\right)$
Leptons	$\mathscr{E}_{L}=\left(\nu_{e}, e_{L}\right)$	$\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right)$
	e_{R}^{\dagger}	$(\mathbf{1}, \mathbf{1}, 1)$

$$
\mathrm{SU}(3): \widehat{g}_{\mu}=g_{i \mu} g_{s} \frac{\lambda_{i}}{2}
$$

Gauge fields are written as

$$
\mathrm{SU}(2): \widehat{A}_{\mu}=A_{i \mu} g \frac{\sigma_{i}}{2}
$$

$$
\mathrm{U}(1): \widehat{B}_{\mu}=B_{\mu} g^{\prime} Y
$$

simon@mail.desy.de
We have only discussed the "1st generation" of fermions, in fact $\left(\mathscr{E}_{L}, e_{R}^{\dagger}, \mathscr{Q}_{L}, u_{R}^{\dagger}, d_{R}^{\dagger}\right)^{K}, K=1,2,3$.
where $\left(e^{1}, e^{2}, e^{3}\right)=(e, \mu, \tau),\left(\nu_{e}^{1}, \nu_{e}^{2}, \nu_{e}^{3}\right)=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right),\left(u^{1}, u^{2}, u^{3}\right)=(u, c, t)$ and $\left(d^{1}, d^{2}, d^{3}\right)=(d, s, b)$.
Allow mixing between particles of different generations with same transformation properties.

From Table 2.9.1, can construct the full Lagrangian by including all renormalizable invariant ($\mathbf{1}, \mathbf{1}, 0)$ terms.
These are all possible terms of form $\bar{\psi}^{K} \gamma^{\mu} D_{\mu} \psi^{K}$:
$\mathscr{L}_{\text {quark }}=\overline{\mathscr{Q}}_{L}^{K} \gamma^{\mu}\left[\partial_{\mu}-I\left(\widehat{g}_{\mu}+\widehat{A}_{\mu}+\widehat{B}_{\mu}\right)\right] \mathscr{Q}_{L}^{K}+\bar{u}_{R}^{K} \gamma^{\mu}\left[\partial_{\mu}-I\left(\widehat{g}_{\mu}+\widehat{B}_{\mu}\right)\right] u_{R}^{K}+\bar{d}_{R}^{K} \gamma^{\mu}\left[\partial_{\mu}-I\left(\widehat{g}_{\mu}+\widehat{B}_{\mu}\right)\right] d_{R}^{K}$.
$\mathscr{L}_{\text {lepton }}=\overline{\mathscr{E}}_{L}^{K} \gamma^{\mu}\left[\partial_{\mu}-I\left(\widehat{A}_{\mu}+\widehat{B}_{\mu}\right)\right] \mathscr{E}_{L}^{K}+\bar{e}_{R}^{K} \gamma^{\mu}\left[\partial_{\mu}-I \widehat{B}_{\mu}\right] e_{R}^{K}$.

More general $\bar{\psi}^{K} \gamma^{\mu} D_{\mu} R^{K M} \psi^{M}$ for some constant matrix R not allowed, gives terms $\bar{\psi}^{K} \gamma^{\mu} \partial_{\mu} \psi^{M}$ for $K \neq M$.
$\mathscr{L}_{\text {spin } 1}=-\frac{1}{4} F_{\mu \nu}^{i}(\widehat{g}) F^{i \mu \nu}(\widehat{g})-\frac{1}{4} F_{\mu \nu}^{i}(\widehat{A}) F^{i \mu \nu}(\widehat{A})-\frac{1}{4} F_{\mu \nu}(\widehat{B}) F^{\mu \nu}(\widehat{B})$.

Recall only real part of \mathscr{L} to be taken.

2.9.1 Higgs mechanism

Mass terms $m \bar{\psi}_{L / R} \psi_{R / L}$ are all $\left(\mathbf{1}, \mathbf{2}, \pm \frac{1}{2}\right) \rightarrow$ violate gauge symmetry and thus renormalizability.
Instead introduce Yukawa coupling $\lambda \phi_{H} \bar{\psi}_{L / R} \psi_{R / L}$ which is $(\mathbf{1}, \mathbf{1}, 0)$, i.e. invariant (thus renormalizable), so ϕ_{H} is $\left(\mathbf{1}, \overline{\mathbf{2}}=\mathbf{2}, \frac{1}{2}\right)$ scalar field, then hide ("break") symmetry so that $\lambda\langle 0| \phi_{H}|0\rangle=m$.

$\mathscr{L}_{\text {Higgs }}=\mathscr{L}_{\text {pure Higgs }}+\mathscr{L}_{\text {Higgs-fermion }}$

Writing $D_{\mu}=\partial_{\mu}-I\left(\widehat{A}_{\mu}+\widehat{B}_{\mu}\right)$ and $\mathrm{SU}(2)_{L}$ components $\phi_{H}^{T}=\left(\phi_{H 1}, \phi_{H 2}\right)=\left(\phi_{H}^{+}, \phi_{H}^{0}\right),\left(\epsilon \phi_{H}^{\dagger}\right)^{T}=\left(\phi_{H}^{0 \dagger},-\phi_{H}^{+\dagger}\right)$,
$\mathscr{L}_{\text {pure Higgs }}=-\frac{1}{2}\left(D_{\mu} \phi_{H}\right)^{\dagger} D^{\mu} \phi_{H}-V\left(\phi_{H}\right)$, Higgs potential $V\left(\phi_{H}\right)=\frac{m_{H}^{2}}{2} \phi_{H}^{\dagger} \phi_{H}+\frac{\lambda}{4}\left(\phi_{H}^{\dagger} \phi_{H}\right)^{2}$

$$
\mathscr{L}_{\text {Higgs-fermion }}=-G_{e}^{K M} \overline{\mathscr{E}}_{L}^{K}{ }_{a} \phi_{H}{ }_{a} e_{R}^{M}-G_{u}^{K M} \overline{\mathscr{Q}}_{L a}^{K}\left(\epsilon \phi_{H}\right)_{a}^{\dagger} u_{R}^{M}-G_{d}^{K M} \overline{\mathscr{Q}}_{L a}^{K} \phi_{H}{ }_{a} d_{R}^{M} .
$$

All three terms are ($\mathbf{1}, \mathbf{1}, 0$), i.e. invariant. Consider e.g. second term: From table 2.9.1, $Y=-\frac{1}{6}-\frac{1}{2}+\frac{2}{3}=0$.
Write $\operatorname{SU}(2)_{L}$ transformation of ϕ_{H} as $\phi_{H a}^{\prime}=U_{a b} \phi_{H b}\left(U=e^{I \frac{1}{2} \sigma_{i} \alpha_{i}}\right.$ from page 63),

Also $\mathscr{Q}_{L a}^{\prime}=U_{a b} \mathscr{Q}_{L b}$, so $\underline{\mathscr{Q}_{L a}^{\prime \dagger}=U_{a c}^{*} \mathscr{Q}_{L c}^{\dagger}}$, so $\mathscr{Q}_{L a}^{\prime \dagger}\left(\epsilon \phi_{H}^{\prime}\right)_{a}^{\dagger}=\mathscr{Q}_{L a}^{\dagger}\left(\epsilon \phi_{H}\right)_{a}^{\dagger}$. Note u_{R} is an $\operatorname{SU}(2)_{L}$ singlet.
$m_{H}^{2}>0$: Stationary \mathscr{L} (vacuum) occurs when all fields vanish.
Spontaneous symmetry breaking (SSB): $m_{H}^{2}<0$: tree level vacuum obeys $\left.\frac{\partial V\left(\phi_{H}\right)}{\partial \phi}\right|_{\phi_{H}=\phi_{H 0}}=0$
$\Longrightarrow\left|\phi_{H 0}^{2}\right|=v^{2}=\frac{\left|m_{H}^{2}\right|}{\lambda} . \quad$ From Higgs potential on page 70.
Infinite number of choices for $\phi_{0 H}=\langle 0| \phi_{H}|0\rangle$. Take general $\phi_{H}=e^{I v \xi_{i}(x) \frac{\sigma_{i}}{2}}\binom{0}{v+\eta(x)}$.
Vacuum taken as $\xi_{i}=\eta=0$, no longer invariant under symmetry transformations.

$$
\mathscr{L}_{\text {gauge mass }}=-m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}-\frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \text {, where } m_{Z}=\frac{v}{2} \sqrt{g^{2}+g^{\prime 2}}, m_{W}=\frac{v}{2} g=m_{Z} \cos \theta_{W}, \cos \theta_{W}=\frac{g}{\sqrt{g^{2}+g^{\prime 2}}},
$$

$$
W_{\mu}=\frac{1}{\sqrt{2}}\left(A_{1 \mu}-I A_{2 \mu}\right), Z_{\mu}=\cos \theta_{W} A_{3 \mu}-\sin \theta_{W} B_{\mu} .
$$

From $\mathscr{L}_{\text {pure }}$ Higgs.. Start with $\mathscr{L}_{\text {gauge mass }}=-\frac{1}{2}\left|\left(g A_{i \mu} \frac{\sigma_{i}}{2}+g^{\prime} B_{\mu} \frac{1}{2}\right)\binom{0}{v}\right|^{2}=-\frac{1}{2}\left|\binom{g\left(A_{1 \mu}+I A_{2} \mu\right)}{-g A_{3} \mu+g^{\prime} B_{\mu}} \frac{v}{2}\right|^{2}$.

$$
\mathscr{L}_{\text {gauge dynamic }}=-\frac{1}{2}\left|\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}\right|^{2}-\frac{1}{4}\left|\partial^{\mu} Z^{\nu}-\partial^{\nu} Z^{\mu}\right|^{2}-\frac{1}{4}\left|\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right|^{2},
$$

where $A_{\mu}=\sin \theta_{W} A_{3 \mu}+\cos \theta_{W} B_{\mu}$ must be massless photon.
From $\mathscr{L}_{\text {spin 1 }}$. Start with $\mathscr{L}_{\text {gauge dynamic }}=-\frac{1}{4}\left|\partial^{\mu} A_{i}^{\nu}-\partial^{\nu} A_{i}^{\mu}\right|^{2}-\frac{1}{4}\left|\partial^{\mu} B^{\nu}-\partial^{\nu} B^{\mu}\right|^{2}$.

In $\mathscr{L}_{\text {quark }}$ and $\mathscr{L}_{\text {lepton }}$ on page 69 , between left-handed fermions:

$$
\left(\widehat{A}_{\mu}+\widehat{B}_{\mu}\right)_{L}=\left(\begin{array}{cc}
e\left(\frac{1}{2}+Y\right) A_{\mu}+\left(\frac{g}{2} \cos \theta_{W}-g^{\prime} Y \sin \theta_{W}\right) Z_{\mu} & \frac{g}{\sqrt{2}} W_{\mu}^{\dagger} \\
\frac{g}{\sqrt{2}} W_{\mu} & e\left(-\frac{1}{2}+Y\right) A_{\mu}+\left(-\frac{g}{2} \cos \theta_{W}-g^{\prime} Y \sin \theta_{W}\right) Z_{\mu}
\end{array}\right)
$$

between right-handed: $\left(\widehat{A}_{\mu}+\widehat{B}_{\mu}\right)_{R}=e Y A_{\mu}+\left(-g^{\prime} \sin \theta_{W} Y\right) Z_{\mu}$, where $e=g \sin \theta_{W}=g^{\prime} \cos \theta_{W}$.
So charge/e is $Q=T_{3}+Y$, i.e. charge of $u_{L}, d_{L}, \nu_{e}, e_{L}$ is $\frac{2}{3},-\frac{1}{3}, 0,-1$ and of u_{R}, d_{R}, e_{R} is $\frac{2}{3},-\frac{1}{3},-1$.

$$
\mathscr{L}_{\text {fermion mass }}=-\bar{e}_{L}^{K} m_{e}^{K M} e_{R}^{M}-\bar{u}_{L}^{K} m_{u}^{K M} u_{R}^{M}-\bar{d}_{L}^{K} m_{d}^{K M} d_{R}^{M} \text {, where } m_{\psi}^{K M}=G_{\psi}^{K M} v
$$

From $\mathscr{L}_{\text {Higgs-fermion }}$ on page 70 .

Can always transform $u_{R}^{K \prime}=A_{u_{R}}^{K M} u_{R}^{M}$, likewise for $u_{L}, d_{L}, d_{R}, \nu_{e}, e_{L}, e_{R}$.
A matrices must be unitary so that kinetic terms retain their previous forms, $\bar{u}_{R}^{K \prime} \gamma^{\mu} \partial_{\mu} u_{R}^{K \prime}$ etc.
Choose A matrices such that new mass matrices $m_{u}^{\prime}=A_{u_{L}} m_{u} A_{u_{R}}^{\dagger}$ etc. diagonal, entries $m_{u}^{K \prime}$:
$\mathscr{L}_{\text {fermion mass }}=\sum_{K}-\bar{e}_{L}^{K \prime} m_{e}^{K} e_{R}^{K \prime}-\bar{u}_{L}^{K \prime} m_{u}^{K \prime} u_{R}^{K \prime}-\bar{d}_{L}^{K \prime} m_{d}^{K \prime} d_{R}^{K \prime}$.

Then \mathscr{L}_{W}-fermion $\propto \bar{d}_{L}^{K} \gamma^{\mu} W_{\mu} u_{L}^{K}+\bar{e}_{L}^{K} \gamma^{\mu} W_{\mu} \nu_{e}^{K}=\bar{d}_{L}^{K \prime} \gamma^{\mu} W_{\mu}\left(V^{\dagger}\right)^{K N} u_{L}^{N \prime}+\bar{e}_{L}^{K \prime} \gamma^{\mu} W_{\mu} \nu_{e}^{K \prime \prime}$
(proportionality constant is $-\frac{I g}{\sqrt{2}}$), where CKM matrix $V=A_{u_{L}} A_{d_{L}}^{-1}$.
Analogous leptonic matrix absorbed into $\nu_{e}^{K \prime \prime}=\left(A_{e_{L}} A_{\nu_{e}}^{-1}\right)^{K N} \nu_{e}^{N \prime}$.
(In contrast to u_{L}^{K}, any combination of ν_{e}^{K} is mass eigenstate because mass matrix is zero.)

2.9.2 Some remaining features

Neutrino mass by adding to $\mathscr{L}_{\text {Higgs-fermion }}$ a term $-G_{\nu_{e}} \overline{\mathscr{E}}_{a}^{K}\left(\epsilon \phi_{H}\right)_{a}^{\dagger} \nu_{e R} \rightarrow-\bar{\nu}_{e} m_{\nu_{e}} \nu_{e R}$, where $\nu_{e R}$ is $(\mathbf{1}, \mathbf{1}, 0)$.
Expect $m_{\nu_{e}} \sim v$ to be similar order of magnitude to quark and charged lepton masses.
Also allowed SM invariant term $-\frac{1}{2} \nu_{e R}^{T} M_{R} \nu_{e R}$, can only come from higher scale symmetry breaking, so $M_{R} \gg v \sim m_{\nu_{e}}$, i.e. no right handed neutrinos at low energy.

Gives $\mathscr{L}_{\text {neutrino mass }}=-\frac{1}{2}\left(\bar{\nu}_{e} \quad \nu_{e R}^{T}\right)\left(\begin{array}{cc}0 & m_{\nu_{e}} \\ m_{\nu_{e}} & M_{R}\end{array}\right)\binom{\bar{\nu}_{e}^{T}}{\nu_{e R}} \simeq-\frac{1}{2}\left(\bar{\nu}_{e}^{\prime} \quad \nu_{e R}^{\prime T}\right)\left(\begin{array}{cc}-\frac{m_{\nu_{e}}^{2}}{M_{R}} & 0 \\ 0 & M_{R}\end{array}\right)\binom{\bar{\nu}_{e}^{\prime T}}{\nu_{e R}^{\prime}}$,
i.e. seesaw mechanism: mass $\frac{m_{\nu_{e}}^{2}}{M_{R}}$ of (almost) left handed ν_{e}^{\prime} (i.e. $m_{\nu_{e}}$ suppressed by $\frac{m_{\nu_{e}}}{M_{R}}$.

Invariance with respect to parity P, charge conjugation C and time reversal T transformations.
$C P T$ conserved, but $C P$-violation due to phases in CKM matrix.
$C P$ and P violating terms $\frac{\theta}{64 \pi^{2}} 2^{\kappa \lambda \rho \sigma} F_{k \lambda}^{i} F_{\rho \sigma}^{i}$ allowed, but are total derivatives and therefore non-perturbative.
Current observation suggest θ consistent with zero (no $C P$ violation in QCD).
Cancelled by (harmless) anomaly (subsubsection 2.9.4) of global symmetry $\psi_{f} \rightarrow e^{I \gamma_{5} \alpha_{f}} \psi_{f}$ when $\sum \alpha_{f}=-\frac{1}{2} \theta$, but this introduces unobserved $C P$ violating phase $e^{-I \theta}$ on quark masses.

Peccei-Quinn mechanism: where $\left(\epsilon \phi_{H}\right)^{\dagger}$ in $\mathscr{L}_{\text {Higgs-fermion }}$ on page 70 is replaced with second Higgs, which transforms differently to first Higgs and can soak up this phase at least at some GUT scale.

2.9.3 Grand unification

Suppose SM unifies to single group G at scale M_{X}, then $t^{\mathrm{U}(1)_{Y}}$ (diagonal), $t_{i}^{\mathrm{SU}(2)_{L}}, t_{j}^{\mathrm{SU}(3)_{C}}$ are generators of G.
Tracelessness requires sum of Y values (=elements of $t^{\left.\mathrm{U}(1)_{Y}\right)}$ to vanish, which is the case from Table 2.9.1.
Normalization of generators as on page 14, so $\operatorname{tr}\left[t^{\left.\mathrm{U}(1)_{Y}{ }^{2}\right]}=\operatorname{tr}\left[t_{i}^{\mathrm{SU}(2) L^{2}}\right]=\operatorname{tr}\left[t_{j}^{\mathrm{SU}(3)_{c}{ }^{2}}\right]\right.$, so
$g_{s}^{2}\left(M_{X}\right)=g^{2}\left(M_{X}\right)=\frac{5}{3} g^{\prime 2}\left(M_{X}\right)$ (after dividing by $2 \times$ no. generations). Implies $\sin ^{2} \theta_{W}\left(M_{X}\right)=\frac{3}{8}$ from page 71 .
Within couplings' exp. errors, unification occurs (provided $N=1$ SUSY is included) at $M_{X}=2 \times 10^{16} \mathrm{GeV}$.
To find simplest unification with no new particles, note SM particles are chiral, require complex representations:
In general, define all particles f_{L} to be left-handed, then antiparticles $f_{R}=f_{L}^{\dagger}$ are right-handed.
Then if f_{L} in representation \boldsymbol{R} of some group G, f_{R} is in representation $\overline{\boldsymbol{R}}$.
If f_{L}, f_{R} equivalent (have same transformation properties), then $\boldsymbol{R}=\overline{\boldsymbol{R}}$, i.e. pseudoreal representation.
SM particles $f_{L}=\left(\mathscr{E}_{L}, e_{R}^{\dagger}, \mathscr{Q}_{L}, u_{R}^{\dagger}, d_{R}^{\dagger}\right)$ require complex representation because $f_{R}=f_{L}^{\dagger}$ inequivalent, e.g. $\overline{\mathbf{3}} \neq \mathbf{3}$.
Pseudoreal representation possible if particle content enlarged to $f_{L} \rightarrow F_{L}$ so that $F_{L}, F_{R}=F_{L}^{\dagger}$ equivalent. e.g. in $\mathrm{SO}(10)$, can fit 15 particles of each generation into real 16 representation, requires adding $1 \nu_{e R}$.
$\mathrm{SU}(5)$ is simplest unification.
Since $\operatorname{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5)$, all internal symmetries accounted for by fermions ψ_{α} with $\alpha=1, \ldots, 5$.
Choose $t_{i}^{\mathrm{SU}(3)}=g_{s}\left(\begin{array}{ccccc}\frac{\lambda_{i}}{2} & 0 & 0 & 0 \\ & & & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=t_{i}^{\mathrm{SU}(3)_{C}}, i=1, \ldots, 8, \quad t_{i}^{\mathrm{SU}(2)}=g\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & \frac{\sigma_{i}}{2}\end{array}\right)=t_{i}^{\mathrm{SU}(2)_{L}}, i=1, \ldots, 3$.
$\mathrm{U}(1)$ generator must commute with generators above and be traceless. Tentatively take

$$
t^{\mathrm{U}(1)}=2 g^{\prime}\left(\begin{array}{ccccc}
\frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2}
\end{array}\right)=2 t^{\mathrm{U}(1)_{Y}}
$$

Then fermions form $\overline{5}$ (fundamental) and 10 representations of $\mathrm{SU}(5)$:

$$
\left(\begin{array}{c}
\bar{d}_{R}^{1} \\
\bar{d}_{R}^{2} \\
\bar{d}_{R}^{3} \\
e_{L} \\
-\nu_{e L}
\end{array}\right),\left(\begin{array}{ccccc}
0 & \bar{u}_{R}^{3} & -\bar{u}_{R}^{2} & u_{L}^{1} & d_{L}^{1} \\
& 0 & \bar{u}_{R}^{1} & u_{L}^{2} & d_{L}^{2} \\
& & 0 & u_{L}^{3} & d_{L}^{3} \\
& - & \cdots & 0 & \bar{e}_{R} \\
& & & & 0
\end{array}\right)
$$

(Note: all particles left-handed, 1,2,3 superscripts are colour indices, $\mathbf{1 0}$ matrix is antisymmetric).
In $\mathrm{SO}(10), 1$ generation fits into $\mathbf{1 6}=\mathbf{1}+\overline{\mathbf{5}}+\mathbf{1 0}$, and $\mathbf{1}$ is identified with right-handed neutrino.

2.9.4 Anomalies

Gauge anomalies modify symmetry relations (Ward identities), spoils renormalizability and maybe unitarity.
Anomaly occurs because $\mathscr{A}=\int d^{4} x \mathscr{L}$ respects symmetry, but not measure $\int \prod_{x, l} d \psi_{l}(x)=d[\psi] d[\bar{\psi}] d[A]$.
Relevant example: Let \mathscr{A} be invariant under $\psi_{\alpha}=U_{k}{ }_{\alpha \beta} \psi_{\beta}$,
where $U_{k}=\exp \left[I \gamma_{5} \alpha t_{k}\right]$ is chiral symmetry (global) and each ψ_{α} is a Dirac field.
Problem: although \mathscr{A} is invariant, measure is not: Resulting change in path-integral $\int d[\psi] d[\bar{\psi}] d[A] \exp [I \mathscr{A}]$
is "as if" \mathscr{L} changes by $\alpha \mathscr{J}_{k}[A]$, where $\mathscr{J}_{k}=-\frac{1}{16 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{i}^{\mu \nu} F_{j}^{\rho \sigma} \operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right]$.
Noether's theorem on page 61: $\int d[\psi] d[\bar{\psi}] d[A] \exp [I \mathscr{A}] \rightarrow \int d[\psi] d[\bar{\psi}] d[A] \exp \left[I\left(\mathscr{A}+\int d^{4} x \alpha(x)\left[\mathscr{J}_{k}-\partial_{\mu} J_{k}^{\mu}(x)\right]\right)\right]$,
i.e. conservation violation: $\left\langle\partial_{\mu} J_{k}^{\mu}(x)\right\rangle_{A}=-\frac{1}{16 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{i}^{\mu \nu} F_{j}^{\rho \sigma} \operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right] \quad\left(\langle \rangle_{A}\right.$ means no A integration).

Anomalous (non-classical) triangle diagrams between $J_{k}^{\mu}, F_{i}^{\mu \nu}$ and $F_{j}^{\rho \sigma}$ modify Ward identities.
Physical theories must be anomaly free (i.e. $\operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right]$ cancel), e.g. real representations: $\operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right]=0$.

$$
\operatorname{tr}\left[\left\{t_{i}^{*}, t_{j}^{*}\right\} t_{k}^{*}\right]=\operatorname{tr}\left[\left\{\left(-U t_{i} U^{\dagger}\right),\left(-U t_{j} U^{\dagger}\right)\right\}\left(-U t_{k} U^{\dagger}\right)\right]=-\operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right] . \operatorname{But} \operatorname{tr}\left[\left\{t_{i}^{*}, t_{j}^{*}\right\} t_{k}^{*}\right]=\operatorname{tr}\left[\left\{t_{i}^{T}, t_{j}^{T}\right\} t_{k}^{T}\right]=\operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right] .
$$

SM is anomaly free. $\quad \mathrm{SM}$ in $\mathbf{1 0}+\overline{5}$ of $\mathrm{SU}(5)$, in real representation $\mathbf{1 6}$ of $\mathrm{SO}(10)$ ($\left.\operatorname{thus} \operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right]_{5}=-\operatorname{tr}\left[\left\{t_{i}, t_{j}\right\} t_{k}\right]_{10}\right)$.

3 Supersymmetry: development
 3.1 Why SUSY?

Attractive features of SUSY:

1. Eliminates fine tuning in Higgs mass.
2. Gauge coupling unification.
3. Radiative electroweak symmetry breaking: SUSY \Longrightarrow Higgs potential on page 70 with $m_{H}^{2}<0$.
4. Excess of matter over anti-matter (large $C P$ violation, not in SM) possible from SUSY breaking terms.
5. Cold dark matter may be stable neutral lightest SUSY particle (LSP) $=$ gravitino / lightest neutralino.
6. Gravity may be described by local SUSY $=$ supergravity.

SM is accurately verified but incomplete - e.g. does not + cannot contain gravity,
so must break down at / before energies around Planck scale $M_{P}=(8 \pi G)^{-1 / 2}=2.4 \times 10^{18} \mathrm{GeV}$.
In fact, SM cannot hold without modification much above 1 TeV , otherwise we have
Gauge hierarchy problem: Since $\left.v=\left|\langle 0| \phi_{H}\right| 0\right\rangle \mid=246 \mathrm{GeV}$ and $\lambda=O(1),\left|m_{H}\right|=|\sqrt{\lambda} v|=O(100) \mathrm{GeV}$.
If $\Lambda_{\mathrm{UV}}>O(1) \mathrm{TeV}$, fine tuning between
Δm_{H}^{2} from quantum loop corrections (Fig. 3.1) and tree level (bare) m_{H}^{2} :

$$
\Delta m_{H}^{2}=\frac{\lambda_{\phi}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}-\underbrace{3}_{\text {colour""3"' }} \frac{\mid \kappa t^{2}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}+\underbrace{\ldots}_{\text {smaller terms }}
$$

ϕ_{H}
(a) Fermion field ψ, Lagrangian term $-\kappa_{\psi} \phi_{H} \bar{\psi} \psi$, giving 1-loop contribution to (b) Boson field ϕ, Lagrangian term $\lambda_{\phi}\left|\phi_{H}\right|^{2}|\phi|^{2}$, giving 1-loop contribution to Higgs mass of $-\frac{\left|\kappa_{\psi}\right|^{2}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}$. Higgs mass of $\frac{\lambda_{\phi}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}$.

Figure 3.1: Fermion and boson contributions to Higgs mass parameter m_{H}^{2}.
(Largest from $-\frac{\lambda_{\phi}}{4}\left|\phi_{H}\right|^{4}$ and top quark ($\kappa_{t} \simeq 1$ because $\left.m_{t} \simeq v\right)$.)
No similar problem for fermion and gauge boson masses, but these masses affected by m_{H}^{2}.

Avoid fine tuning by taking $\Lambda_{\mathrm{UV}} \sim 1 \mathrm{TeV}$, i.e. modify SM above this scale.
One solution: Higgs is composite of new fermions bound by new strong force at $\Lambda_{\mathrm{UV}} \simeq 1 \mathrm{TeV} \rightarrow$ difficult.
Alternatively, forbid bare $m_{H}^{2}\left|\phi_{H}\right|^{2}$ term by some new symmetry $\delta \phi_{H}=\epsilon \times$ something.
Various choices for "something" bosonic (leads to "little Higgs" models, extra dimensions).
For a standard symmetry, "something" would be $I\left[Q_{a}, \phi_{H}\right]$, i.e. $\phi_{H} \rightarrow e^{I \epsilon Q_{a}} \phi_{H} e^{-I \epsilon Q_{a}}$.
Try "fermionic" generator Q_{a}, which must be a $\left(\frac{1}{2}, 0\right)$ spinor (so ϵ a spinor of Grassmann variables).

Relation with momentum: $\left\{Q_{a}, Q_{\dot{b}}^{\dagger}\right\}=2 \sigma_{a \dot{b}}^{\mu} P_{\mu}$.

$\left\{Q_{a}, Q_{\dot{b}}^{\dagger}\right\}$ is $\left(\frac{1}{2}, 0\right) \times\left(0, \frac{1}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ from triangle inequality. Only candidate is P^{μ} (see Coleman-Mandula theorem later).
Lorentz invariance requires combination $\sigma_{a b}^{\mu} P_{\mu}$, factor 2 comes from suitable normalization of Q_{a}.
Note $\left\{Q_{a}, Q_{\dot{b}}^{\dagger}\right\} \neq 0$ because for any state $|X\rangle$,
$\left.\left.\langle X|\left\{Q_{a},\left(Q_{a}\right)^{\dagger}\right\}|X\rangle=\langle X| Q_{a}\left(Q_{a}\right)^{\dagger}|X\rangle+\langle X|\left(Q_{a}\right)^{\dagger} Q_{a}|X\rangle=\left|\left(Q_{a}\right)^{\dagger}\right| X\right\rangle\left.\right|^{2}+\left|Q_{a}\right| X\right\rangle\left.\right|^{2} \geq 0$. If equality holds for all $|X\rangle, Q_{a}=0$.
At least one of P_{μ} non-zero on every state, so Q_{a} affects every state, not just Higgs,
i.e. every particle has a superpartner with opposite statistics and spin difference of $1 / 2$,
together called a supermultiplet. This fermion-boson symmetry is supersymmetry.
For every fermion field (component) ψ_{f} with $-\kappa_{f} \phi_{H} \bar{\psi}_{f} \psi_{f}$, introduce boson field ϕ_{f} with $-\lambda_{f}\left|\phi_{H}\right|^{2}\left|\phi_{f}\right|^{2}$.
From Fig. 3.1, contribution of this supermultiplet (component) to Δm_{H}^{2} is $\Delta m_{H}^{2}=\underbrace{\frac{\lambda_{f}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}}_{\text {boson }} \underbrace{-\frac{\left|\kappa_{f}\right|^{2}}{8 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}}_{\text {fermion }}$.
Just requiring fermion-boson symmetry guarantees $\lambda_{f}=\left|\kappa_{f}\right|^{2}$, and $\Delta m_{H}^{2}=0$ (+ finite terms) to all orders.

3.2 Haag-Lopuszanski-Sohnius theorem and SUSY algebra

Reconsider symmetries: So far assumed generators are bosonic. Now generalize to include fermionic ones.

Generalize additive observable on page 5 to $Q=Q_{\sigma \sigma^{\prime}} a_{\sigma}^{\dagger} a_{\sigma^{\prime}}$.
(If $Q_{\sigma \sigma^{\prime}}$ are components of Hermitian matrix, unitary transformation of particle states gives back original result.)
Since Q is bosonic, a_{σ}^{\dagger}, $a_{\sigma^{\prime}}^{\dagger}$ both bosons or both fermions, i.e. $Q_{\sigma \sigma^{\prime}}=0$ if a_{σ}^{\dagger} bosonic, $a_{\sigma^{\prime}}^{\dagger}$ fermionic, or vice versa.

SUSY: Allow for Q 's containing fermionic parts to also be generators of symmetries that commute with S-matrix.
For convenience, distinguish between fermionic and bosonic parts of any Q.
Fermionic $Q=Q_{\sigma \rho} a_{\sigma}^{\dagger} a_{\rho}+R_{\sigma \rho} a_{\rho}^{\dagger} a_{\sigma}$, where σ sums over bosonic particles, ρ over fermionic particles.
Such a generator converts bosons into fermions and vice versa.
E.g. action of Q on 1 fermion +1 boson state using (anti) commutation relations on page 4 gives
$Q a_{\rho^{\prime}}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle=Q_{\sigma \rho^{\prime}} a_{\sigma^{\dagger}}^{\dagger} a_{\sigma^{\prime}}^{\dagger}|0\rangle+R_{\sigma^{\prime} \rho} a_{\rho}^{\dagger} a_{\rho^{\prime}}^{\dagger}|0\rangle$.
But as a symmetry implies there are fermions and bosons with similar properties.

Identify symmetry generators t_{i} also with fermionic Q.

Graded parameters α_{i}, β_{j} obey $\alpha_{i} \beta_{j}=(-1)^{\eta_{i} \eta_{j}} \beta_{j} \alpha_{i}$, where grading $\eta_{i}=0(1)$ for complex (Grassmann) α_{i}. Graded generator t_{j} obeys $\alpha_{i} t_{j}=(-1)^{\eta_{i} \eta_{j}} t_{j} \alpha_{i}$, where $\eta_{i}=0(1)$ for bosonic (fermionic) generator t_{i}. For transformations $\mathscr{O} \rightarrow e^{I \alpha_{i} t_{i}} \mathscr{O} e^{-I \alpha_{i} t_{i}}$ to preserve grading of any operator \mathscr{O}, α_{i} has same grading as t_{i}.

Graded Lie algebra: $\left[(-1)^{\eta_{i} \eta_{j}} t_{i} t_{j}-t_{j} t_{i}\right]=I C_{i j k} t_{k}$.
Repeating steps in derivation of Lie algebra on page 8 gives

$$
\frac{1}{2} I C_{i j k} \alpha_{i} \beta_{j} t_{k}=\frac{1}{2}\left[\alpha_{i} t_{i} \beta_{j} t_{j}-\beta_{j} t_{j} \alpha_{i} t_{i}\right]=\frac{1}{2}\left[(-1)^{\eta_{i} \eta_{j}} \alpha_{i} \beta_{j} t_{i} t_{j}-\alpha_{i} \beta_{j} t_{j} t_{i}\right] .
$$

Fermionic generators Q_{i} : $U(\Lambda) Q_{i} U^{\dagger}(\Lambda)=C_{i j}(\Lambda) Q_{j}$, so Q_{i} furnishes representation of Lorentz group.
Choose $Q_{i}=Q_{a b}^{(A, B)}$ in (A, B) representation: $\left[\boldsymbol{A}, Q_{a b}^{(A, B)}\right]=-\boldsymbol{J}_{a a^{\prime}}^{(A)} Q_{a^{\prime} b}^{(A, B)}$ and $\left[\boldsymbol{B}, Q_{a b}^{(A, B)}\right]=-\boldsymbol{J}_{b b^{\prime}}^{(B)} Q_{a b^{\prime}}^{(A, B)}$.

Anticommutators of fermionic generators can be used to build bosonic generators of various (A, B).
Coleman-Mandula theorem puts limits on allowed bosonic generators, and hence allowed (A, B) for the $Q_{a b}^{(A, B)}$.

Coleman-Mandula theorem: Only bosonic generators are of internal + Poincaré group symmetries.
Simple argument: Additional conserved additive rank ≥ 1 tensors constrain scattering amplitude too much.
Only 14 -vector, P^{μ} : Consider $2 \rightarrow 2$ scattering, c.m. frame.
Conservation of momentum and angular momentum \rightarrow amplitude depends on scattering angle θ.
Second conserved additive 4-vector R^{μ} gives additional constraints unless $R^{\mu} \propto P^{\mu}$.

Only 1 2nd rank tensor, $J^{\mu \nu}$: Assume rank 2 conserved additive tensor $\Sigma_{\mu \nu}$.
Additive property means $\left[\Sigma_{\mu \nu}, a_{\sigma}^{\dagger}(\boldsymbol{p})\right]=C_{\mu \nu}(\boldsymbol{p}) a_{\sigma}^{\dagger}(\boldsymbol{p})$. Then $C_{\mu \nu}(\boldsymbol{p}, \sigma)=\alpha_{\sigma}\left(m^{2}\right) p_{\mu} p_{\nu}+\beta_{\sigma}\left(m^{2}\right) g_{\mu \nu}$.
Lorentz transformation of RHS is $U(\Lambda)\left[\Sigma_{\mu \nu}, a_{\sigma}^{\dagger}(\boldsymbol{p})\right] U^{\dagger}(\Lambda)=\left[U(\Lambda) \Sigma_{\mu \nu} U^{\dagger}(\Lambda), U(\Lambda) a_{\sigma}^{\dagger}(\boldsymbol{p}) U^{\dagger}(\Lambda)\right]$
$=\left[\Lambda^{\rho}{ }_{\mu} \Lambda^{\delta}{ }_{\nu} \Sigma_{\rho \delta}, D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{\Lambda} \boldsymbol{p})\right]=D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) \underline{\Lambda^{\rho}{ }_{\mu} \Lambda^{\delta}{ }_{\nu} C_{\rho \delta}(\boldsymbol{\Lambda} \boldsymbol{p}, \sigma)} a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{\Lambda} \boldsymbol{p})$,
and of LHS is $\underline{C_{\mu \nu}(\boldsymbol{p}, \sigma)} D_{\sigma^{\prime} \sigma}(W(\Lambda, p)) a_{\sigma^{\prime}}^{\dagger}(\boldsymbol{\Lambda} \boldsymbol{p})$, so $\Lambda_{\mu}{ }^{\rho} \Lambda_{\nu}{ }^{\delta} C_{\rho \delta}(\boldsymbol{p}, \sigma)=C_{\mu \nu}(\boldsymbol{\Lambda} \boldsymbol{p}, \sigma)$. Only candidates are $p_{\mu} p_{\nu}$ and $g_{\mu \nu}$.
In $2 \rightarrow 2$ scattering, conservation of $\Sigma_{\mu \nu}$ implies $\alpha_{\sigma_{1}}\left(m_{1}^{2}\right) p_{1}^{\mu} p_{1}^{\nu}+\alpha_{\sigma_{2}}\left(m_{2}^{2}\right) p_{2}^{\mu} p_{2}^{\nu}=\alpha_{\sigma_{1}}\left(m_{1}^{2}\right) p_{1}^{\prime \mu} p_{1}^{\prime \nu}+\alpha_{\sigma_{2}}\left(m_{2}^{2}\right) p_{2}^{\mu} p_{2}^{\prime \nu}$.
P^{μ} conservation: $p_{1}^{\mu}+p_{2}^{\mu}=p_{1}^{\mu}+p_{2}^{\mu} \Longrightarrow p_{1,2}^{\mu}=p_{1,2}^{\prime \mu}$, i.e. no scattering (allowed $p_{1,2}^{\mu}=p_{2,1}^{\prime \mu}$ if $\left.\alpha_{\sigma_{1}}\left(m_{1}^{2}\right)=\alpha_{\sigma_{2}}\left(m_{2}^{2}\right)\right)$.
No higher rank tensors: Generalize last argument to higher rank tensors.

Allowed representations for fermionic generators $Q_{a b}^{(A, B)}: A+B=\frac{1}{2}$, i.e. $\left(\frac{1}{2}, 0\right)$ or $\left(0, \frac{1}{2}\right)$, and $j=\frac{1}{2}$.
$\left\{Q_{C,-D}^{(C, D)}, Q_{C,-D}^{(C, D) \dagger}\right\}=X_{C+D,-C-D}^{(C+D, C+D)}$: Firstly, $Q^{(C, D) \dagger}$ is of type $(A, B)=(D, C)$ because $\boldsymbol{B}^{\dagger}=\boldsymbol{A}$.
Writing $Q_{C,-D}^{(C, D) \dagger}=\widetilde{Q}_{a, b}^{(D, C)}$, we find $b=-C$ because $\left[B_{-}, \widetilde{Q}_{a, b}^{(D, C)}\right]=-\left[A_{+}, Q_{C,-D}^{(C, D)}\right]^{\dagger}=0$ using $B_{-}=A_{+}^{\dagger}$. Similarly $a=D$.
Now $\left\{Q_{C,-D}^{(C, D)}, Q_{C,-D}^{(C, D) \dagger}\right\}=\left\{Q_{C,-D}^{(C, D)}, \widetilde{Q}_{D,-C}^{(D, C)}\right\}$, must have $A_{3}=C+D$ and $B_{3}=-C-D$, i.e. $A, B \geq C+D$.
But since A must be $\leq(C+D)$ (from triangle inequality), it must be $=C+D$. Similarly for B.
Since $X^{(C+D, C+D)}$ is bosonic, CM theorem means it must be $P^{\mu}\left(\left(\frac{1}{2}, \frac{1}{2}\right)\right)$, or internal symmetry generator $((0,0))$.
Latter implies $C=D=0$, not possible by spin-statistics connection. Final result is relation with momentum on page 82 .
Take Q_{a} to be $\left(\frac{1}{2}, 0\right)$ spinor, i.e. $\left[\boldsymbol{A}, Q_{a}\right]=-\frac{1}{2} \sigma_{a b} Q_{b},\left[\boldsymbol{B}, Q_{a}\right]=0\left(Q_{a}^{\dagger}\right.$ will be $\left.\left(0, \frac{1}{2}\right)\right)$.
Q_{a} not ruled out by reasoning of CM theorem, because no similar conservation law:
Take $|i\rangle,|j\rangle$ to have definite particle number. $\langle j \mid i\rangle \neq 0 \Longrightarrow$ even difference in fermion numbers, so $\langle j| Q_{a}|i\rangle=0$.
Can have multiple generators $Q_{a r}, r=1, \ldots, N \longrightarrow$ simple SUSY is $N=1$, extended SUSY is $N \geq 2$.
Summary:
CM theorem: only bosonic generators are $(0,0)$ (internal symmetry), $\left(\frac{1}{2}, \frac{1}{2}\right)\left(P^{\mu}\right)$, and $(1,0)$ and $(0,1)\left(J^{\mu \nu}\right)$.
HLS theorem: only fermionic generators are $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)\left(Q_{a r}\right)$.

Relation with momentum for any $N:\left\{Q_{a r}, Q_{\dot{b}_{s}}^{\dagger}\right\}=2 \delta_{r s} \sigma_{a b}^{\mu} P_{\mu}$.

From allowed representations for fermionic generators on page 86, $\left\{Q_{a r}, Q_{b s}^{\dagger}\right\}=2 N_{r s} \sigma_{a b}^{\mu} P_{\mu} . N_{r s}$ is Hermitian, because $\left\{Q_{a r}, Q_{\dot{b} s}^{\dagger}\right\}^{\dagger}=\left\{Q_{b s}, Q_{\dot{a} r}^{\dagger}\right\}=2 N_{r s}^{*} \sigma_{b \dot{a}}^{\mu} P_{\mu}$, but $\left\{Q_{b s}, Q_{a r}^{\dagger}\right\}=2 N_{s r} \sigma_{b \dot{a}}^{\mu} P_{\mu}$. So N diagonalized by unitary matrix W. Writing $Q_{a r^{\prime}}^{\prime}=W_{r^{\prime} r} Q_{a r}$ gives $\left\{Q_{a r}^{\prime}, Q_{b s}^{\prime \dagger}\right\}=2 n_{r} \delta_{r s} \sigma_{a b}^{\mu} P_{\mu}$ (no sum over r on RHS), where n_{r} are eigenvalues of $N_{r s}$.

Writing $Q_{a r}=Q_{a r}^{\prime} / \sqrt{n_{r}}$ gives result if $n_{r}>0$ (otherwise we have a factor -1):
Taking $Q_{b s}^{\prime \dagger}=\left(Q_{a r}^{\prime}\right)^{\dagger}$ and operating from right and left with $|X(p)\rangle$ and $\langle X(p)|$ where $Q_{a r}^{\prime}|X(p)\rangle \neq 0$ gives on LHS: $\left.\left.\langle X(p)|\left\{Q_{a r}^{\prime},\left(Q_{a r}^{\prime}\right)^{\dagger}\right\}|X(p)\rangle=\mid\left(Q_{a r}^{\prime}\right)^{\dagger}\right\}\left.|X(p)\rangle\right|^{2}+\mid Q_{a r}^{\prime}\right\}\left.|X(p)\rangle\right|^{2}>0$, and on RHS: $2 n_{r}\left(p^{0} \pm p^{3}\right)$, where \pm for $a=1$, 2. If $p^{0} \geq \mp p^{3}$, then $n_{r}>0$ as required.

SUSY implies $\langle 0| H|0\rangle=0$ for supersymmetric vacuum $\left(Q_{a r}|0\rangle=Q_{\dot{a} r}^{\dagger}|0\rangle=0\right)$.

Commutation with momentum: $\left[Q_{a}, P^{\mu}\right]=0$.

$\left[Q_{a}, P^{\mu}\right]$ is $\left(\frac{1}{2}, 0\right) \times\left(\frac{1}{2}, \frac{1}{2}\right)=\left(1, \frac{1}{2}\right)+\left(0, \frac{1}{2}\right)$. No $\left(1, \frac{1}{2}\right)$ generator, but $Q^{\dagger \dot{a}}$ is $\left(0, \frac{1}{2}\right)$.
So $\left[Q_{b}, P^{\mu}\right]=k \sigma_{b \dot{a}}^{\mu} Q^{\dagger \dot{a}}$ and therefore $\left[Q_{\dot{a}}^{\dagger}, P^{\mu}\right]=-k^{*} Q^{b} \sigma_{b \dot{a}}^{\mu}$, or, using ϵ matrix, $\left[Q^{\dagger \dot{a}}, P^{\mu}\right]=k^{*} \bar{\sigma}^{\mu} \dot{a} b Q_{b}$.
Jacobi identity: $0=\left[\left[Q_{a}, P^{\mu}\right], P^{\nu}\right]+\left[\left[P^{\mu}, P^{\nu}\right], Q_{a}\right]+\left[\left[P^{\nu}, Q_{a}\right], P^{\mu}\right]=k \sigma_{a \dot{b}}^{\mu}\left[Q^{\dagger \dot{b}}, P^{\nu}\right]-k \sigma_{a \dot{b}}^{\nu}\left[Q^{\dagger \dot{b}}, P^{\mu}\right]=|k|^{2}\left[\sigma^{\mu}, \bar{\sigma}^{\nu}\right]_{a}^{b} Q_{b}$.
Since $\left[\sigma^{\mu}, \bar{\sigma}^{\nu}\right]_{a}^{b} \neq 0$ for all μ, ν, must have $|k|^{2}=k=0$.

Anticommuting generators: $\left\{Q_{a r}, Q_{b s}\right\}=\epsilon_{a b} Z_{r s}$, with $(0,0)$ generators $Z_{r s}=-Z_{s r}$.
$\left\{Q_{a r}, Q_{b s}\right\}$ is $(1,0)+(0,0)$. From CM theorem, only $(1,0)$ generator is $J^{\mu \nu}$. But $\left[\left\{Q_{a r}, Q_{b s}\right\}, P^{\mu}\right]=0$ (commutation with momentum, page 87), while (linear combinations of) $J^{\mu \nu}$ doesn't commute with P^{μ} (see Poincare algebra, page 21).

So only possibility is $(0,0)$ generators, which in general commute with P^{μ} from CM theorem.

Lorentz invariance requires $\epsilon_{a b}\left(=-\epsilon_{b a}\right)$, but whole expression symmetric under $a r \leftrightarrow b s$ so $Z_{r s}=-Z_{s r}$.
Antisymmetry of $Z_{r s} \rightarrow$ vanish for $N=1 . Z_{r s}$ are central charges due to following commutation relations:

Commutation with central charges: $\left[Z_{r s}, Q_{a t}\right]=\left[Z_{r s}, Q_{\dot{a} t}^{\dagger}\right]=0$.

Jacobi identity $0=\left[\left\{Q_{a r}, Q_{b s}\right\}, Q_{c t}^{\dagger}\right]+\left[\left\{Q_{b s}, Q_{c t}^{\dagger}\right\}, Q_{a r}\right]+\left[\left\{Q_{c t}^{\dagger}, Q_{a r}\right\}, Q_{b s}\right]$.
2nd, 3rd terms vanish from commutation with momentum on page 87. Thus $\left[Z_{r s}, Q_{\dot{a} t}^{\dagger}\right]=0$.
Jacobi identity $0=-\left[Z_{r s},\left\{Q_{a t}, Q_{\dot{b} u}^{\dagger}\right\}\right]+\left\{Q_{\dot{b} u}^{\dagger},\left[Z_{r s}, Q_{a t}\right]\right\}-\left\{Q_{a t},\left[Q_{\dot{b} u}^{\dagger}, Z_{r s}\right]\right\}$.
1st, 3rd terms vanish because $Z_{r s}$ commutes with P^{μ} and $Q_{\dot{b} u}^{\dagger}$.
Commutator in 2nd term must be $\left[Z_{r s}, Q_{a t}\right]=M_{r s t v} Q_{a v}$, so $0=\left\{Q_{\dot{b u}}^{\dagger},\left[Z_{r s}, Q_{a t}\right]\right\}=2 M_{r s t u} \sigma_{a b}^{\mu} P_{\mu}$, i.e. $M_{r s t u}=0$ so $\left[Z_{r s}, Q_{a t}\right]=0$.
Commuting central charges: $\left[Z_{r s}, Z_{t u}\right]=\left[Z_{r s}, Z_{t u}^{\dagger}\right]=0 . \quad\left[Z_{r s}, Z_{t u}\right]=\left[\left\{Q_{1 r}, Q_{2 s}\right\}, Z_{t u}\right]=0$, etc.
R-symmetry: $Z_{r s}=0$ gives $\mathrm{U}(\mathrm{N})$ symmetry $Q_{a r} \rightarrow V_{r s} Q_{a s}\left(N=1\right.$ case: $Q_{a} \rightarrow e^{I \phi} Q_{a}$, always true).

CM theorem: $\left[t_{i}, P^{\mu}\right]=\left[t_{i}, J^{\mu \nu}\right]=0$ for generators t_{i} of group G.

Since t_{i} is $(0,0)$, must have $\left[t_{i}, Q_{\frac{1}{2} r}\right]=-\left(a_{i}\right)_{r s} Q_{\frac{1}{2} s}$. Matrices a_{i} represent G.

$$
\begin{aligned}
& \text { Jacobi identity } 0=\left[\left[t_{i}, t_{j}\right], Q_{\frac{1}{2} r}\right]+\left[\left[Q_{\frac{1}{2} r}, t_{i}\right], t_{j}\right]+\left[\left[t_{j}, Q_{\frac{1}{2} r}\right], t_{i}\right]=I C_{i j k}\left[t_{k}, Q_{\frac{1}{2} r}\right]+\left(a_{i}\right)_{r t}\left[Q_{\frac{1}{2} t}, t_{j}\right]-\left(a_{j}\right)_{r t}\left[Q_{\frac{1}{2} t}, t_{i}\right] \\
& =-I C_{i j k}\left(a_{k}\right)_{r s} Q_{\frac{1}{2} s}+\left(a_{i}\right)_{r t}\left(a_{j}\right)_{t s} Q_{\frac{1}{2} s}-\left(a_{j}\right)_{r t}\left(a_{i}\right)_{t s} Q_{\frac{1}{2} s} s, \text { i.e. }\left[a_{i}, a_{j}\right]_{r s}=I C_{i j k}\left(a_{k}\right)_{r s} .
\end{aligned}
$$

Simple SUSY and internal symmetry generators commute. If $N=1$, numbers a_{i} cannot represent G unless $a_{i}=0$.

Commutation of central charges and internal symmetry generators: $\left[t_{i}, Z_{r s}\right]=0$.

From anticommuting generators on page 88, $\left[t_{i}, Z_{r s}\right]=\left[t_{i},\left\{Q_{1 r}, Q_{2 s}\right\}\right]=-\left(a_{i}\right)_{r r^{\prime}} Z_{r s}-\left(a_{i}\right)_{s s^{\prime}} Z_{r s^{\prime}}$.
This has the form $\left[t_{i}, Z_{\alpha}\right]=A_{i \alpha \beta} Z_{\beta}$, i.e. Z_{α} form invariant subalgebra of G if any $A_{i \alpha \beta} \neq 0$ or are $\mathrm{U}(1)$ if all $A_{i \alpha \beta}=0$.
But from CM theorem, generators of invariant subalgebra not allowed, only $\mathrm{U}(1)$ generators. So all $A_{i \alpha \beta}=0$.

3.3 Supermultiplets

Supermultiplets: Particles that mix under SUSY transformations, furnish representation of SUSY.
Irreducible representations of SUSY: doesn't reduce to $2+$ supermultiplets separately mixing under SUSY.
Action of $Q_{a r}$ or $Q_{\dot{a} r}^{\dagger}$ converts one particle into another of the same irreducible supermulitplet (superpartners).
Since $\left[Q_{a r}, P^{\mu}\right]=\left[Q_{\dot{a} r}^{\dagger}, P^{\mu}\right]=0$, all particles in supermultiplet have same P^{μ} (and hence same mass P^{2}).
Equal number of bosonic and fermionic degrees of freedom in supermultiplet: $n_{B}=n_{F}$.
Convention: \sum_{X} over supermultiplet states, $\sum_{\text {all } X}$ over complete basis. Choose given r for $Q_{a r} \equiv Q_{a}, Q_{\dot{a} r}^{\dagger} \equiv Q_{\dot{a}}^{\dagger}$ below.
Supermultiplet's states $|x\rangle$ have same p^{μ}, and $(-1)^{2 s}|x\rangle= \pm 1|x\rangle$ for spin s bosonic/fermionic $|x\rangle$,
so $P_{\mu}^{\prime} \equiv \sum_{X}\langle X|(-1)^{2 s} P_{\mu}|X\rangle=p_{\mu}\left(n_{B}-n_{F}\right)$. We show $P_{\mu}^{\prime}=0$: From relation with momentum for any N on page 87 ,
$2 \sigma_{a \dot{b}}^{\mu} P_{\mu}^{\prime}=\sum_{X}\langle X|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|X\rangle+\underline{\sum_{X}\langle x|(-1)^{2 s} Q_{\dot{b}}^{\dagger} Q_{a}|X\rangle}=\sum_{X}\langle X|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|X\rangle+\underline{\sum_{X, \text { all } Y}\langle X|(-1)^{2 s} Q_{\dot{b}}^{\dagger}|Y\rangle\langle Y| Q_{a}|X\rangle}$.
Since $Q_{a}|X\rangle,|x\rangle$ in same supermultiplet, limit $\sum_{\text {all } Y} \rightarrow \sum_{Y}$. Conversely, extend $\sum_{X} \rightarrow \sum_{\text {all } X}$ (so $\sum_{\text {all } X}|x\rangle\langle x|=1$).
$2 \sigma_{a b}^{\mu} P_{\mu}^{\prime}=\langle X|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|X\rangle+\underline{\sum_{\text {all } X, Y}\langle Y| Q_{a}|X\rangle\langle X|(-1)^{2 s} Q_{\dot{b}}^{\dagger}|Y\rangle}=\sum_{X}\langle X|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|X\rangle+\underline{\sum_{Y}\langle Y| Q_{a}(-1)^{2 s} Q_{\dot{b}}^{\dagger}|Y\rangle}$.
But $Q_{a}(-1)^{2 s}|Y\rangle=-(-1)^{2 s} Q_{a}|Y\rangle$, so $2 \sigma_{a b}^{\mu} P_{\mu}^{\prime}=\sum_{X}\langle X|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|X\rangle+\underline{-\sum_{Y}\langle Y|(-1)^{2 s} Q_{a} Q_{\dot{b}}^{\dagger}|Y\rangle}=0$.

$Q_{-\frac{1}{2} r}, Q_{-\frac{1}{2} r}^{\dagger}$ annihilate supermultiplet states, so $Z_{r s}$ annihilate supermultiplet states.
For any $|X\rangle$ in supermultiplet, $\left.\left.0=\langle X|\left\{Q_{-\frac{1}{2} r}, Q_{-\frac{1}{2} r}^{\dagger}\right\}|X\rangle=\left|\left(Q_{-\frac{1}{2} r}\right)^{\dagger}\right| X\right\rangle\left.\right|^{2}+\left|Q_{-\frac{1}{2} r}\right| X\right\rangle\left.\right|^{2}$ (no sum over r).

All supermultiplet states reached by acting on maximum helicity state $\left|\lambda_{\max }\right\rangle$ with the $Q_{\frac{1}{2} r}$

$Q_{\frac{i}{2} r}^{\dagger}$ give no new states: Consider $|X\rangle$ not containing $Q_{\frac{1}{2} r}$. Then $Q_{\frac{i}{2} r}^{\dagger}|X\rangle=0\left(Q_{\frac{1}{2} r}^{\dagger}\right.$ commutes across to act directly on $\left.\left|\lambda_{\max }\right\rangle\right)$.
Then $Q_{\frac{1}{2} r}^{\dagger} Q_{\frac{1}{2} r}|X\rangle=\left\{Q_{\frac{1}{2} r}, Q_{\frac{1}{2} r}^{\dagger}\right\}|X\rangle=4 p^{0}|X\rangle$ (no sum over r), i.e. $Q_{\frac{1}{2} r}^{\dagger}$ just removes $Q_{\frac{1}{2} r}$.
$Q_{\frac{1}{2} r}^{\dagger}|X\rangle \quad$ (or $\left.Q_{\frac{1}{2} r}|X\rangle\right)$ has helicity greater (or less) than $|X\rangle$ by $\frac{1}{2} . \quad$ Recall $\left[J_{3}, Q_{\frac{1}{2} r}^{\dagger}\right]=\frac{1}{2} Q_{\frac{1}{2} r}^{\dagger}$.

Range of helicities in supermultiplet: $\frac{N!}{n!(N-n)!}$ helicity $\lambda_{\max }-\frac{n}{2}$ states, $\lambda_{\min }=\lambda_{\max }-\frac{N}{2}$.

Obtain supermultiplet states $|X\rangle$ by acting on maximum helicity state $\left|\lambda_{\max }\right\rangle$ with any n of $Q_{\frac{1}{2} 1}, Q_{\frac{1}{2} 2}, \ldots, Q_{\frac{1}{2} N}$.
Order doesn't matter since $Q_{\frac{1}{2} a}$ anticommute, each generator cannot appear more than once since $Q_{\frac{1}{2} r}^{2}=0$.
Constraint on particle spins on page 56 implies $\lambda_{\min } \geq-2$ and $\lambda_{\max } \leq 2$, i.e. $N \leq 8$.

SM particles probably belong to \sim massless supermultiplets.
Superpartners (masses $\sim M$) of SM particles $(\sim m)$ not seen, i.e. $M \gg m$, so SUSY is broken, at energy $<m_{\text {SuSY }}$.
SUSY restored at $m_{\text {SUSY }} \therefore m_{\text {SUSY }} \gg M-m \sim M$ (superpartner has same mass) \therefore supermultiplets \sim massless.
Most likely scenario is simple SUSY: quark, lepton ($\operatorname{spin} \frac{1}{2}$) superpartners are scalars (0): squarks, sleptons.
Higgs (0), gauge bosons (1), graviton (2) superpartners fermionic: Higgsino + gauginos $\left(\frac{1}{2}\right)$, gravitino $\left(\frac{3}{2}\right)$.
No alternatives: In simple SUSY, SM gauge bosons cannot be superpartners of SM fermions.
SM fermions, gauge bosons in different representations (recall simple SUSY and SM $\operatorname{SU}(3) \times \operatorname{SU}(2)$ commute from page 89).
Quarks, leptons cannot be in same supermultiplet as any beyond-SM vector (gauge) bosons.
Gauge bosons are in adjoint representation of a group. If e.g. helicity $+\frac{1}{2}$ fermion, +1 gauge boson in same supermultiplet,
fermion in adjoint $=$ real representation. But SM is chiral, i.e. helicity $+\frac{1}{2}$ fermions belong to complex representations.
Superpartners of gauge bosons must be helicity $\pm \frac{1}{2}$, not $\pm \frac{3}{2}$, fermions.
Helicity $\pm \frac{3}{2}$ particle couples only to Q_{a} (principle of equivalence on page 56: ± 2 only couples to P^{μ}).
Extended SUSY probably cannot be realised in nature.
In extended SUSY, helicity $\pm \frac{1}{2}$ fermions either in same supermultiplet as gauge bosons $(N \geq 3)$, or each other $(N=2)$.

Massive supermultiplets: For particles with masses $M \gg m_{\text {SUSY }}$, e.g. heavy gauge bosons in $\operatorname{SU}(5)$.
In frame where $p^{1}=p^{2}=p^{3}=0, p_{0}=M,\left(\begin{array}{cc}\left\{Q_{\frac{1}{2} r}, Q_{\frac{1}{2} s}^{\dagger}\right\}=2 M \delta_{r s} & \left\{Q_{\frac{1}{2} r}, Q_{-\frac{i}{2} s}^{\dagger}\right\}=0 \\ \left\{Q_{-\frac{1}{2} r}, Q_{\frac{1}{2} s}^{\dagger}\right\}=0 & \left\{Q_{-\frac{1}{2} r}, Q_{-\frac{1}{2} s}^{\dagger}\right\}=2 M \delta_{r s}\end{array}\right)$,
so $Q_{\frac{1}{2} r}, Q_{-\frac{1}{2} r}^{\dagger}$ (or $Q_{-\frac{1}{2} r}, Q_{\frac{i_{2}}{2} r}^{\dagger}$) lower (or raise) spin 3 component by $\frac{1}{2}$.
$a_{A(a, r)}=\frac{1}{\sqrt{2 M}} Q_{a r}$ are fermionic annihilation / creation operators: $\left\{a_{A}, a_{B}^{\dagger}\right\}=\delta_{A B},\left\{a_{A}, a_{B}\right\}=\left\{a_{A}^{\dagger}, a_{B}^{\dagger}\right\}=0$.
Define Clifford "vacuum" $|\Omega\rangle: a_{A}|\Omega\rangle=0 .|\Omega\rangle$ has given spin j, range of spin 3 is $-j \leq \sigma \leq j$.
Supermultiplet is all states $a_{A_{1}}^{\dagger} \ldots a_{A_{n}}^{\dagger}|\Omega\rangle$, spins ranging from $\operatorname{Max}\left(j-\frac{N}{2}, 0\right), \ldots, j+\frac{N}{2}$.
Simple SUSY: States with spin $j \pm \frac{1}{2}$, and 2 sets of states with spin j.
If $j=0$, there are two bosonic spin 0 states and two fermionic states of $\operatorname{spin} \frac{1}{2}$ (i.e. $\operatorname{spin} 3$ is $\pm \frac{1}{2}$).

Lower mass bound in extended SUSY: $M \geq \frac{1}{2 N} \operatorname{Tr} \sqrt{Z^{\dagger} Z}$.

Using anticommuting generators on page 88 and relation with momentum for any N on page 87,

Polar decomposition theorem means any $Z=H V$, where H is positive Hermitian and V unitary.
Let $U=V$. Then use $M \geq \frac{1}{2 N} \operatorname{Tr} H$ and $Z^{\dagger} Z=H^{2}$.

When equality obeyed, supermultiplets are smaller ("short") and similar to massless supermultiplets.
For states obeying $M=\frac{1}{2 N} \operatorname{Tr} \sqrt{Z^{\dagger} Z}$, underlined quantity above must be zero on these states.
Then there are just N independent helicity-lowering $Q_{\frac{1}{2} r}$ and N independent helicity-raising $Q_{-\frac{1}{2} r}$.

3.3.1 Field supermultiplets (the left-chiral supermultiplet)

Simplest case: $N=1$, scalar $\phi(x)$ obeying $\left[Q_{\dot{b}}^{\dagger}, \phi(x)\right]=0$: Write $\left[Q_{a}, \phi(x)\right]=-I \zeta_{a}(x)$, which is a $\left(\frac{1}{2}, 0\right)$ field.
$\left\{Q_{\dot{a}}^{\dagger}, \zeta_{b}(x)\right\}=2 \sigma_{b \dot{a}}^{\mu} \partial_{\mu} \phi(x)$. Thus $[Q, \phi] \sim \zeta$ and $\left\{Q^{\dagger}, \zeta\right\} \sim \phi$, i.e. ϕ and ζ are each others' superpartners.
$\left\{Q_{\dot{a}}^{\dagger},-I \zeta_{b}\right\}=\left\{Q_{\dot{a}}^{\dagger},\left[Q_{b}, \phi\right]\right\}=\left[\left\{Q_{\dot{a}}^{\dagger}, Q_{b}\right\}, \phi\right]=2 \sigma_{b \dot{a}}^{\mu}\left[P_{\mu}, \phi\right]$. Poincaré transformation for fields on page 25: $\left[P_{\mu}, \phi\right]=I \partial_{\mu} \phi$.
$\left\{Q_{a}, \zeta_{b}(x)\right\}=2 I \epsilon_{a b} \mathscr{F}(x)$.
$\left\{Q_{a},-I \zeta_{b}\right\}=\left\{Q_{a},\left[Q_{b}, \phi\right]\right\}=-\left\{Q_{b},\left[Q_{a}, \phi\right]\right\}=-\left\{Q_{b}, I \zeta_{a}\right\} \propto \epsilon_{a b} . \mathscr{F}$ is $(0,0)$ in $\left(\frac{1}{2}, 0\right) \times\left(\frac{1}{2}, 0\right)=(0,0)+(1,0)$.
$\left[Q_{a}, \mathscr{F}(x)\right]=0 . \mathscr{F}$ has no superpartner, it is auxiliary field.
$2 I \epsilon_{a b}\left[Q_{c}, \mathscr{F}\right]=\left[Q_{c},\left\{Q_{a}, \zeta_{b}\right\}\right]=-\left[Q_{a},\left\{Q_{c}, \zeta_{b}\right\}\right]=-2 I \epsilon_{c b}\left[Q_{a}, \mathscr{F}\right]$. For $a=c \neq b, 2 I \epsilon_{c b}\left[Q_{c}, \mathscr{F}\right]=-2 I \epsilon_{c b}\left[Q_{c}, \mathscr{F}\right]$, so $\left[Q_{c}, \mathscr{F}\right]=0$.
$\left[Q^{\dagger \dot{a}}, \mathscr{F}(x)\right]=-\bar{\sigma}^{\mu} \dot{a} b \partial_{\mu} \zeta_{b}(x)$.
$2 I \epsilon_{a b}\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=\left[Q_{\dot{c}}^{\dagger},\left\{Q_{a}, \zeta_{b}\right\}\right]=\left[\left\{Q_{\dot{c}}^{\dagger}, Q_{a}\right\}, \zeta_{b}\right]-\left[Q_{a},\left\{Q_{\dot{c}}^{\dagger}, \zeta_{b}\right\}\right]=\left[2 \sigma_{a \dot{c}}^{\mu} P_{\mu}, \zeta_{b}\right]-\left[Q_{a}, 2 \sigma_{b \dot{c}}^{\mu} \partial_{\mu} \phi\right]=2 I \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \zeta_{b}-2 I \sigma_{b \dot{c}}^{\mu} \partial_{\mu} \zeta_{a}$.
Then $\epsilon^{d a} \epsilon_{a b}\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=\delta^{d}\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=\epsilon^{d a} \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \zeta_{b}-\epsilon^{d a} \sigma_{b \dot{c}}^{\mu} \partial_{\mu} \zeta_{a}=\epsilon^{d a} \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \zeta_{b}-\sigma_{b \dot{c}}^{\mu} \partial_{\mu} \zeta^{d}$. Sum $d=b: \delta^{d}{ }_{d}\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=2\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=-2 \sigma_{b \dot{c}}^{\mu} \partial_{\mu} \zeta^{b}$.
Then $\left[Q^{\dagger \dot{a}}, \mathscr{F}\right]=\epsilon^{\dot{a} \dot{c}}\left[Q_{\dot{c}}^{\dagger}, \mathscr{F}\right]=-\epsilon^{\dot{a} \dot{c}} \sigma_{b \dot{c}}^{\mu} \epsilon^{b d} \zeta_{d}=-\bar{\sigma}^{\mu} \dot{a} d \zeta_{d}$, using 4-vector σ matrices with raised indices on page 42.
Conjugation of everything above gives right-chiral supermulitplet.

To simplify algebra, use 4-component Majorana spinors, $\psi=\binom{X_{a}}{X^{\dagger} \dot{b}}$, with notation of page 43.
Majorana conjugation: $\bar{\psi}=\psi^{T} \gamma_{5} E$ where $E=\left(\begin{array}{cc}\epsilon^{a b} & 0 \\ 0 & -\epsilon_{\dot{a} \dot{b}}\left(=\epsilon^{a b}\right)\end{array}\right)$. From $\bar{\psi}=\psi^{\dagger} \beta=\left(X^{a}, X_{\dot{b}}^{\dagger}\right)$.
(Anti)commutation relations: $\{Q, \bar{Q}\}=-2 I \gamma^{\mu} P_{\mu}$ and $\left[Q, P^{\mu}\right]=0$, where Majorana $Q=\binom{Q_{a}}{Q^{\dagger \dot{b}}=\left(\epsilon^{b c} Q_{c}\right)^{\dagger}}$.
Directly from relations on page 87 .

Infinitesimal transformation of operator $\mathscr{O}: \delta \mathscr{O}=[I \bar{\alpha} Q, \mathscr{O}]$,

where Grassmann spinor $\alpha=\binom{\alpha_{a}}{\alpha^{\dagger \dot{b}}}$, so $\bar{\alpha} Q=\alpha^{a} Q_{a}+\alpha_{\dot{b}}^{\dagger} Q^{\dagger \dot{b}}$. Implies $\delta \mathscr{O}^{\dagger}=\left[I \bar{\alpha} Q, \mathscr{O}^{\dagger}\right]$.

$$
\begin{aligned}
& (\delta \mathscr{O})^{\dagger}=[I \bar{\alpha} Q, \mathscr{O}]^{\dagger}=\left[I \bar{\alpha} Q, \mathscr{O}^{\dagger}\right]=\delta\left(\mathscr{O}^{\dagger}\right) \text {, because, as for scalar from } 2 \text { spinors and Hermitian conjugate of scalar on page 41, } \\
& (\bar{\alpha} Q)^{\dagger}=\left(\alpha^{a} Q_{a}+\alpha_{\dot{b}}^{\dagger} Q^{\dagger \dot{b}}\right)^{\dagger}=\left(Q_{\dot{a}}^{\dagger} \not^{\dagger \dot{a}}+Q^{b} \alpha_{b}\right)=\left(-\alpha^{\dagger \dot{a}} Q_{\dot{a}}^{\dagger}-\alpha_{b} Q^{b}\right)=\left(\alpha_{\dot{a}}^{\dagger} Q^{\dagger \dot{a}}+\alpha^{b} Q_{b}\right)=\bar{\alpha} Q .
\end{aligned}
$$

Product rule for $\delta: \delta(A B)=(\delta A) B+A \delta B$, where A, B can be fermionic / bosonic.

$$
[I \bar{\alpha} Q, A B]=I(\bar{\alpha} Q A B-A B \bar{\alpha} Q)=I(\bar{\alpha} Q A B-A \bar{\alpha} Q B+A \bar{\alpha} Q B-A B \bar{\alpha} Q)=[I \bar{\alpha} Q, A] B+A[I \bar{\alpha} Q, B] .
$$

If Abelian limit on page 8 obeyed, finite transformation is $\mathscr{O} \rightarrow e^{I \bar{\alpha} Q} \mathscr{O} e^{-I \bar{\alpha} Q}$.
(Anti)commutation relations on page 95 can be simplified with 4-component spinor notation
and definitions $\phi=\frac{1}{\sqrt{2}}(A+I B), \psi=\frac{1}{\sqrt{2}}\binom{\zeta_{a}}{\zeta^{\dagger \dot{b}}}$ and $\mathscr{F}=\frac{1}{\sqrt{2}}(F-I G)$:

$$
\text { 1. } \delta A=\bar{\alpha} \psi, 2 . \delta B=-I \bar{\alpha} \gamma_{5} \psi \text {. }
$$

$$
[Q, \phi]=\binom{\left[Q_{a}, \phi\right]=-I \zeta_{a}}{\left[Q^{\dagger \dot{b}}, \phi\right]=\epsilon^{b \dot{a}}\left[Q_{\dot{a}}^{\dagger}, \phi\right]=0} \text { and }\left[Q, \phi^{\dagger}\right]=\binom{\left[Q_{a}, \phi^{\dagger}\right]=-\left[Q_{\dot{d}}^{\dagger}, \phi\right]^{\dagger}=0}{\left[Q^{\dagger \dot{b}}, \phi^{\dagger}\right]=-\epsilon^{b \dot{a}}\left[Q_{a}, \phi\right]^{\dagger}=-I \zeta_{+\dot{b}}}
$$

so $[Q, A]=\left[Q, \frac{1}{\sqrt{2}}\left(\phi+\phi^{\dagger}\right)\right]=-I \psi$, and $[Q, B]=\left[Q, \frac{I}{\sqrt{2}}\left(\phi^{\dagger}-\phi\right)\right]=-\gamma_{5} \psi$ from definition of γ_{5} on page 44..

$$
\text { 3. } \delta F=\bar{\alpha} \gamma^{\mu} \partial_{\mu} \psi, 4 . \delta G=-I \bar{\alpha} \gamma_{5} \gamma^{\mu} \partial_{\mu} \psi \text {. }
$$

$[Q, \mathscr{F}]=\binom{\left[Q_{a}, \mathscr{F}\right]=0}{\left[Q^{\dagger \dot{b}}, \mathscr{F}\right]=-\bar{\sigma}^{\mu} \dot{b} a \partial_{\mu} \zeta_{a}}$ and, using $\bar{\sigma}^{\mu} \dot{b} c *=\bar{\sigma}^{\mu} \dot{c b}$,
$\left.\left[Q, \mathscr{F}^{\dagger}\right]=\left(\begin{array}{c}{\left[Q_{a}, \mathscr{F} \dagger\right.}\end{array}\right]=-\epsilon_{a b}\left[Q^{\dagger \dot{b}}, \mathscr{F}\right]^{\dagger}=\epsilon_{a b} \bar{\sigma}^{\mu} \dot{b} c * \partial_{\mu} \zeta_{\dot{c}}^{\dagger}=\epsilon_{a b} \bar{\sigma}^{\mu \dot{c} b} \partial_{\mu} \zeta_{c}^{\dagger}=\epsilon_{a b} \bar{\sigma}^{\mu} \dot{c b} \epsilon_{\dot{c} \dot{d}} \partial_{\mu} \zeta^{\dagger \dot{d}}=-\sigma_{a \dot{d}}^{\mu} \partial_{\mu} \zeta^{\dagger^{\dot{d}}}\right)$, so
$[Q, F]=\left[Q, \frac{1}{\sqrt{2}}\left(\mathscr{F}+\mathscr{F}^{\dagger}\right)\right]=-\frac{I}{\sqrt{2}}\binom{-I \sigma_{b j}^{\mu} \partial_{\mu} \zeta^{\dagger \dot{b}}}{-I \bar{\sigma}^{\mu} b^{b} \partial_{\mu} \zeta_{d}}=-I \gamma^{\mu} \partial_{\mu} \psi$ and
$[Q, G]=\left[Q, \frac{I}{\sqrt{2}}\left(\mathscr{F}-\mathscr{F}^{\dagger}\right)\right]=\frac{1}{\sqrt{2}}\binom{I \sigma_{a \dot{b}}^{\mu} \partial_{\mu} \succ^{\dagger \dot{b}}}{-I \bar{\sigma}^{\mu} \dot{b} \partial_{\mu} \zeta_{d}}=-\gamma_{5} \gamma^{\mu} \partial_{\mu} \psi$.
5. $\delta \psi=\partial_{\mu}\left(A+I \gamma_{5} B\right) \gamma^{\mu} \alpha+\left(F-I \gamma_{5} G\right) \alpha$.
$[I \bar{\alpha} Q, \psi]=\frac{I}{\sqrt{2}}\binom{\alpha^{c}\left\{Q_{c}, \zeta_{a}\right\}+\alpha_{d}^{\dagger}\left\{Q^{\dagger \dot{d}}, \zeta_{a}\right\}}{\alpha^{c}\left\{Q_{c}, \zeta^{\dagger \dot{b}}\right\}+\alpha_{d}^{\dagger}\left\{Q^{\dagger \dot{d}}, \zeta^{\dagger \dot{b}}\right\}}=\frac{I}{\sqrt{2}}\binom{\alpha^{c}\left\{Q_{c}, \zeta_{a}\right\}+\alpha_{d}^{\dagger} \epsilon^{\dot{d}} \dot{c}\left\{Q_{c}^{\dagger}, \zeta_{a}\right\}}{\alpha^{c}\left\{Q_{\dot{c}}^{\dagger}, \zeta_{d}\right\}^{\dagger} \epsilon^{b \dot{d}}+\alpha_{\dot{d}}^{\dagger} \epsilon^{\dot{d} \dot{c}} \epsilon^{b \dot{a}}\left\{Q_{c}, \zeta_{a}\right\}^{\dagger}}$
$=\frac{I}{\sqrt{2}}\binom{\alpha^{c}\left(2 I \epsilon_{c a} \mathscr{F}\right)+\alpha_{\dot{d}}^{\dagger} \epsilon^{\dot{d} \dot{c}}\left(2 \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \phi\right)}{\epsilon^{c a} \alpha_{a}\left(2 \sigma_{c \dot{d}}^{\mu} \partial_{\mu} \phi^{\dagger}\right) \epsilon^{\dot{b} \dot{d}}-\alpha_{\dot{d}}^{\dagger} \epsilon^{\dot{c}} \epsilon^{\dot{b}}\left(2 I \epsilon_{\dot{a} \dot{a}} \mathscr{F}^{\dagger}\right)}$
$=I \sqrt{2}\left(\begin{array}{c}-\alpha_{a}(I \mathscr{F})-\alpha^{\dagger \dot{c}}\left(\sigma_{\dot{c}}^{\mu} \partial_{\mu} \phi\right) \\ -\alpha_{a}\left(\bar{\sigma}^{\mu} \dot{b} a\right. \\ \left.\partial_{\mu} \phi^{\dagger}\right)-\alpha^{\dagger \dot{b}}\left(I \mathscr{F}^{\dagger}\right)\end{array}\right)=\binom{\alpha_{a}(F-I G)-I \sigma_{a \dot{\alpha}}^{\mu} \alpha^{\dagger \dot{c}} \partial_{\mu}(A+I B)}{\alpha^{\dagger \dot{b}}(F+I G)-I \bar{\sigma}^{\mu} \dot{b} \alpha_{a} \partial_{\mu}(A-I B)}$.
For $\mathscr{L}=-\frac{1}{2} \partial_{\mu} A \partial^{\mu} A-\frac{1}{2} \partial_{\mu} B \partial^{\mu} B-\frac{1}{2} \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+\frac{1}{2}\left(F^{2}+G^{2}\right)+m\left(F A+G B-\frac{1}{2} \bar{\psi} \psi\right)$
$+g\left[F\left(A^{2}+B^{2}\right)+2 G A B-\bar{\psi}\left(A+I \gamma_{5} B\right) \psi\right]$, above transformations $1-5$ leave action $\mathscr{A}=\int d^{4} x \mathscr{L}$ invariant
For example, for $m=g=0, \delta \mathscr{L}=-\partial_{\mu} \delta A \partial^{\mu} A-\partial_{\mu} \delta B \partial^{\mu} B-(\delta \bar{\psi}) \gamma^{\mu} \partial_{\mu} \psi+F \delta F+G \delta G$.
We have replaced $-\frac{1}{2} \bar{\psi} \gamma^{\mu} \partial_{\mu} \delta \psi \rightarrow-\frac{1}{2}(\delta \bar{\psi}) \gamma^{\mu} \partial_{\mu} \psi$, since difference with analogous term in hermitian conjugate (h.c.) of \mathscr{L} (must be added to make \mathscr{L} real) is total derivative $\partial_{\mu} f$ which doesn't contribute to \mathscr{A} :

$$
\left(\bar{X} \gamma^{\mu} \partial_{\mu} Z\right)^{\dagger}=\left(X^{\dagger} \beta \gamma^{\mu} \partial_{\mu} Z\right)^{\dagger}=\left(\partial_{\mu} Z^{\dagger}\right) \gamma^{\mu \dagger} \beta^{\dagger} X=-\left(\partial_{\mu} Z^{\dagger}\right) \beta \gamma^{\mu} X=-\left(\partial_{\mu} \bar{Z}\right) \gamma^{\mu} X=\bar{Z} \gamma^{\mu} \partial_{\mu} X-\partial_{\mu}\left(\bar{Z} \gamma^{\mu} X\right) .
$$

No derivatives of F, G (or \mathscr{F}) appear, so they are auxiliary fields,
i.e. can be expressed in terms of the other supermultiplet fields by solving equations of motion $\frac{\partial \mathscr{L}}{\partial F}=\frac{\partial \mathscr{L}}{\partial G}=0$.

Problems 2

1: Derive the equal time anticommutation relations $\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}^{\dagger}(\boldsymbol{y}, t)\right]_{+}=\delta_{l l} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$ for a $\left(\frac{1}{2}, 0\right)+\left(0, \frac{1}{2}\right)$ field $\psi(x)=$ $\int \frac{d^{3} p}{(2 \pi)^{3}}\left[e^{I p \cdot x} u_{\sigma}(\boldsymbol{p}) a_{\sigma}(\boldsymbol{p})+e^{-I p \cdot x} v_{\sigma}(\boldsymbol{p}) a_{\sigma}^{c \dagger}(\boldsymbol{p})\right]$ where u and v obey the projection operator properties $u_{l} \sigma(\boldsymbol{p}) \bar{u}_{l^{\prime}}(\boldsymbol{p})=$ $\frac{1}{2 p^{0}}\left(-I \gamma^{\mu} p_{\mu}+m\right)_{l l^{\prime}}$ and $v_{l} \sigma(\boldsymbol{p}) \bar{v}_{l^{\prime}} \sigma(\boldsymbol{p})=\frac{1}{2 p^{0}}\left(-I \gamma^{\mu} p_{\mu}-m\right)_{l l^{\prime}}$.
2: Show that the canonically conjugate momenta to the $\left(\frac{1}{2}, 0\right)+\left(0, \frac{1}{2}\right)$ field $\psi(x)$ for the Lagrangian density $\mathscr{L}_{\text {Dirac }}=$ $-\bar{\psi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \psi$ is consistent with the equal time anticommutation relations $\left[\psi_{l}(\boldsymbol{x}, t), \psi_{l^{\prime}}^{\dagger}(\boldsymbol{y}, t)\right]_{+}=\delta_{l l^{\prime}} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$.
3: Under a local gauge transformation of a group G, the field strength $F_{\mu \nu}=F_{\mu \nu}^{i} t_{i}$ transforms as $F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger}$, where U and t_{i} are respectively any element of G and the generators of G in any representation. By considering infinitessimal transformations, show that this implies that $F_{\mu \nu}$ transforms in the adjoint representation of G, i.e. $F^{i} \rightarrow U_{i j} F^{j}$, where the generators of $U_{i j}$ are $t_{j i}^{k}=I C_{k i j}$.
4: How must the right-handed neutrino field $\nu_{e R}$ transform under the SM group in order for the Lagrangian term proportional to $\overline{\mathscr{E}}_{a}^{K}\left(\epsilon \phi_{H}\right)_{a}^{\dagger} \nu_{e R}$ to be invariant?
5: Suppose that there exists a two-component fermionic additive symmetry generator Q_{a} which transforms in the ($\left.\frac{1}{2}, 0\right)$ representation. Using the Coleman-Mandula theorem, show that $\left\{Q_{a}, Q_{\dot{b}}^{\dagger}\right\}=2 \sigma_{a b}^{\mu} P_{\mu}$. What does this tell you about any particle? (Note that, as an additive symmetry generator, $Q=Q_{\sigma \rho} a_{\sigma}^{\dagger} a_{\rho}+R_{\sigma \rho} a_{\rho}^{\dagger} a_{\sigma}$, where σ sums over bosonic particles, ρ over fermionic particles.)
6: For more than one spinor of such generators $Q_{a r}$ distinguished by the label r, show that $\left\{Q_{a r}, Q_{\dot{b} s}^{\dagger}\right\}=2 \delta_{r s} \sigma_{a \dot{b}}^{\mu} P_{\mu}$.
7: How many different states are there in a massless supermultiplet for a given N ? (Hint: working in a frame for which the particles of a massless supermultiplet have a momentum proportional to $p=(0,0,1,1)$, show that the $Q_{\frac{1}{2} r}, r=1, \ldots, N$, are the only generators that convert the maximum helicity state $\left|\lambda_{\max }\right\rangle$ in this supermultiplet into any other state in this supermultiplet, because the other fermionic generators either annihilate $\left|\lambda_{\max }\right\rangle$ or just remove any $Q_{\frac{1}{2} r}$ generator.)
8: Starting with a field $\phi(x)$, the generators Q_{a} and the constraint $\left[Q_{\dot{b}}^{\dagger}, \phi(x)\right]=0$, determine all the other fields in the same supermulitplet as $\phi(x)$.
9: The adjoint of a $\left(\frac{1}{2}, 0\right)+\left(0, \frac{1}{2}\right)$ spinor ψ is defined as $\bar{\psi}=\psi^{\dagger} \beta$. If ψ is a Majorana spinor, show that $\bar{\psi}=\psi^{T} \gamma_{5} E$. (Hint: Write $\psi^{T}=\left(X_{a}, X^{\dagger \dot{b}}=\left(\epsilon^{b c} X_{c}\right)^{\dagger}\right)$.)
10: Defining $Q=\left(Q_{a}, Q^{\dagger \dot{b}}\right)$, show that the anticommutation relations above read $\{Q, \bar{Q}\}=-2 I \gamma^{\mu} P_{\mu}$.

3.4 Grassman variables

N independent Grassman variables θ_{α} are defined to obey $\left\{\theta_{\alpha}, \theta_{\beta}\right\}=0$.
Thus $\theta_{\alpha}^{2}=0$ (no sum), so for e.g. $N=3$, any function $f(\boldsymbol{\theta})$ has the Grassman variable expansion
$f(\boldsymbol{\theta})=A+B \theta_{1}+C \theta_{2}+D \theta_{3}+E \theta_{1} \theta_{2}+F \theta_{2} \theta_{3}+G \theta_{3} \theta_{1}+H \theta_{1} \theta_{2} \theta_{3}$.
Define (no sums, $\beta \neq \alpha) \frac{\partial}{\partial \theta_{\alpha}} \theta_{\alpha}=1, \frac{\partial}{\partial \theta_{\alpha}} \theta_{\beta}=0, \frac{\partial}{\partial \theta_{\alpha}} \theta_{\alpha} \theta_{\beta}=\theta_{\beta}$ and $\frac{\partial}{\partial \theta_{\alpha}} \theta_{\beta} \theta_{\alpha}=-\theta_{\beta}$.
$\operatorname{Note}\left(\beta\right.$ can be equal to α now) that $\left\{\frac{\partial}{\partial \theta_{\alpha}}, \frac{\partial}{\partial \theta_{\beta}}\right\}=0$ and $\left\{\frac{\partial}{\partial \theta_{\alpha}}, \theta_{\beta}\right\}=\delta_{\alpha \beta}$.
By anticommuting Grassman variables $\theta_{\alpha}, \theta_{\beta}$ to the left, all terms in the Grassman variable expansion of any function f will be of the form $g, \theta_{\alpha} g, \theta_{\beta} g$ and $\theta_{\alpha} \theta_{\beta} g$, where g is independent of $\theta_{\alpha}, \theta_{\beta}$ but can depend on the other θ_{γ}.

Then show $\binom{\left[\frac{\partial}{\partial \theta^{2}} \partial \frac{\partial}{\partial \theta_{\beta}}+\frac{\partial}{\partial \theta_{\beta}} \frac{\partial}{\partial \theta_{\alpha}}\right]}{\left[\frac{\partial}{\partial \theta_{\alpha}} \theta_{\beta}+\theta_{\beta} \frac{\partial}{\partial \theta_{\alpha}}\right](\beta \neq \alpha)}\left(\begin{array}{c}g=0 \\ \theta_{\alpha} g=0 \\ \theta_{\beta} g=0 \\ \theta_{\alpha} \theta_{\beta} g=0\end{array}\right)$ and (no sum, $\left.\beta \neq \alpha\right)\left[\frac{\partial}{\partial \theta_{\alpha}} \theta_{\alpha}+\theta_{\alpha} \frac{\partial}{\partial \theta_{\alpha}}\right]\left[\begin{array}{c}g=g \\ \theta_{\alpha} g=\theta_{\alpha} g \\ \theta_{\beta} g=\theta_{\beta} g \\ \theta_{\alpha} \theta_{\beta} g=\theta_{\alpha} \theta_{\beta} g\end{array}\right)$.

3.5 Superfields and Superspace

Let Q generate translations in superspace $\left(x, \theta=\left(\theta_{a}, \theta^{\dagger \dot{b}}\right)^{T}\right)\left(\theta_{a}\right.$ are Grassman) on superfield $S(x, \theta)$ via
$[I \bar{\alpha} Q, S(x, \theta)]=\bar{\alpha} \mathscr{Q} S(x, \theta)$, as P^{μ} generates spacetime translations on field $\phi_{l}(x)$ via $\left[P^{\mu}, \phi_{l}(x)\right]=I \partial^{\mu} \phi_{l}(x)$.
Definition of superfield: $\delta S=\bar{\alpha} \mathscr{Q} S$. From infinitesimal transformation of operator \mathscr{O} on page 96 .
Condition on $\mathscr{Q}:\left\{\mathscr{Q}_{\alpha}, \overline{\mathscr{Q}}_{\beta}\right\}=2 \gamma_{\alpha \beta}^{\mu} \partial_{\mu}$, where α, β run over the 4 spinor indices.
From (anti)commutation relations on page 96, $\left[\left\{Q_{\alpha}, \bar{Q}_{\beta}\right\}, S\right]=-2 I \gamma_{\alpha \beta}^{\mu}\left[P_{\mu}, S\right]$, which from above reads $\left\{\mathscr{Q}_{\alpha}, \overline{\mathscr{Q}}_{\beta}\right\} S=2 \gamma_{\alpha \beta}^{\mu} \partial_{\mu} S$.
Definition of $\mathscr{Q}: \mathscr{Q}=-\frac{\partial}{\partial \bar{\theta}}+\gamma^{\mu} \theta \partial_{\mu}$ (explicitly, $\left.\mathscr{Q}_{\alpha}=-\frac{\partial}{\partial \theta_{\beta}}\left(\gamma_{5} E\right)_{\beta \alpha}+\gamma_{\alpha \beta}^{\mu} \theta_{\beta} \partial_{\mu}=\left(\gamma_{5} E\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}}+\gamma_{\alpha \beta}^{\mu} \theta_{\beta} \partial_{\mu}\right)$.
For a (and b) Grassmann, $\frac{\partial}{\partial a}$ is left derivative: anticommute a left then remove it, e.g. $\frac{\partial}{\partial a} b a=-\frac{\partial}{\partial a} a b=-b$.
This choice satisfies condition on \mathscr{Q} : We use $\left(\gamma_{5} E\right)^{2}=-\mathbf{1},\left(\gamma_{5} E\right)^{T}=-\gamma_{5} E$ (direct calculation), and $\left(\frac{\partial}{\partial \theta}\right)_{\alpha}=\left(\frac{\partial}{\partial \theta}\right)_{\beta}\left(\gamma_{5} E\right)_{\beta \alpha}$ from Majorana conjugation on page 96. Now $\overline{\mathscr{Q}}_{\delta}=\mathscr{Q}_{\alpha}^{\dagger} \beta_{\alpha \delta}=-\left(\frac{\partial}{\partial \theta^{\dagger}}\right)_{\beta}\left(\gamma_{5} E\right)_{\beta \alpha} \beta_{\alpha \delta}+\gamma_{\alpha \beta}^{\mu *} \dagger_{\beta}^{\dagger} \beta_{\alpha \delta} \partial_{\mu}$. But $\gamma^{\mu *}=-\beta \gamma^{\mu T} \beta$, and $\beta^{2}=1$ so that $\gamma_{\alpha \beta}^{\mu *} \theta_{\beta}^{\dagger} \beta_{\alpha \delta}=-\bar{\theta}_{\alpha} \gamma_{\alpha \delta}^{\mu}$. Thus, using $\left\{\gamma_{5} E, \beta\right\}=0, \overline{\mathscr{Q}}_{\delta}=-\left(\frac{\partial}{\partial \theta}\right)_{\alpha}\left(\gamma_{5} E\right)_{\alpha \beta}\left(\gamma_{5} E\right)_{\beta \delta}-\theta_{\alpha}\left(\gamma_{5} E\right)_{\alpha \beta} \gamma_{\beta \delta}^{\mu} \partial_{\mu}$. So $\overline{\mathscr{Q}}_{\delta}=\left(\frac{\partial}{\partial \theta}\right)_{\delta}-\theta_{\alpha}\left(\gamma_{5} E \gamma^{\mu}\right)_{\alpha \delta} \partial_{\mu}$. Then from $\left\{\frac{\partial}{\partial \theta_{\alpha}}, \theta_{\beta}\right\}=\delta_{\alpha \beta},\left\{\mathscr{Q}_{\alpha}, \overline{\mathscr{Q}}_{\beta}\right\}=\delta_{\sigma \rho}\left(\gamma_{5} E\right)_{\rho \alpha}\left(\gamma_{5} E \gamma^{\mu}\right)_{\sigma \beta} \partial_{\mu}+\gamma_{\alpha \beta}^{\mu} \partial_{\mu}=2 \gamma_{\alpha \beta}^{\mu} \partial_{\mu}$.

Superfields from superfields I: $S=S_{1}+S_{2}, S=S_{1} S_{2}$, etc. are superfields when S_{1}, S_{2} are superfields.
1st case clearly obeys SUSY transformation using \mathscr{Q} above.
2nd case: From product rule for δ on page $96, \delta S_{1} S_{2}=\left(\delta S_{1}\right) S_{2}+S_{1} \delta S_{2}=\left(\bar{\alpha} \mathscr{Q} S_{1}\right) S_{2}+S_{1} \bar{\alpha} \mathscr{Q} S_{2}=\bar{\alpha} \mathscr{Q}\left(S_{1} S_{2}\right)$.

Superfields from superfields II: $S^{\prime}=\mathscr{D}_{\beta} S, S^{\prime}=\overline{\mathscr{D}}_{\beta} S$,

where superderivative $\mathscr{D}=-\frac{\partial}{\partial \bar{\theta}}-\gamma^{\mu} \theta \partial_{\mu}$ obeys $\left\{\mathscr{D}_{\beta}, \mathscr{Q}_{\gamma}\right\}=\left\{\overline{\mathscr{D}}_{\beta}, \mathscr{Q}_{\gamma}\right\}=0$.
First case: $\delta S^{\prime}=\delta \mathscr{D}_{\beta} S=\left[I \bar{\alpha} Q, \mathscr{D}_{\beta} S\right]=\mathscr{D}_{\beta}[I \bar{\alpha} Q, S]$ since $\bar{\alpha} Q$ is a commuting object. Then $\delta S^{\prime}=\mathscr{D}_{\beta} \bar{\alpha}_{\gamma} \mathscr{Q}_{\gamma} S=-\bar{\alpha}_{\gamma} \mathscr{D}_{\beta} \mathscr{Q}_{\gamma} S$
since $\bar{\alpha}_{\gamma}, \mathscr{D}_{\beta}$ anticommute. Then $\delta S^{\prime}=\bar{\alpha}_{\gamma} \mathscr{Q}_{\gamma} \mathscr{D}_{\beta} S=\bar{\alpha} \mathscr{Q} S^{\prime}$. To show e.g. $\left\{\mathscr{D}_{\beta}, \mathscr{Q}_{\gamma}\right\}=0$,
first obtain $\left\{\mathscr{D}_{\beta}, \mathscr{Q}_{\gamma}\right\}=\left(\gamma_{\alpha \gamma}^{\mu}\left\{\theta_{\gamma},\left(\frac{\partial}{\partial \theta}\right)_{\delta}\right\}\left(\gamma_{5} E\right)_{\delta \beta}-\alpha \leftrightarrow \beta\right) \partial_{\mu} f$ and use $\left(\gamma^{\mu} \gamma_{5} E\right)^{T}=\gamma^{\mu} \gamma_{5} E$.
Summary: Function of superfields and their superderivatives is a superfield.

R quantum number assignments for superspace: $\theta_{L / R}$ has R quantum number $\mathscr{R}= \pm 1$.

Recall definition of R-symmetry on page 88: $Q_{a} \rightarrow e^{I \mathscr{R}_{L} \phi} Q_{a}$ and $Q_{a}^{\dagger} \rightarrow e^{I \mathscr{R}_{R} \phi} Q_{a}^{\dagger}$, where $\mathscr{R}=\mathscr{R}_{L / R}= \pm 1$.
Assignments for superspace follow from definition of superfield (i.e. $[Q, S(x, \theta)]=-I \mathscr{Q} S(x, \theta)$) and definition of \mathscr{Q} on page 101.
Note $\theta_{R} \sim \theta_{L}^{*}$.

From now on, write e.g. $A_{\mu} \gamma^{\mu}=A$.

General form of superfield: $S(x, \theta)=C(x)-I\left[\bar{\theta} \gamma_{5}\right] \omega(x)-\frac{I}{2}\left[\bar{\theta} \gamma_{5} \theta\right] M(x)-\frac{1}{2}[\bar{\theta} \theta] N(x)+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right] V^{\mu}(x)$

$$
-I\left[\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta}\right]\left(\lambda(x)+\frac{1}{2} \not \partial \omega(x)\right)-\frac{1}{4}\left[\bar{\theta} \gamma_{5} \theta\right]^{2}\left(D(x)+\frac{1}{2} \partial^{2} C(x)\right),
$$

4 (Pseudo)scalar fields: $C, M, N, D, \quad 2$ Spinor fields: $\omega, \lambda, \quad 1$ Vector field: V^{μ} (i.e. 8 bosonic and 8 fermionic degrees of freedom).

This is most general Taylor series in $\theta^{T}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$, or $\bar{\theta}=\theta^{T} \gamma_{5} E=\left(-\theta_{2}, \theta_{1}, \theta_{4},-\theta_{3}\right)$, in manifestly Lorentz invariant form: 2nd term $-I \bar{\theta} \gamma_{5} \omega(x)$ most general quantity linear in θ_{α}.

Next 3 bilinears in θ_{α} is expansion for any bilinear $B=B_{12} \theta_{1} \theta_{2}+B_{13} \theta_{1} \theta_{3}+B_{14} \theta_{1} \theta_{4}+B_{23} \theta_{2} \theta_{3}+B_{24} \theta_{2} \theta_{4}+B_{34} \theta_{3} \theta_{4}$:
$\bar{\theta} \gamma_{5}\left(\frac{1}{I} \gamma_{0}\right.$ or $\left.\frac{1}{I} \gamma_{3}\right) \theta=\underline{2 \theta_{2} \theta_{3} \pm 2 \theta_{4} \theta_{1}}, \bar{\theta} \gamma_{5}\left(\frac{1}{I} \gamma_{1}\right.$ or $\left.\frac{1}{I} \gamma_{2}\right) \theta=\underline{2 \theta_{2} \theta_{4} \pm 2 \theta_{3} \theta_{1}}$ (gamma matrices on page 44), $\bar{\theta}\left(\mathbf{1}\right.$ or $\left.\gamma_{5}\right) \theta=\underline{2 \theta_{1} \theta_{2} \pm 2 \theta_{4} \theta_{3}}$.
6th term has all 4 possible cubics in $\theta_{\alpha}:\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta}=2\left(\theta_{4} \theta_{3} \theta_{2},-\theta_{4} \theta_{3} \theta_{1}, \theta_{1} \theta_{2} \theta_{4},-\theta_{1} \theta_{2} \theta_{3}\right)$. Last term $\propto\left[\bar{\theta} \gamma_{5} \theta\right]^{2}=8 \theta_{1} \theta_{2} \theta_{3} \theta_{4}$.
Any higher products of θ_{α} vanish, since $\theta_{\alpha}^{2}=0$ (no sum). E.g. $\theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{3}=-\theta_{1} \theta_{2} \theta_{3}^{2} \theta_{4}=0$.

Superfield transformation: $\delta S=I \bar{\alpha} \gamma_{5} \omega+\bar{\theta}\left(-\not \partial C+I \gamma_{5} M+N-I \gamma_{5} V\right) \alpha+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \theta\right] \bar{\alpha}(\lambda+\not \partial \omega)$

$$
\begin{aligned}
& -\frac{I}{2}[\bar{\theta} \theta] \bar{\alpha} \gamma_{5}(\lambda+\not \partial \omega)+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right] \bar{\alpha} \gamma_{\mu} \lambda+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \gamma^{\nu} \theta\right] \bar{\alpha} \partial_{\nu} \omega \\
& +\frac{1}{2}\left[\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta}\right]\left(I \not \partial M-\gamma_{5} \not \partial N-I \partial_{\mu} V \gamma^{\mu}+\gamma_{5}\left(D+\frac{1}{2} \partial^{2} C\right)\right) \alpha-\frac{I}{4}\left[\bar{\theta} \gamma_{5} \theta\right]^{2} \bar{\alpha} \gamma_{5}\left(\not \partial \lambda+\frac{1}{2} \partial^{2} \omega\right)
\end{aligned}
$$

From definition of superfield and of \mathscr{Q}, on page 101, i.e. $\delta S=\bar{\alpha}\left(-\frac{\partial}{\partial \bar{\theta}}+\gamma^{\mu} \theta \partial_{\mu}\right) S$.
Note for $M=1, M=\gamma_{5} \gamma_{\mu}$ and $M=\gamma_{5}$, we have $\frac{\partial}{\partial \bar{\theta}}(\bar{\theta} M \theta)=2 M \theta$. See also Weinberg III (hardback), page 63 .

Component field transformations: $\delta C=I\left(\bar{\alpha} \gamma_{5} \omega\right), \delta \omega=\left(-I \gamma_{5} \not \partial C-M+I \gamma_{5} N+V\right) \alpha$,

$$
\begin{aligned}
& \delta M=-\bar{\alpha}(\lambda+\not \partial \omega), \delta N=I \bar{\alpha} \gamma_{5}(\lambda+\not \partial \omega), \delta V_{\mu}=\bar{\alpha}\left(\gamma_{\mu} \lambda+\partial_{\mu} \omega\right), \\
& \delta \lambda=\left(\frac{1}{2}\left[\partial_{\mu} V, \gamma^{\mu}\right]+I \gamma_{5} D\right) \alpha \text { and } \delta D=I \bar{\alpha} \gamma_{5} \not \partial \lambda
\end{aligned}
$$

Compare superfield transformation above with general form of superfield on page 103.
D-component of general superfield (coefficient of $\left[\bar{\theta} \gamma_{5} \theta\right]^{2}$) is candidate for SUSY Lagrangian.
If $\mathscr{L} \propto[S]_{D} \propto D+\frac{1}{2} \partial^{2} C$, then $\delta \mathscr{L} \propto \delta D+\frac{1}{2} \partial^{2} \delta C=\partial_{\mu}\left(I \bar{\alpha} \gamma_{5} \gamma^{\mu} \lambda+\frac{1}{2} \partial^{\mu} \delta C\right)$, i.e. a derivative,
so action $\mathscr{A}=\int d^{4} x \mathscr{L}$ obeys $\delta \mathscr{A}=0$.
D-component of superfield cannot be used to form kinematic Lagrangian.
Kinematic action must be quadratic in elementary fields and therefore in elementary superfields, so can only try

$$
\left[S^{*} S\right]_{D}=-\partial_{\mu} C^{*} \partial^{\mu} C-\frac{1}{2}\left(\bar{\omega} \gamma^{\mu} \partial_{\mu} \omega\right)+\frac{1}{2}\left(\partial_{\mu} \bar{\omega}\right) \gamma^{\mu} \omega+C^{*} D+D^{*} C-\bar{\omega} \lambda-\bar{\lambda} \omega+M^{*} M+N^{*} N-V_{\mu}^{*} V^{\mu} .
$$

Terms with D and λ constrain C and ω to vanish.

So introduce constraints on elementary fields.

3.5.1 Chiral superfield

Definition of chiral superfield $X(x, \theta): \lambda=D=0, V_{\mu}=\partial_{\mu} B, B$ is scalar field with $\delta B=\bar{\alpha} \omega$.
This is superfield because these conditions are preserved by SUSY transformations: $\delta D=I \bar{\alpha} \gamma_{5} \nRightarrow \lambda=0$, and $\delta \lambda=\left(\frac{1}{2}\left[\partial_{\mu} V, \gamma^{\mu}\right]+I \gamma_{5} D\right) \alpha=\frac{1}{2}\left[\partial_{\mu} V, \gamma^{\mu}\right] \alpha=0$ because $V_{\mu}=\partial_{\mu} B:\left[\partial_{\mu} V, \gamma^{\mu}\right]=\partial_{\mu} \partial_{\nu} B\left[\gamma^{\nu}, \gamma^{\mu}\right]=0$.

Finally, $\delta V^{\mu}=\bar{\alpha}\left(\gamma_{\mu} \lambda+\partial_{\mu} \omega\right)=\partial_{\mu} \bar{\alpha} \omega$, i.e. $\delta B=\bar{\alpha} \omega$, i.e. $V_{\mu}=\partial_{\mu} B$ condition is preserved.

Chiral superfield decomposition: $X(x, \theta)=\frac{1}{\sqrt{2}}\left[\Phi_{+}(x, \theta)+\Phi_{-}(x, \theta)\right]$ with left / right-chiral superfields $\Phi_{ \pm}(x, \theta)=\phi_{ \pm}(x)-\sqrt{2} \bar{\theta} \psi_{L / R}(x)+\left[\bar{\theta} P_{L / R} \theta\right] \mathscr{F}_{ \pm}(x) \pm \frac{1}{2}\left[\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right] \partial^{\mu} \phi_{ \pm}(x) \mp \frac{1}{\sqrt{2}}\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta} \not \partial \psi_{L / R}(x)-\frac{1}{8}\left[\bar{\theta} \gamma_{5} \theta\right]^{2} \partial^{2} \phi_{ \pm}(x)$,
with $\psi_{L / R}=P_{L / R} \psi, \phi_{ \pm}=\frac{1}{\sqrt{2}}(A \pm I B), \mathscr{F}_{ \pm}=\frac{1}{\sqrt{2}}(F \mp I G)$.
To make contact with notation on page 97 , write $C=A, \omega=-I \gamma_{5} \psi, M=G, N=-F$, for later convenience in general form of superfield on page 103, so $X=A-\bar{\theta} \psi+\frac{1}{2} \bar{\theta} \theta F-\frac{I}{2} \bar{\theta} \gamma_{5} \theta G+\frac{I}{2} \bar{\theta} \gamma_{5} \gamma_{\mu} \theta \partial^{\mu} B+\frac{1}{2}\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta} \gamma_{5} \not \partial \psi-\frac{1}{8}\left[\bar{\theta} \gamma_{5} \theta\right]^{2} \partial^{2} A$. $\Phi_{ \pm}$is obtained from $\Phi_{ \pm}=A^{\prime}-\bar{\theta} \psi^{\prime}+\frac{1}{2} \bar{\theta} \theta F^{\prime}-\frac{I}{2} \bar{\theta} \gamma_{5} \theta G^{\prime}+\frac{I}{2} \bar{\theta} \gamma_{5} \gamma_{\mu} \theta \partial^{\mu} B^{\prime}+\frac{1}{2}\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta} \gamma_{5} \not \partial \psi^{\prime}-\frac{1}{8}\left[\bar{\theta} \gamma_{5} \theta\right]^{2} \partial^{2} A^{\prime}$ with $F^{\prime}= \pm G^{\prime}$, $B^{\prime}=\mp I A^{\prime}, \psi^{\prime}=\sqrt{2} \psi_{L / R}$, i.e. by taking $N= \pm I M, B=\mp I C, \omega= \pm$ left/right-handed spinor in general form of superfield on page 103, which is preserved under component field transformations on page 104.

Left / right transformation: $\delta \psi_{L / R}=\sqrt{2}\left(\partial_{\mu} \phi_{ \pm} \gamma^{\mu} P_{R / L}+\mathscr{F}_{ \pm} P_{L / R}\right) \alpha, \delta \mathscr{F}_{ \pm}=\sqrt{2} \bar{\alpha} \bar{\alpha} \not \psi_{L / R}, \delta \phi_{ \pm}=\sqrt{2} \bar{\alpha} \psi_{L / R}$.

So left-chiral supermultiplet here $=$ that on page $95\left(\zeta_{a}=\psi_{L}, \phi=\phi_{+}, \mathscr{F}=\mathscr{F}_{+}\right)$, right-chiral by conjugation.

Compact form: $\Phi_{ \pm}(x, \theta)=\phi_{ \pm}\left(x_{ \pm}\right) \mp \sqrt{2} \theta_{L / R}^{T} E \psi_{L / R}\left(x_{ \pm}\right) \pm \theta_{L / R}^{T} E \theta_{L / R} \mathscr{F}_{ \pm}\left(x_{ \pm}\right)$,
where $\theta_{L / R}=P_{L / R} \theta, x_{ \pm}^{\mu}=x^{\mu} \pm \theta_{R}^{T} E \gamma^{\mu} \theta_{L}$.
Recall $\psi^{T}=\frac{1}{\sqrt{2}}\left(\zeta_{a}, \zeta^{\dagger \dagger}\right)$ from page 97 . This is left / right-chiral superfield on page 106 , by Taylor expansion in $\theta_{R}^{T} E \gamma^{\mu} \theta_{L}$:
Make use of $\theta^{T}=-\bar{\theta} \gamma_{5} E$ (Majorana conjugation on page 96) and $E^{2}=\left(\gamma_{5} E\right)^{2}=-1$. Also $\underline{x_{ \pm}^{\mu}=x^{\mu} \pm \frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta}$ (see alternative form for $x_{ \pm}$on page 108). Firstly, rewrite as $\Phi_{ \pm}(x, \theta)=\phi_{ \pm}\left(x_{ \pm}\right)-\sqrt{2} \bar{\theta} P_{L / R} \psi\left(x_{ \pm}\right)+\bar{\theta} P_{L / R} \theta \mathscr{F}_{ \pm}\left(x_{ \pm}\right)$, because $\theta_{L / R}^{T} E \psi_{L / R}=-\bar{\theta} \gamma_{5} E \frac{1}{2}\left(1 \pm \gamma_{5}\right) E \frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi=-\bar{\theta} \frac{1}{2}\left(-\gamma_{5} \mp 1\right) \frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi= \pm \bar{\theta} P_{L / R} \psi$.

1st term in underlined equation above: $\phi_{ \pm}\left(x_{ \pm}\right)=\phi_{ \pm}(x) \pm \frac{1}{2}\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right) \partial^{\mu} \phi_{ \pm}(x)-\frac{1}{2}\left(\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right)\left(\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\nu} \theta\right) \partial_{\mu} \partial_{\nu} \phi_{ \pm}(x)$ $=\phi_{ \pm}(x) \pm \frac{1}{2}\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right) \partial^{\mu} \phi_{ \pm}(x)-\frac{1}{2}\left(\frac{1}{2} \bar{\theta} \gamma_{5} \theta\right)^{2} \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\mu} \partial_{\nu} \phi_{ \pm}(x)$, then use $\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=g^{\mu \nu}$.

2nd term: $-\sqrt{2} \bar{\theta} P_{L / R} \psi\left(x_{ \pm}\right)=-\sqrt{2} \bar{\theta} P_{L / R} \psi(x) \mp \frac{1}{\sqrt{2}}\left(\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right) \bar{\theta} \partial_{\mu} P_{L / R} \psi(x)=-\sqrt{2} \bar{\theta} P_{L / R} \psi(x) \mp \frac{1}{\sqrt{2}}\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta} \gamma^{\mu} \partial_{\mu} P_{L / R} \psi(x)$.
3rd term: $\bar{\theta} P_{L / R} \theta \mathscr{F}_{ \pm}\left(x_{ \pm}\right)=\bar{\theta} P_{L / R} \theta \mathscr{F}_{ \pm}(x) \pm \frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta \bar{\theta} P_{L / R} \theta \partial_{\mu} \mathscr{F}_{ \pm}(x)=\bar{\theta} P_{L / R} \theta \mathscr{F}_{ \pm}(x)+\left[\left(\theta_{R}^{T} E \gamma^{\mu} \theta_{L}\right)\left(\theta_{L / R}^{T} E \theta_{L / R}\right) \partial_{\mu} \mathscr{F}_{ \pm}(x)\right]$, term in square brackets vanishes due to 3 occurences of " 2 -component" $\theta_{L / R}$.

Alternative form for $x_{ \pm}: x_{ \pm}^{\mu}=x^{\mu} \pm \frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta$.

Recall $x_{ \pm}^{\mu}=x^{\mu} \pm \theta_{R}^{T} E \gamma^{\mu} \theta_{L}$. Now $\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta=\frac{1}{2} \theta^{T} \gamma_{5} E \gamma_{5} \gamma^{\mu} \theta=-\frac{1}{2} \theta^{T} \gamma_{5} E \gamma^{\mu} \gamma_{5} \theta$ using $\left\{\gamma^{\mu}, \gamma_{5}\right\}=0$. But $\gamma_{5}=P_{L}-P_{R}$,
so $\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta=\frac{1}{2} \theta^{T}\left(P_{L}-P_{R}\right) E \gamma^{\mu}\left(P_{R}-P_{L}\right) \theta=\frac{1}{2} \theta^{T} P_{L} E \gamma^{\mu} P_{R} \theta+\frac{1}{2} \theta^{T} P_{R} E \gamma^{\mu} P_{L} \theta-\frac{1}{2} \theta^{T} P_{L} E \gamma^{\mu} P_{L} \theta-\frac{1}{2} \theta^{T} P_{R} E \gamma^{\mu} P_{R} \theta$.
3rd and 4th terms zero because $P_{L / R} E \gamma^{\mu} P_{L / R}=E P_{L / R} \gamma^{\mu} P_{L / R}=E \gamma^{\mu} P_{R / L} P_{L / R}=0$.
2nd term is $\frac{1}{2} \theta^{T} P_{R} E \gamma^{\mu} P_{L} \theta=-\left(\frac{1}{2} \theta^{T} P_{R} E \gamma^{\mu} P_{L} \theta\right)^{T}=-\frac{1}{2} \theta^{T} P_{L}\left(E \gamma^{\mu}\right)^{T} P_{R} \theta$ (- sign because components of θ anticommute).
$\operatorname{But}\left(E \gamma^{\mu}\right)^{T}=-E \gamma^{\mu}$, so 2 nd term $=1$ st term, i.e. $\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta=\theta_{R}^{T} E \gamma^{\mu} \theta_{L}$.

Relations between superspace directions: $x_{+}^{*}=x_{-}$

I.e. show $\theta_{R} E \gamma^{\mu} \theta_{L}=\bar{\theta} \gamma_{5} \gamma^{\mu} \theta$ is "imaginary".
$x_{+}^{*}=x^{\mu}+\underline{\theta_{R}^{\dagger} E \gamma^{\mu *} \theta_{L}^{*}}$. But $\theta_{R}^{T}=\left(0, \theta^{\dagger \dot{b}}\right)$, so $\theta_{R}^{\dagger}=\left(0, \theta^{b}\right)=\theta_{L} E \beta$, and $\theta_{L}=\left(\theta_{a}, 0\right)^{T}$ so $\theta_{L}^{*}=\left(\theta_{\dot{a}}^{\dagger}, 0\right)^{T}=E \beta \theta_{R}$,
and $\gamma^{\mu *}=-\beta \gamma^{\mu T} \beta$. These results together with $\beta^{2}=-E^{2}=1, \beta E=E \beta$ and $E^{T}=-E$ give $\underline{\theta_{R}^{\dagger} E \gamma^{\mu *} \theta_{L}^{*}}=-\theta_{R} E \gamma^{\mu} \theta_{L}$.
Alternatively, use $x_{ \pm}^{\mu}=x^{\mu} \pm \frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta$ and show $\left(\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right)^{\dagger}=-\bar{\theta} \gamma_{5} \gamma^{\mu} \theta$:
$\left(\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right)^{\dagger}=\left(\theta^{\dagger} \beta \gamma_{5} \gamma^{\mu} \theta\right)^{\dagger}=-\theta^{\dagger} \gamma_{\mu}^{\dagger} \gamma_{5} \beta \theta(-$ sign because components of θ anticommute $)$.
Then inserting $\beta^{2}=1$ in places, $\left(\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right)^{\dagger}=-\left(\theta^{\dagger} \beta\right)\left(\beta \gamma_{\mu}^{\dagger} \beta\right)\left(\beta \gamma_{5} \beta\right) \theta=\bar{\theta} \gamma^{\mu} \gamma_{5} \theta=-\bar{\theta} \gamma_{5} \gamma^{\mu} \theta$.

Compact form on page 107 is most general function of $x_{ \pm}$and $\theta_{L / R}$.
So any function of left-chiral superfields is left-chiral superfield (likewise right).
Conjugate of right-chiral superfield is left-chiral superfield. Chiral superfield decomposition, page 106: Use $\left(\bar{\theta} \gamma_{5}\right)^{*}=-\bar{\theta} \gamma_{5}$.

Superspace "direction" of chiral superfield: $\mathscr{D}_{\mp} \Phi_{ \pm}=0$, where superderivative $\mathscr{D}_{\mp}=P_{R / L} \mathscr{D}$.

Can be used to define left / right-chiral superfield.
Follows from $\mathscr{D}_{\mp} x_{ \pm}^{\mu}=0$, using $\mathscr{D}_{\mp \alpha}=\mp E_{\alpha \beta} \frac{\partial}{\partial \theta_{R / L \beta}}-\left(\gamma^{\mu} \theta_{L / R}\right)_{\alpha} \frac{\partial}{\partial x^{\mu}} . D_{-} f(x, \theta)=0$ implies $f(x, \theta)=f^{\prime}\left(x_{+}, \theta_{L}\right)$, i.e. f is left-chiral: Any function $f(x, \theta)=g\left(x_{+}, \theta_{R}, \theta_{L}\right)=\sum_{a} g^{(a)}\left(x_{+}\right) h^{(a)}\left(\theta_{R}, \theta_{L}\right)$, where each $h^{(a)}$ is all possible products of between 1 and 4 components of θ. Using first $D_{-, \alpha} g^{(a)}\left(x_{+}\right)=0$ then $D_{-, \alpha} h^{(a)}\left(\theta_{R}, \theta_{L}\right)=-E_{\alpha \beta} \frac{\partial}{\partial \theta_{R \beta}} h^{(a)}\left(\theta_{R}, \theta_{L}\right)$, we require $E_{\alpha \beta} D_{-, \beta} f=\sum_{a} g^{(a)}\left(x_{+}\right) \frac{\partial}{\partial \theta_{R \alpha}} h^{(a)}\left(\theta_{R}, \theta_{L}\right)=0$. Therefore if $h^{(a)}$ contains $\theta_{R} \alpha, g^{(a)}\left(x_{+}\right)=0$.

Chiral superfield from superfield: For general superfield $S, \mathscr{D}_{ \pm \alpha} \mathscr{D}_{ \pm \beta} S$ (i.e. $\mathscr{D}_{ \pm}^{T} E \mathscr{D}_{ \pm} S$) is left / right-chiral.
$\mathscr{D}_{ \pm \gamma}\left(\mathscr{D}_{ \pm \alpha} \mathscr{D}_{ \pm \beta} S\right)=0$ because the $\mathscr{D}_{ \pm \alpha}$ anticommute and there are only 2 of them.
\mathscr{F}-component of chiral superfield (coefficient of $\bar{\theta} P_{L} \theta$) is candidate for SUSY Lagrangian.
If $\mathscr{L} \propto\left[\Phi_{ \pm}\right]_{\mathscr{F}}=\mathscr{F}_{ \pm}$, then $\delta \mathscr{L} \propto \bar{\alpha} \not \partial \psi_{L / R}$, i.e. a derivative, so action $\mathscr{A}=\int d^{4} x \mathscr{L}$ obeys $\delta \mathscr{A}=0$.

Any left/right-chiral superfield $\Phi_{ \pm}$can be written $\Phi_{ \pm}=D_{R / L}^{2} S$ respectively,
where S is a general superfield and $D_{R / L}^{2}=E_{\alpha \beta} D_{\mp, \alpha} D_{\mp, \beta}$.
Expand $S=f_{1}\left(x_{+}, \theta_{L}\right)+f_{2}\left(x_{+}, \theta_{L}\right) \theta_{R 1}+f_{3}\left(x_{+}, \theta_{L}\right) \theta_{R 2}+f_{4}\left(x_{+}, \theta_{L}\right) \theta_{R 1} \theta_{R 2}$.
But $\mathscr{D}_{-\alpha} f\left(x_{+}, \theta_{L}\right)=0$ because $\mathscr{D}_{-\alpha}=-E_{\alpha \beta} \frac{\partial}{\partial \theta_{R \beta}}-\left(\gamma^{\mu} \theta_{L}\right)_{\alpha} \frac{\partial}{\partial x^{\mu}}$ and $\mathscr{D}_{-\alpha} x_{+}=0$.
Thus $\mathscr{D}_{-\alpha} S=-E_{\alpha \beta} \frac{\partial}{\partial \theta_{R} \beta} S$, giving $D_{R / L}^{2} S=-2 f_{4}\left(x_{+}, \theta_{L}\right)$,
where $f_{4}\left(x_{+}, \theta_{L}\right)$ is any function of $\left(x_{+}, \theta_{L}\right)$, i.e. a general lef-chiral superfield.

3.5.2 Supersymmetric Actions

From now on, only work with left-chiral superfields, write $\Phi_{+}=\Phi, \phi_{+}=\phi, \mathscr{F}_{+}=\mathscr{F}$.

Supersymmetric action from chiral superfields: $\mathscr{A}=\int d^{4} x[f]_{\mathscr{F}}+\int d^{4} x[f]_{\mathscr{F}}^{*}+\int d^{4} x \frac{1}{2}[K]_{D}$,

where f is left-chiral, K is real superfield.
Superpotential f is polynomial in left-chiral superfields.
Recall from page 109 that function of left-chiral superfields (but not complex conjugates thereof) is left-chiral superfield.
Superderivatives (and therefore derivatives) of left-chiral superfield is not left-chiral. Let S be a general superfield.
If (a term in) f contains a left-chiral superfield of form $\mathscr{D}_{-\alpha} \mathscr{D}_{-\beta} S$ (see chiral superfield from superfield on page 109),
can write $f=\mathscr{D}_{R}^{2} h$ where h is product of S with left-chiral superfields,
since $\mathscr{D}_{\text {- }}$ annihilates all left-chiral superfields after differentiating with product rule.
But $\mathscr{D}_{R}^{2} h \propto$ coeff. of $\theta_{R}^{T} E \theta_{R}$ in h (neglecting spacetime derivatives which don't contribute to \mathscr{A} from now on).
Then $\left[\mathscr{D}_{R}^{2} h\right]_{\mathscr{F}} \propto$ coeff. of $\left(\theta_{L}^{T} E \theta_{L}\right)\left(\theta_{R}^{T} E \theta_{R}\right)=\left(\bar{\theta} \gamma_{5} \theta\right)^{2}$ in h, i.e. $[h]_{D}$, so $\int d^{4} x\left[\mathscr{D}_{R}^{2} h\right]_{\mathscr{F}} \propto \int d^{4} x[h]_{D}$,
i.e. $\mathscr{D}_{R}^{2} S$ terms not necessary in f, can be included in $[K]_{D}$.

Kahler potential K depends on left / right-chiral superfields but is more general.
R quantum number assignments for potentials f and $K: \mathscr{R}_{f}=2, \mathscr{R}_{K}=0$.
First case: Want $\int d^{4} x[f]_{\mathscr{F}}$ to have $\mathscr{R}_{\mathscr{F}}=0$. From chiral superfield decomposition on page 106, term in left-chiral superfield Φ containing \mathscr{F} component is $\bar{\theta} P_{L} \theta \mathscr{F}= \pm \theta_{L}^{T} E \theta_{L} \mathscr{F}$. Since $\mathscr{R}_{\theta_{L}^{T} E \theta_{L}}=2$ and want $\mathscr{R}_{\mathscr{F}}=0$, must have $\mathscr{R}_{f}=2$.

Second case: Want $\int d^{4} x[K]_{D}$ to have $\mathscr{R}_{D}=0$. From general form of superfield on page 103, term containing D component is $\propto\left[\bar{\theta} \gamma_{5} \theta\right]^{2}\left(D+\frac{1}{2} \partial^{2} C\right)$. But $\mathscr{R}_{\left[\bar{\theta} \gamma_{5} \theta\right]^{2}}=0$, so for $\mathscr{R}_{D}=0$ must have $\mathscr{R}_{K}=0$.

For renormalizable theory of chiral superfields:

Superpotential f is at most cubic in left-chiral superfields Φ_{n}.

Operators O in \mathscr{L} must have mass dimension $d_{M}(O) \leq 4$ for renormalizability. From definition of $\mathscr{D}, d_{M}(\theta)=-\frac{1}{2}$.
So $d_{M}\left([S]_{\mathscr{F}}\right)=d_{M}(S)+1, d_{M}\left([S]_{D}\right)=d_{M}(S)+2$, so operators (represented by S here) in $f(K)$ have $d_{M}(S) \leq 3(2)$.
Since $d_{M}\left(\Phi_{ \pm}\right)=d_{M}\left(\phi_{ \pm}\right)=1, f$ can only be cubic polynomial in Φ_{n}.

General form of Kahler potential: $K\left(\Phi, \Phi^{*}\right)=\sum_{m n} g_{m n} \Phi_{m}^{*} \Phi_{n}, g_{m n}$ Hermitian and positive-definite.
As noted above, operators in K have mass dimensionality $\leq 2 . \Phi_{m} \Phi_{n}$ terms (or conjugates thereof) don't appear, since they are left-chiral so have no D term. $g_{m n}$ positive-definite to get correct commutation relations for fields.

Kahler potential part of $\mathscr{L}: \frac{1}{2}\left[K\left(\Phi, \Phi^{*}\right)\right]_{D}=-\partial_{\mu} \phi_{n}^{*} \partial^{\mu} \phi_{n}+\mathscr{F}_{n}^{*} \mathscr{F}_{n}-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{n R}\right) \gamma^{\mu} \psi_{n R}$.
Direct calculation gives $\frac{1}{2}\left[K\left(\Phi, \Phi^{*}\right)\right]_{D}=g_{m n}\left[-\partial_{\mu} \phi_{m}^{*} \partial^{\mu} \phi_{n}+\mathscr{F}_{m}^{*} \mathscr{F}_{n}-\frac{1}{2} \bar{\psi}_{m L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{m R}\right) \gamma^{\mu} \psi_{n R}\right]$.
Take $\Phi_{m}^{\prime}=N_{m n} \Phi_{n}, g_{m n}^{\prime}=\left(N^{\dagger} g N\right)_{m n}$. Since $g_{m n}$ Hermitian, choose unitary N to diagonalize it.
Diagonal terms positive to get positive coefficient for $-\partial_{\mu} \phi_{n}^{* *} \partial^{\mu} \phi_{n}^{\prime}$, absorb them into ϕ_{n}^{\prime} then drop primes.
Superpotential part of $\mathscr{L}:[f(\Phi)]_{\mathscr{F}}=-\frac{1}{2} \frac{\partial^{2} f(\phi)}{\partial \phi_{n} \partial \phi_{m}} \bar{\psi}_{n R} \psi_{m L}+\mathscr{F}_{n} \frac{\partial f(\phi)}{\partial \phi_{n}}$. Similar for f^{*}.
Use compact form on page 107 to write $f(\Phi)=f\left(\phi_{+}\left(x_{+}\right)-\sqrt{2} \theta_{L}^{T} E \psi_{L}\left(x_{+}\right)+\theta_{L}^{T} E \theta_{L} \mathscr{F}_{+}\left(x_{+}\right)\right)$.
Taylor expand this in $-\sqrt{2} \theta_{L}^{T} E \psi_{L}\left(x_{+}\right)+\theta_{L}^{T} E \theta_{L} \mathscr{F}_{+}\left(x_{+}\right)$. Note e.g. $\theta_{L \alpha} \theta_{L \beta}=E_{\alpha \beta} \theta_{L 1} \theta_{L 2}$ for $\alpha, \beta \leq 1,2$, but $=0$ otherwise.
Replace x_{+}with x because $\theta_{R}^{T} E \gamma^{\mu} \theta_{L}$ gives zero when acting on expression with $2 \theta_{L}$ factors.

\mathscr{L} from chiral superfields:

$$
\mathscr{L}=-\partial_{\mu} \phi_{n}^{*} \partial^{\mu} \phi_{n}-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{n R}\right) \gamma^{\mu} \psi_{n R}
$$

$$
-\frac{1}{2} \frac{\partial^{2} f(\phi)}{\partial \phi_{n} \partial \phi_{m}} \bar{\psi}_{n R} \psi_{m L}-\frac{1}{2}\left(\frac{\partial^{2} f(\phi)}{\partial \phi_{n} \partial \phi_{m}}\right)^{*}\left(\bar{\psi}_{n R} \psi_{m L}\right)^{*}-V(\phi),
$$

where $\mathscr{F}_{n}=-\left(\frac{\partial f(\phi)}{\partial \phi_{n}}\right)^{*}$ and scalar field potential $V(\phi)=\sum_{n}\left|\frac{\partial f(\phi)}{\partial \phi_{n}}\right|^{2}$.
Sum Kahler potential and superpotential parts (and conjugate) of \mathscr{L} above, use field equations to get $\mathscr{F}_{n}=-\left(\frac{\partial f(\phi)}{\partial \phi_{n}}\right)^{*}$.

Zeroth order $\phi_{n 0}=\langle 0| \phi_{n}|0\rangle$ at minimum of $V(\phi)$. If $\left.\frac{\partial f(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}=0$ possible, $V\left(\phi_{0}\right)=0$ and SUSY unbroken.
Tree-level expansion of $V: V(\phi)=\left(\mathscr{M}^{\dagger} \mathscr{M}\right)_{m n} \Delta \phi_{m}^{\dagger} \Delta \phi_{n}$,
where $\Delta \phi_{n}=\phi_{n}-\phi_{n 0}$, bosonic mass matrix $\mathscr{M}_{m n}=\left.\frac{\partial^{2} f}{\partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}}$.

$$
V=\left.\sum_{n}\left|\frac{\partial f}{\partial \phi_{n}}\right|^{2} \simeq \sum_{n}\left|\frac{\partial^{2} f}{\partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}} \Delta \phi_{m}\right|^{2}=\Delta \phi_{m}^{\dagger}\left(\mathscr{M}^{\dagger} \mathscr{M}\right)_{m n} \Delta \phi_{n} .
$$

Matrix \mathscr{M} is complex symmetric, so can be diagonalised by unitary matrix such that diagonal terms are real and positive.
From \mathscr{L} from chiral superfields on page 113 , fermionic mass term is $-\frac{1}{2} \mathscr{M}_{m n} \bar{\psi}_{n R} \psi_{m L}$,
so fermions and bosons have same mass, as required in SUSY.
Free Lagrangian density: $\mathscr{L}_{0}=\sum_{n}\left[-\partial_{\mu} \Delta \phi_{n}^{*} \partial^{\mu} \Delta \phi_{n}-m_{n}^{2} \Delta \phi_{n}^{*} \Delta \phi_{n}\right.$

$$
\begin{array}{r}
\left.-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{n R}\right) \gamma^{\mu} \psi_{n R}-\frac{1}{2} m_{n} \bar{\psi}_{n R} \psi_{n L}-\frac{1}{2} m_{n}\left(\bar{\psi}_{n R} \psi_{n L}\right)^{*}\right] \\
\mathscr{L}_{0}=-\partial_{\mu} \Delta \phi_{n}^{*} \partial^{\mu} \Delta \phi_{n}-\left(\mathscr{M}^{\dagger} \mathscr{M}\right)_{m n} \Delta \phi_{m}^{*} \Delta \phi_{n}-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{n R}\right) \gamma^{\mu} \psi_{n R}-\frac{1}{2} \mathscr{M}_{m n} \bar{\psi}_{n R} \psi_{m L}-\frac{1}{2} \mathscr{M}_{m n}^{*}\left(\bar{\psi}_{n R} \psi_{m L}\right)^{*}
\end{array}
$$ from \mathscr{L} from chiral superfields on page 113 and tree-level expansion of V above, then diagonalize \mathscr{M}.

Problems 3

1: By working in the chiral representation, show that $E^{T}=-E,\left(\gamma_{5} E\right)^{2}=-\mathbf{1},\left(\gamma_{5} E\right)^{T}=-\gamma_{5} E, \gamma^{\mu *}=-\beta \gamma^{\mu T} \beta, \beta^{2}=\mathbf{1}$, $\left\{\gamma_{5} E, \beta\right\}=0,[E, \beta]=0$ and $\left(E \gamma^{\mu}\right)^{T}=-E \gamma^{\mu}$.
2: Show that $\overline{\left(\bar{\psi}^{T}\right)}=-\bar{\psi} \gamma_{5} E$ and $\overline{\gamma^{\mu} \psi}=-\bar{\psi} \gamma^{\mu}$, where ψ is a Majorana spinor.
3: Using $\mathscr{Q}_{\alpha}=\left(\gamma_{5} E\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}}+\gamma_{\alpha \beta}^{\mu} \theta_{\beta} \partial_{\mu}$ and $\overline{\mathscr{Q}}_{\delta}=\left(\frac{\partial}{\partial \theta}\right)_{\delta}-\theta_{\alpha}\left(\gamma_{5} E \gamma^{\mu}\right)_{\alpha \delta} \partial_{\mu}$, show that $\left\{\mathscr{Q}_{\alpha}, \overline{\mathscr{Q}}_{\beta}\right\}=2 \gamma_{\alpha \beta}^{\mu} \partial_{\mu}$.
4: Show that $\left\{\mathscr{D}_{\beta}, \mathscr{Q}_{\gamma}\right\}=0$, where $\mathscr{D}_{\alpha}=\left(\gamma_{5} E\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\beta}}-\gamma_{\alpha \beta}^{\mu} \theta_{\beta} \partial_{\mu}$.
5: Show that the result obtained by setting $\lambda=D=0$ and $V_{\mu}=\partial_{\mu} B$, where B is scalar field, in a superfield is another superfield, called the chiral superfield. (Hint: show that these constraints are preserved under SUSY transformations.)
6: Show that the chiral superfield is the sum of two chiral superfields, called left- and right-handed chiral superfields respectively, for which $N= \pm I M, B=\mp I C, \omega= \pm$ left/right-handed spinor. (Hint: show that these constraints are preserved under SUSY transformations. Be careful not to confuse the component fields N, M, \ldots of the three different superfields.)
7: Show that $\mathscr{D}_{\mp} \Phi_{ \pm}=0$, where $\mathscr{D}_{\mp \alpha}=\mp E_{\alpha \beta} \frac{\partial}{\partial \theta_{R / L \beta}}-\left(\gamma^{\mu} \theta_{L / R}\right)_{\alpha} \frac{\partial}{\partial x^{\mu}}$ and $x_{ \pm}^{\mu}=x^{\mu} \pm \theta_{R}^{T} E \gamma^{\mu} \theta_{L}$.
8: Show that $\left(\theta_{R} E \gamma^{\mu} \theta_{L}\right)^{*}=\theta_{R} E \gamma^{\mu} \theta_{L}$.
9: For a general superfield S, calculate $\mathscr{D}_{-}^{T} E \mathscr{D}_{-} S$ and show that the result is the coefficient of $\theta_{R}^{T} E \theta_{R}$ in S up to spacetime derivatives.
10: Show that the D term of $\Phi \Phi^{\prime}$ vanishes, where Φ and Φ^{\prime} are left-chiral superfields.

3.6 Superspace integration

Define integration over Grassman variables θ_{α} as (no sum over $\left.\alpha \neq \beta \neq \gamma\right) \int d \theta_{\alpha} \theta_{\alpha}=1, \int d \theta_{\alpha}=0$, more generally e.g. $\int d \theta_{\beta} d \theta_{\alpha} \theta_{\alpha} \theta_{\beta} \theta_{\gamma}=\theta_{\gamma}$.

Because $\left(\bar{\theta} \gamma_{5} \theta\right)^{2}=8 \theta_{1} \theta_{2} \theta_{3} \theta_{4}$, then $\int d^{4} x[S]_{D}=-\frac{1}{2} \int d^{4} x \int d^{4} \theta S(x, \theta)$.

Because $\theta_{L}^{T} E \theta_{L}=2 \theta_{1} \theta_{2}$ in compact form on page 107, then $\int d^{4} x[\Phi]_{\mathscr{F}}=\frac{1}{2} \int d^{4} x \int d^{2} \theta_{L} \Phi(x, \theta)$.

Define $\delta^{(4)}\left(\theta^{\prime}-\theta\right)$ via $\int d^{4} \theta^{\prime} \delta^{(4)}\left(\theta^{\prime}-\theta\right) f\left(\theta^{\prime}\right)=f(\theta)$.
Solution is $\delta^{(4)}\left(\theta^{\prime}-\theta\right)=\left(\theta_{1}^{\prime}-\theta_{1}\right)\left(\theta_{2}^{\prime}-\theta_{2}\right)\left(\theta_{3}^{\prime}-\theta_{3}\right)\left(\theta_{4}^{\prime}-\theta_{4}\right)=\frac{1}{4}\left[\left(\theta_{L}^{\prime}-\theta_{L}\right)^{T} E\left(\theta_{L}^{\prime}-\theta_{L}\right)\right]\left[\left(\theta_{R}^{\prime}-\theta_{R}\right)^{T} E\left(\theta_{R}^{\prime}-\theta_{R}\right)\right]$.

Note e.g. $\int d \theta_{1} \frac{\partial}{\partial \theta_{1}} f=0, \quad \operatorname{Try} f=1$ amd $f=\theta_{1}$.
and $\int d \theta_{1} f \frac{\partial}{\partial \theta_{1}} g=\int d \theta_{1}\left(\frac{\partial}{\partial \theta_{1}} f\right) g . \quad$ Both sides zero for $(f, g)=(1,1)$ and $\left(1, \theta_{1}\right)$, both sides 1 for $\left(\theta_{1}, \theta_{1}\right)$.

3.7 Supergraphs

(Super)graphs allow for preservation of Lorentz group symmetry (and SUSY) throughout calculations.
In e.g. theory of left-chiral superfields $\Phi_{n}^{*}(x, \theta)$ and their complex conjugates,
VEV of time-ordered product of component fields from

VEV of time-ordered product of superfields:

$\langle 0| T\left\{\Phi_{n_{1}}\left(x_{1}, \theta_{1}\right), \Phi_{n_{2}}\left(x_{2}, \theta_{2}\right) \ldots\right\}|0\rangle=\int\left[\prod_{n, x, \theta} d \Phi_{n}(x, \theta)\right] e^{I \mathscr{A}[\Phi]} \Phi_{n_{1}}\left(x_{1}, \theta_{1}\right) \Phi_{n_{2}}\left(x_{2}, \theta_{2}\right) \ldots$, where

Action from spacetime integration: $\mathscr{A}[\Phi]=\frac{1}{2} \int d^{4} x\left[\Phi_{n}^{*}(x, \theta) \Phi_{n}(x, \theta)\right]_{D}+2 \operatorname{Re} \int d^{4} x[f(\Phi)]_{\mathscr{F}}$.

To get supergraph Feynman rules, first write $\mathscr{A}[\Phi]$ in form $\mathscr{A}=\int d^{4} x \underline{\int d^{4} \theta} \times$ something.

Introduce superfields S_{n} such that $\Phi_{n}=\mathscr{D}_{R}^{2} S_{n} . \quad$ No loss of generality - see page 110.

Action from superspace integration: $\mathscr{A}\left[\mathscr{D}_{R}^{2} S\right]=\int d^{4} x \int d^{4} \theta\left(-\frac{1}{4} S_{n}^{*} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2} S_{n}-\operatorname{Re}\left[\tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)\right]\right)$,
where \tilde{f} defined by $f\left(\mathscr{D}_{R}^{2} S\right)=\mathscr{D}_{R}^{2} \tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)$. In \tilde{f}, all superfields acted on by \mathscr{D}_{R}^{2} except one.
Recall $\mathscr{D}_{R}^{2} S_{n}$ is left-chiral because $\mathscr{D}_{R \alpha} \mathscr{D}_{R \beta} \mathscr{D}_{R \gamma}=0$.
So $\Phi_{n}^{*}(x, \theta) \Phi_{n}(x, \theta)=\left(\mathscr{D}_{L}^{2} S_{n}^{*}\right) \mathscr{D}_{R}^{2} S_{n}=S_{n}^{*} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2} S_{n}+E_{\alpha \beta} \mathscr{D}_{L \alpha}\left(\left(\mathscr{D}_{L \beta} S_{n}^{*}\right) \mathscr{D}_{R}^{2} S_{n}+S_{n}^{*} \mathscr{D}_{L \beta} \mathscr{D}_{R}^{2} S_{n}\right)$.
Now for any superfield T, $\left[\mathscr{D}_{L / R} T\right]_{D}=0$, so $\left[\Phi_{n}^{*}(x, \theta) \Phi_{n}(x, \theta)\right]_{D}=\left[S_{n}^{*} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2} S_{n}\right]_{D}$.
Because e.g. $\left(\mathscr{D}_{R}^{2} T\right)^{n}=\mathscr{D}_{R}^{2}\left(T\left(\mathscr{D}_{R}^{2} T\right)^{n-1}\right)$ (follows from $\left.\left(\mathscr{D}_{R}^{2}\right)^{2}=0\right)$ then $f\left(\mathscr{D}_{R}^{2} S\right)=\mathscr{D}_{R}^{2} \tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)$.
From page 111, $\int d^{4} x\left[\mathscr{D}_{-}^{T} E \mathscr{D}_{-} h\right]_{\mathscr{F}} \propto \int d^{4} x[h]_{D}$, i.e. $\int d^{4} x\left[\mathscr{D}_{R}^{2} \tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)\right]_{\mathscr{F}}=\int d^{4} x\left[\tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)\right]_{D}$.
So $\mathscr{A}=\int d^{4} x\left(\frac{1}{2}\left[S_{n}^{*} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2} S_{n}\right]_{D}+2 \operatorname{Re}\left[\tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)\right]_{D}\right)$. Then use $\int d^{4} x[S]_{D}=-\frac{1}{2} \int d^{4} x \int d^{4} \theta S(x, \theta)$ from page 116.

Also we can replace $\prod_{n, x, \theta} d \Phi_{n}(x, \theta) \rightarrow \prod_{n, x, \theta} d S_{n}(x, \theta)$ in path-integral.
Consider lattice of N points, fields $\phi_{i} \longrightarrow \psi_{i}=\phi_{i+1}-\phi_{i}=C_{i j} \phi_{j}$. Then $d^{N} \psi=\operatorname{det}(C) d^{N} \phi=d^{N} \phi$ because $\operatorname{det}(C)=1$.

Thus VEV of time-ordered product of superfields on page 117 becomes
$\langle 0| T\left\{\Phi_{n_{1}}\left(x_{1}, \theta_{1}\right), \Phi_{n_{2}}\left(x_{2}, \theta_{2}\right) \ldots\right\}|0\rangle=\mathscr{D}_{1 R}^{2} \mathscr{D}_{2 R}^{2} \ldots \int\left[\prod_{n, x, \theta} d S_{n}(x, \theta)\right] e^{I \mathscr{A}\left\{\mathscr{D}_{R}^{2} S\right]} S_{n_{1}}\left(x_{1}, \theta_{1}\right) S_{n_{2}}\left(x_{2}, \theta_{2}\right) \ldots$
$=\mathscr{D}_{1 R}^{2} \mathscr{D}_{2 R}^{2} \ldots\langle 0| T\left\{S_{n_{1}}\left(x_{1}, \theta_{1}\right), S_{n_{2}}\left(x_{2}, \theta_{2}\right) \ldots\right\}|0\rangle$.

Action invariant under $S_{n} \rightarrow S_{n}+\mathscr{D}_{R} X_{n}$, where X_{n} is any superfield.
In $\mathscr{A}\left[\mathscr{D}_{R}^{2} S\right], \mathscr{D}_{R}^{2} S \rightarrow \mathscr{D}_{R}^{2} S+\mathscr{D}_{R}^{2} \mathscr{D}_{R} X_{n}$ but $\mathscr{D}_{R}^{2} \mathscr{D}_{R}=0$.

Propagator for left-chiral superfields: $\Delta_{n m}^{\Phi}=\frac{1}{4} \mathscr{D}_{R}^{2} \mathscr{D}_{L}^{\prime 2} \Delta_{F}(x-y) \delta^{(4)}\left(\theta-\theta^{\prime}\right) \delta_{n m}$.
Propagator for S is $\Delta_{n m}^{S}=\frac{1}{4} \Delta_{F}(x-y) \delta^{(4)}\left(\theta-\theta^{\prime}\right) \delta_{n m}+\mathscr{D}_{R}$-terms (see page 120).
$\Delta_{n m}^{S}$ is superpropagator for line created by superfield $S_{m}^{*}\left(x^{\prime}, \theta^{\prime}\right)$ and destroyed by $S_{n}(x, \theta)$,
and $\Phi_{m}^{*}\left(x^{\prime}, \theta^{\prime}\right)=\mathscr{D}_{L}^{\prime 2} S_{m}^{*}\left(x^{\prime}, \theta^{\prime}\right)$ and $\Phi_{n}(x, \theta)=\mathscr{D}_{R}^{2} S_{n}(x, \theta)$, so $\Delta_{n m}^{\Phi}=\mathscr{D}_{R}^{2} \mathscr{D}_{L}^{\prime 2} \Delta_{n m}^{S}$.

Superpropagator: $\Delta_{n m}^{S}=\frac{1}{4} \Delta_{F}(x-y) \delta^{(4)}\left(\theta-\theta^{\prime}\right) \delta_{n m}+\mathscr{D}_{R^{\prime}}$-terms.

Propagator usually comes from quadratic terms in action. If i labels spacetime position (on lattice) as well as spin etc., so $\mathscr{A}_{\text {quad }}[\phi]=-D_{i j} \phi_{i}^{*} \phi_{j}$ where D is Hermitian, then $\Delta=D^{-1}$. But D not invertible if $\mathscr{A}_{\text {quad }}[\phi]$ invariant under $\phi_{i} \rightarrow \phi_{i}+\xi_{i}$, i.e. $D_{i j} \xi_{j}=0$. Let u_{ν} be remaining eigenvectors of D, i.e. (no sum over ν unless explicitly indicated) $D_{i j} u_{\nu j}=d_{\nu} u_{\nu i}, u_{\nu i}^{*} u_{\nu^{\prime} i}=\delta_{\nu \nu^{\prime}}, u_{\nu i}^{*} \xi_{i}=0$. In path integral $P_{a \ldots}=\int \prod_{i} d \phi_{i} d \phi_{i}^{*} e^{\mathscr{q _ { q u a d }}[\phi]} \phi_{a} \ldots \phi_{b}^{*} \ldots$, transform from ϕ_{i} to $\phi_{(\nu)}^{\prime}$ with Jacobian \mathscr{J}, where $\phi_{i}=\phi^{\prime} \xi_{i}+\sum_{\nu} \phi_{\nu}^{\prime} u_{\nu i}$: With $\mathscr{C}=\mathscr{J} \int d \phi^{\prime} d \phi^{* *}$ and, up to terms with $1+$ factors of ξ, $P_{a \ldots}=\mathscr{C} \int \prod_{\nu} d \phi_{\nu}^{\prime} d \phi_{\nu}^{\prime *} e^{-I \sum_{\nu} d_{\nu}\left|\phi_{\nu}^{\prime}\right|^{2}}\left[\sum_{\nu} \phi_{\nu}^{\prime} u_{\nu a}\right] \ldots\left[\sum_{\nu} \phi_{\nu}^{\prime} u_{\nu}\right]^{*} \ldots+\xi-$ terms $=\sum_{\text {pairings }}\left[-I \Delta_{a b}\right]+\xi-$ terms, where propagator $\Delta_{a b}=\sum_{\nu} \frac{u_{\nu a} u_{\nu \nu}^{*}}{d_{\nu}}$. Replacing $\mathscr{A}_{\text {quad }}$ with full gauge-invariant \mathscr{A}, ξ-terms vanish because ϕ_{i} contracted with objects J_{i} obeying $J_{i} \xi_{i}=0$. So, alternatively, solve $D_{a c} \Delta_{c b}=\Pi_{a b}$ to get $\Delta_{a b}$, where projection operator $\Pi_{a b}=\sum_{\nu} u_{\nu a} u_{\nu b}^{*}$ obeys $\Pi^{2}=\Pi$ and $\Pi \xi=0$, because solution for $\Delta_{a b}$ unique up to these irrelevant ξ-terms. From action from superspace integration on page 118, $\frac{1}{4} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2} \Delta_{n m}^{S}\left(x, \theta ; x^{\prime}, \theta^{\prime}\right)=\mathscr{P} \delta^{(4)}\left(x-x^{\prime}\right) \delta^{(4)}\left(\theta-\theta^{\prime}\right) \delta_{n m}$, where \mathscr{P} obeys $\mathscr{P}^{2}=\mathscr{P}$ and $\mathscr{P} \mathscr{D}_{R} X_{n}=0$.

Solution for \mathscr{P} is $\mathscr{P}=-\frac{1}{16} \square^{-1} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2}$, because $\mathscr{D}_{R}^{2} \mathscr{D}_{L}^{2} \mathscr{D}_{R}^{2}=-16 \square \mathscr{D}_{R}^{2}$ and $\mathscr{D}_{R}^{2} \mathscr{D}_{R}=0$,
so solution for $\Delta_{n m}^{S}$ is $\Delta_{n m}^{S}=\frac{1}{4} \Delta_{F}(x-y) \delta^{(4)}\left(\theta-\theta^{\prime}\right) \delta_{n m}+\mathscr{D}_{R}$-terms.

Generating functional: $Z[J, \mathscr{A}]=\int \prod_{x, l} d \phi_{l}(x) e^{I \mathscr{A}[\phi]+I \int d^{4} x \phi_{l}(x) J_{l}(x)}$. Contains all S-matrix elements.

From page 61, $\frac{\langle 0, \text { out }| T\left\{\phi_{l_{A}}\left(x_{A}\right), \phi_{l_{B}}\left(x_{B}\right) \ldots, \ldots \mid 0, \text { in }\right\rangle}{\langle 0, \text { out }| 0, \text { in }\rangle}=\left.\frac{1}{Z[J, \mathscr{A}]}\left(-I \frac{\delta}{\delta J_{A}\left(x_{A}\right)}\right)\left(-I \frac{\delta}{\delta J_{B}\left(x_{A}\right)}\right) \ldots Z[J, \mathscr{A}]\right|_{J=0}$.
$Z[J, \mathscr{A}]=$ tree-level part of $Z[J, \Gamma]$, where
Quantum effective action: $\Gamma[\phi]=-\int d^{4} x \phi_{l}(x) J_{\phi l}(x)-I \ln Z\left[J_{\phi}, \mathscr{A}\right], J_{\phi}$ is solution of $\phi_{l}=\left.\frac{\delta(-I \ln Z[J, \mathscr{A}])}{\delta J_{l}(x)}\right|_{J=J_{\phi}}$.
Define $Z[J, \Gamma, g]=\int \prod_{x, l} d \phi_{l}(x) e^{g^{-1}\left[I \Gamma[\phi]+I \int d^{4} x \phi_{l}(x) J_{l}(x)\right]}$, i.e. $Z[J, \Gamma, 1]=Z[J, \Gamma]$. Propagator for $Z[J, \Gamma, g]$ is $\propto g$, because it is inverse of coefficient of term in $g^{-1} \Gamma[\phi]$ which is quadratic in ϕ_{l}. Each vertex is $\propto g^{-1}$.

So for $L=$ number of loops, $Z[J, \Gamma, g]=\sum_{L=0}^{\infty} g^{L-1} Z^{(L)}[J, \Gamma]$. Now take $g \rightarrow 0$, so integration in $Z[J, \Gamma, g]$ is dominated by ϕ-configurations that give stationary phase, i.e. $Z[J, \Gamma, g] \propto e^{g^{-1}\left[I \Gamma\left[\phi_{J}\right]+I \int d^{4} x \phi_{J l}(x) J_{l}(x)\right]}$ where ϕ_{J} such that
$\frac{\delta}{\delta \phi_{l}(y)}\left[I \Gamma[\phi]+I \int d^{4} x \phi_{l}(x) J_{l}(x)\right]_{\phi=\phi_{J}}=0$, or $\left.\frac{\delta}{\delta \phi_{l}(x)} \Gamma[\phi]\right|_{\phi=\phi_{J}}=-J_{l}(x)$. Thus $J_{\phi_{J}}=J$ because, from definition of $\Gamma[\phi]$ and $J_{\phi,}$,
$\frac{\delta}{\delta \phi_{l}(x)} \Gamma[\phi]=-\int d^{4} y \phi_{k}(y) \frac{\delta J_{d k}(y)}{\delta \phi_{l}(x)}-J_{\phi l}(x)+\left.\int d^{4} y \frac{\delta(-I \ln Z[J)}{\delta J_{k}(y)}\right|_{J=J_{\phi}} \frac{\delta J_{\phi k}(y)}{\delta \phi_{l}(x)}=J_{\phi l}(x)$. Proportionality constant in underlined equation begins at $O\left(g^{0}\right)$ so, taking logs, coefficient of g^{-1} is $-I \ln Z^{(0)}[J, \Gamma]=\Gamma\left[\phi_{J}\right]+\int d^{4} x \phi_{J l}(x) J_{l}(x)=-I \ln Z\left[J_{\phi_{J}}, \mathscr{A}\right]=-I \ln Z[J, \mathscr{A}]$. Coefficients of products of fields in $\Gamma[\phi]$ from corresponding connected 1 particle irreducible (1PI) graphs.
$\Gamma\left[S, S^{*}\right]$ is local in fermionic coordinates.
Each incoming (outgoing) external line is attached to vertex labelled (x, θ), gives a factor $S_{n}(x, \theta)\left(S_{n}^{*}(x, \theta)\right)$.
Each vertex gives factor equal to coefficient of corresponding product of fields in $\tilde{f}\left(\mathscr{D}_{R}^{2} S, S\right)$.
Each propagator from vertex (x, θ) to vertex $\left(x^{\prime}, \theta^{\prime}\right)$ gives $-\frac{I}{4} \delta^{(4)}\left(\theta-\theta^{\prime}\right) \Delta_{F}\left(x-x^{\prime}\right)$.
Recall from page 118 that in \tilde{f} all superfields acted on by \mathscr{D}_{R}^{2} except one.
So a $\mathscr{D}_{R}^{2}\left(\mathscr{D}_{L}^{2}\right)$ acts on all lines but one that come into (go out of) a vertex.
But $\Gamma\left[S, S^{*}\right]$ obtained by restricting to 1PI graphs and integrating over all $x \mathrm{~s}$ and $\theta \mathrm{s}$.
So use integration by parts to move all $\mathscr{D}_{R}^{2}\left(\mathscr{D}_{L}^{2}\right)$ on propagators to external line factors $S_{n}(x, \theta)\left(S_{n}^{*}(x, \theta)\right)$.
Integrate out all $\delta^{(4)}\left(\theta-\theta^{\prime}\right)$ so that $\Gamma\left[S, S^{*}\right]$ is integral over single 4-D θ.

Graphs in $\Gamma\left[S, S^{*}\right]$ with loops are D-terms, the rest are \mathscr{F}-terms.
For $V_{n}\left(V_{n}^{*}\right)$ vertices with n incoming (outgoing) lines, number of $\mathscr{D}_{R}^{2}\left(\mathscr{D}_{L}^{2}\right)$ is $N_{R}=\sum_{n} V_{n}(n-1)\left(N_{L}=\sum_{n} V_{n}^{*}(n-1)\right)$.
Let there be $E\left(E^{*}\right)$ incoming (outgoing) external line factors $S_{n}(x, \theta)\left(S_{n}^{*}(x, \theta)\right)$, and I internal lines.
Because $I+E\left(E^{*}\right)=\sum_{n} n V_{n}\left(V_{n}^{*}\right)$ and number of loops is $L=I-\sum_{n} V_{n}-\sum_{n} V_{n}^{*}+1$,
$N_{R}=L+\sum_{n} V_{n}^{*}+E-1\left(N_{L}=L+\sum_{n} V_{n}+E^{*}-1\right)$. Thus a graph with any loops has $N_{R} \geq E$ and $N_{L} \geq E$,
i.e. enough $\mathscr{D}_{R}^{2}\left(\mathscr{D}_{L}^{2}\right)$ operators to act on all external line factors $S_{n}(x, \theta)\left(S_{n}^{*}(x, \theta)\right)$ at least once
i.e. such graphs are integral over single 4-D θ of a functional of $\mathscr{D}_{R}^{2} S_{n}=\Phi_{n}$ and $\mathscr{D}_{L}^{2} S_{n}^{*}=\Phi_{n}^{*}$, which is a D-term.

Graphs with $N_{R}=E-1 \mathscr{D}_{R}^{2}$ operators ($N_{L}=E-1 \mathscr{D}_{L}^{2}$ operators) have both $L=0$ and $V^{*}=0(V=0)$,
so there can only be one vertex and no loops, and there is a single $S_{n}(x, \theta)\left(S_{n}^{*}(x, \theta)\right)$ not acted on by $\mathscr{D}_{R}^{2}\left(\mathscr{D}_{L}^{2}\right)$.
But recall from page 118 that $\int d^{4} x \int d^{4} \theta \tilde{g}\left(\mathscr{D}_{R}^{2} S, S\right)=\int d^{4} x\left[g\left(\mathscr{D}_{R}^{2} S\right)\right]_{\mathscr{F}}$, i.e. such graphs are \mathscr{F}-terms.

Superpotential $f(S)$ not renormalized at any order in perturbation theory.
$f(S)$ contributes in form of \mathscr{F}-term, but \mathscr{F}-terms in $\Gamma\left[S, S^{*}\right]$ are free of loops (no infinite renormalization).
Also there is just one vertex, which must be the integrated $[f(S)]_{\mathscr{F}}$ (no finite renormalization).

3.8 SUSY current

SUSY current: $S^{\mu}=J^{\mu}+K^{\mu}$ (4-vector of Majorana spinors), where K^{μ} appears in $\delta \mathscr{L}=\bar{\alpha} \partial_{\mu} K^{\mu}$,
J is the Noether current in explicit result for Noether current when \mathscr{L} is invariant on page 59: $-\bar{\alpha} J^{\mu}=\frac{\partial_{R} \mathscr{L}}{\partial\left(\partial_{\mu} \chi^{l}\right)} \delta \chi^{l}$.

But \mathscr{L} is bot invariant under SUSY, so add K^{μ} to definition of SUSY current. Then

Conservation of SUSY current: $\partial_{\mu} S^{\mu}=0$.
(Following argument is general.) From definition of J^{μ} above, $\bar{\alpha} \partial_{\mu} J^{\mu}=-\left(\partial_{\mu} \frac{\partial_{R} \mathscr{Y}}{\partial\left(\partial_{\mu} \chi^{l}\right)}\right) \delta \chi^{l}-\frac{\partial_{R} \mathscr{L}}{\partial\left(\partial_{\mu} \chi\right)} \delta \partial_{\mu} \chi^{l}$.
Using Euler-Lagrange equations on page 58, $\bar{\alpha} \partial_{\mu} J^{\mu}=-\frac{\partial_{\mathbb{R}} \mathscr{L}}{\partial \chi^{l}} \delta \chi^{l}-\frac{\partial_{\mathbb{R}} \mathscr{X}}{\partial\left(\partial_{\mu} \chi^{l}\right)} \delta \partial_{\mu} \chi^{l}=-\delta \mathscr{L}$, cancels $\delta \mathscr{L}=\bar{\alpha} \partial_{\mu} K^{\mu}$.

Generator of SUSY transformations: $\left[\int d^{3} x \bar{\alpha} S^{0}, \chi^{l}\right]=I \delta \chi^{l}$

(Following argument is general.) Let $L=L(q, \dot{q}), \delta q=\delta q(q, \dot{q})$, canonical coordinates q are all fields χ^{l} at all spacetime points.
Recall $L=\int d^{3} x \mathscr{L}$, so $\delta L=\int d^{3} x \bar{\alpha} \partial_{\mu} K^{\mu}=\int d^{3} x \bar{\alpha} \frac{d K^{0}}{d t}$ or $\frac{\partial L}{\partial q^{n}} \delta q^{n}+\frac{\partial L}{\partial \dot{q}^{n}} \delta \dot{q}^{n}=\frac{d F}{d t}$, where $F=\int d^{3} x \bar{\alpha} K^{0}$.
But $\frac{\partial L}{\partial q^{n}}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{n}}$, so underlined equation is $\dot{Q}=0$ where conserved charge $Q=-\frac{\partial L}{\partial \dot{q}^{n}} \delta q^{n}+F$.
So $Q=\int d^{3} x \bar{\alpha} S^{0}$, because $-\frac{\partial L}{\partial \dot{q}^{n}} \delta q^{n}=\int d^{3} x \bar{\alpha} J^{0}$ from the definition of the Noether current. Must show $\left[Q, \chi^{l}\right]=I \delta \chi^{l}$:
Now $\left[Q, q^{m}\right]=-\left[\frac{\partial L}{\partial \dot{q}^{n}}, q^{m}\right] \delta q^{n}-\frac{\partial L}{\partial \dot{q}^{n}}\left[\delta q^{n}, q^{m}\right]+\left[F, q^{m}\right]$. In 1st term, use QM result $\left[\frac{\partial L}{\partial \dot{q}^{n}}, q^{m}\right]=-I \delta_{n}^{m}$ (assuming no constraints).
For 2 nd and 3 rd terms consider general $\left[f(q, \dot{q}), q^{m}\right]$. We may write $f=\sum_{k=0}^{\infty} A_{n_{1} \ldots n_{k}}(q) \dot{q}_{n_{1}} \ldots \dot{q}_{n_{k}}$. Using QM result $\left[q^{n}, q^{m}\right]=0$, we find $\left[f(q, \dot{q}), q^{m}\right]=\sum_{k=0}^{\infty} A_{n_{1} \ldots n_{k}}(q) \sum_{r=1}^{k} \dot{q}_{n_{1}} \ldots \dot{q}_{n_{r-1}}\left[\dot{q}_{n_{r}}, q_{m}\right] \dot{q}_{n_{r+1}} \ldots \dot{q}_{n_{k}}=\frac{\partial f}{\partial \dot{q}_{n}}\left[\dot{q}_{n}, q_{m}\right]$
(in last expression, insert $\left[\dot{q}_{n}, q_{m}\right]$ in correct position among \dot{q} products). Then $\left[Q, q^{m}\right]=I \delta q^{m}+\left(\frac{\partial F}{\partial \dot{q}^{n}}-\frac{\partial L}{\partial \dot{q}^{\prime}} \frac{\partial \delta q^{l}}{\partial \dot{q}^{n}}\right)\left[\dot{q}^{n}, q^{m}\right]$.
But $\frac{\partial F}{\partial \dot{q}^{n}}=\frac{\partial L}{\partial \dot{q}^{l}} \frac{\partial \delta q^{l}}{\partial \dot{q}^{n}}$: In underlined equation above, replace \dot{X}, where $\dot{X}=\delta \dot{q}^{n}$ on LHS and $\dot{X}=\frac{d F}{d t}$ on RHS,
with chain rule $\dot{X}=\dot{q}^{l} \frac{\partial X}{\partial q^{l}}+\ddot{q}^{l} \frac{\partial X}{\partial \dot{q}^{l}}$. Then $\frac{\partial L}{\partial q^{n}} \delta q^{n}+\dot{q}^{l} \frac{\partial L}{\partial \dot{q}^{n}} \frac{\partial \delta q^{n}}{\partial q^{l}}+\ddot{q}^{l} \frac{\partial L}{\partial \dot{q}^{n}} \frac{\partial \delta q^{n}}{\partial \dot{q}^{l}}=\dot{q}^{n} \frac{\partial F}{\partial q^{n}}+\ddot{q}^{n} \frac{\partial F}{\partial \dot{q}^{n}}$.

Match coefficients of \ddot{q}^{n}, which does not appear implicitly in any term.

Thus $\left[Q, q^{m}\right]=I \delta q^{m}$. Taking the time derivative also gives $\left[Q, \dot{q}^{m}\right]=I \delta \dot{q}^{m}$. Can be extended to cases with constraints.

SUSY current for chiral supermultiplet: $S^{\mu}=\sqrt{2}\left[\left(\not \partial \phi_{n}\right) \gamma^{\mu} \psi_{n R}+\frac{\partial f}{\partial \phi_{n}} \gamma^{\mu} \psi_{n L}+\left(\phi_{n} \rightarrow \phi_{n}^{*}, \psi_{n R} \leftrightarrow \psi_{n L}\right)\right]$.

Noether current: $J^{\mu}=\frac{1}{\sqrt{2}}\left[2\left(\partial^{\mu} \phi_{n}^{*}\right) \psi_{n L}+2\left(\partial^{\mu} \phi_{n}\right) \psi_{n R}+\left(\not \partial \phi_{n}\right) \gamma^{\mu} \psi_{n R}+\left(\not \partial \phi_{n}^{*}\right) \gamma^{\mu} \psi_{n L}-\mathscr{F}_{n} \gamma^{\mu} \psi_{n R}-\mathscr{F}_{n}^{*} \gamma^{\mu} \psi_{n L}\right]$:
Use explicit result for Noether current when \mathscr{L} is invariant on page 59 , where \mathscr{L} from chiral superfields on page 113 is $\mathscr{L}=-\partial_{\mu} \phi_{n}^{*} \partial^{\mu} \phi_{n}-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu} \partial_{\mu} \psi_{n L}+\frac{1}{2}\left(\partial_{\mu} \bar{\psi}_{n R}\right) \gamma^{\mu} \psi_{n R}+$ non-spacetime-derivative terms, change in fields from left / right transformation on page 107 (excluding $\delta \mathscr{F}_{ \pm}$).

Next, $K^{\mu}=\frac{1}{\sqrt{2}} \gamma^{\mu}\left[-\left(\not \partial \phi_{n}\right) \psi_{n R}-\left(\not \partial \phi_{n}^{*}\right) \psi_{n L}+\mathscr{F}_{n}^{*} \psi_{n L}+\mathscr{F}_{n} \psi_{n R}+2 \frac{\partial f}{\partial \phi_{n}} \psi_{n L}+2\left(\frac{\partial f}{\partial \phi_{n}}\right)^{*} \psi_{n R}\right]$:
Recall $\delta \mathscr{L}=\bar{\alpha} \partial_{\mu} K^{\mu}$ from page 125. In supersymmetric action from chiral superfields on page 111,
use (from left / right transformation on page 107) $\delta[f]_{\mathscr{F}}=\sqrt{2} \bar{\alpha} \phi[f]_{\psi_{L}}$,
and (from component field transformations on page 104) $\delta[K]_{D}=I \bar{\alpha} \gamma_{5} \not \partial[K]_{\lambda}$.

Alternative SUSY current: $S^{\mu}=K^{\mu}+J^{\mu}+\frac{\sqrt{2}}{3}\left[\gamma^{\mu}, \gamma^{\nu}\right] \partial_{\nu}\left(\phi_{n} \psi_{n R}+\phi_{n}^{*} \psi_{n L}\right)$.
Can always add $\partial_{\nu} A^{\mu \nu}$ to S^{μ} ($A^{\mu \nu}$ is some antisymmetric tensor of spinors), because 1 . it is conserved $\left(\partial_{\mu} \partial_{\nu} A^{\mu \nu}=0\right)$,
2. generator of SUSY transformations on page 125 unchanged because $\int d^{3} x \bar{\alpha} \partial_{\nu} A^{0 \nu}=\int d^{3} x \bar{\alpha} \partial_{i} A^{0 i}=0$.

This gives

Measure of scale invariance violation: $\gamma_{\mu} S^{\mu}=-2 \sqrt{2}\left(\phi_{m} \frac{\partial^{2} f}{\partial \phi_{n} \partial \phi_{m}}-2 \frac{\partial f}{\partial \phi_{n}}\right) \psi_{n L}+\left(L \rightarrow R, \phi \rightarrow \phi^{*}\right)$.
From \mathscr{L} from chiral superfields on page 113, Dirac equations are $\not \partial \psi_{m L}=-\left(\frac{\partial^{2} f}{\partial \phi_{m} \partial \phi_{n}}\right)^{*} \psi_{n R}$ and same with $L \leftrightarrow R$ and $\phi \rightarrow \phi^{*}$. Use SUSY current for chiral supermultiplet on page 126 ($=K^{\mu}+J^{\mu}$) and alternative SUSY current above.
because $\gamma_{\mu} S^{\mu}$ vanishes when f is 3rd order homogeneous polynomial ($f=C_{m n p} \phi_{m} \phi_{n} \phi_{p}$), in which case coupling $\left(C_{m n p}\right)$ is dimensionless.

3.9 Spontaneous supersymmetry breaking

Broken SUSY vacuum condition: $\langle 0| \mathscr{F}|0\rangle \neq 0$ or $\left.\frac{\partial f(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}} \neq 0$ or $V\left(\phi_{0}\right)>0$.

In left / right transformation on page 107, want to make one of $\langle 0| \delta \Psi_{l}|0\rangle \neq 0$, where $\Psi_{l}=\psi_{n L}$, ϕ_{n} or \mathscr{F}_{n}.
Cannot make $\langle 0| \psi_{n L}|0\rangle \neq 0$ since vacuum Lorentz invariant, nor $\langle 0| \partial_{\mu} \phi_{n}|0\rangle \neq 0$ since $\langle 0| \phi_{n}|0\rangle$ constant.
Only possibility is $\langle 0| \mathscr{F}_{n}|0\rangle \neq 0$ (whence $\langle 0| \delta \psi_{n L}|0\rangle=\sqrt{2} \bar{\alpha}\langle 0| \mathscr{F}_{n}|0\rangle$),
which from \mathscr{L} from chiral superfields on page 113 is equivalent to last 2 statements.
Spontaneous SUSY breaking requires f such that $\left.\frac{\partial f(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}=0$ has no solution.

Spontaneous SUSY breaking gives rise to massless spin $\frac{1}{2}$ goldstino.

$$
\left.\frac{\partial V}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}=0 \text {. But } V=\sum_{n}\left|\frac{\partial f}{\partial \phi_{n}}\right|^{2} \text {, so }\left.2 \sum_{n} \frac{\partial^{2} f}{\partial \phi_{m} \partial \phi_{n}}\left(\frac{\partial f}{\partial \phi_{n}}\right)^{*}\right|_{\phi=\phi_{0}}=0 \text {, i.e. }\left.\sum_{n} \mathscr{M}_{m n}\left(\frac{\partial f}{\partial \phi_{n}}\right)^{*}\right|_{\phi=\phi_{0}}=0 \text {. But one }+ \text { of }\left.\frac{\partial f(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}} \neq 0 \text {, }
$$

so \mathscr{M} has at least one zero eigenvalue, so from free Lagrangian density on page 114 , since \mathscr{M} eigenvalues are the m_{n}, there is at least one linear combination of $\psi_{n L}$ with zero mass.

In local SUSY, goldstino absorbed into longitudinal component of gravitino, gives it a mass.

3.9.1 O'Raifeartaigh Models

Theories in which left-chiral fields X_{n}, Y_{i} have $\mathscr{R}=0,2$. Most general superpotential is $f(X, Y)=\sum_{i} Y_{i} f_{i}(X)$.
From R quantum number assignments for potentials f and K on page 112 , i.e. $\mathscr{R}_{f}=2\left(X^{*}, Y^{*}\right.$ not allowed since f left-chiral).
SUSY broken when no. fields $X<$ no. fields Y.
Write scalar components of X, Y as x, y. Condition $\frac{\partial f(x, y)}{\partial y_{i}}=0$ implies $f_{i}(x)=0$, i.e. more conditions than fields X_{i}, only possible to satisfy by careful choice of the $f_{i}(x)$.

Scalar field potential: $V=\sum_{i}\left|f_{i}(x)\right|^{2}+\sum_{n}\left|\sum_{i} y_{i} \frac{\partial f_{i}(x)}{\partial x_{n}}\right|^{2}$.
From general superpotential above and definition of scalar field potential in \mathscr{L} from chiral superfields on page 113.
Simplest (renormalizable) model: Fields X, Y_{1}, Y_{2}.
Then choice $f_{1}(X)=X-a, f_{2}(X)=X^{2}$ is general, for which $V=|x|^{4}+|x-a|^{2}+\left|y_{1}+2 x y_{2}\right|^{2}$.
Renormalizability allows f_{i} to be quadratic only. Then take linear combinations of Y_{i} and shift and rescale X.
$\frac{\partial f}{\partial X}=\frac{\partial f}{\partial Y_{1}}=\frac{\partial f}{\partial Y_{2}}=0$ only possible if we can make $f_{1}=f_{2}=0$, only possible if $a=0$.

3.10 Supersymmetric gauge theories

Gauge transformation of left-chiral supermultiplet: $\left(\phi, \psi_{L}, \mathscr{F}\right)_{n}(x) \rightarrow\left(\exp \left[I t_{A} \Lambda^{A}(x)\right]\right)_{n m}\left(\phi, \psi_{L}, \mathscr{F}\right)_{m}(x)$

Fields in same supermultiplet have same transformation properties under internal symmetry transformation U :
Since $\left[Q, a_{B / F}^{(\dagger)}\right]_{\mp} \sim a_{F / B}^{(\dagger)}$, where $a_{B / F}^{(\dagger)}$ are annihilation (creation) operators for bosonic and fermionic superpartners, general transformation of $a_{\sigma}^{(\dagger)}$ on page 10 is same for $a_{B}^{(\dagger)}, a_{F}^{(\dagger)}$ because $[U, Q]=0$ from page 89.

So from complete field on page 27, transformation same for all fields in supermultiplet.
Gauge transformation of left-chiral superfields: $\Phi(x, \theta) \rightarrow \exp \left[I t_{A} \Lambda^{A}\left(x_{+}\right)\right] \Phi(x, \theta)$ (column vector $\left.\Phi\right)$.
Implied by gauge transformation of left-chiral supermultiplet above and compact form on page 107.
Gauge transformation of right-chiral superfields: $\Phi^{\dagger}(x, \theta) \rightarrow \Phi^{\dagger}(x, \theta) \exp \left[-I t_{A} \Lambda^{A}\left(x_{-}\right)\right]$.
From conjugate of gauge transformation of left-chiral superfields above. Note $\Lambda^{A}(x)$ is real function of x and $x_{+}^{*}=x_{-}$.

No derivatives / conjugates of Φ in f, so argument y of $\Lambda^{A}(y)$ irrelevant. But K also contains Φ^{\dagger}, so e.g. $\Phi_{n}^{\dagger} \Phi_{n}$ not invariant under gauge transformation of left and right-chiral superfield above because $\Lambda^{A}\left(x_{+}\right) \neq \Lambda^{A}\left(x_{-}\right)$.

Define gauge connection $\Gamma(x, \theta)$, with transformation property
Gauge transformation of gauge connection: $\Gamma(x, \theta) \rightarrow \exp \left[I t_{A} \Lambda^{A}\left(x_{-}\right)\right] \Gamma(x, \theta) \exp \left[-I t_{A} \Lambda^{A}\left(x_{+}\right)\right]$,
then "new" right-chiral superfield $\Phi^{\dagger}(x, \theta) \Gamma(x, \theta)$ has transformation property
Gauge transformation of new right-chiral superfield: $\Phi^{\dagger}(x, \theta) \Gamma(x, \theta) \rightarrow \Phi^{\dagger}(x, \theta) \Gamma(x, \theta) \exp \left[-I t_{A} \Lambda^{A}\left(x_{+}\right)\right]$.
$\underline{\text { Global gauge invariance } \Longrightarrow \text { local for } \int d^{4} x\left[K\left(\Phi, \Phi^{\dagger} \Gamma\right)\right]_{D} \text {. Also implies invariance under }}$
Extended gauge transformations: $\Phi(x, \theta) \rightarrow \exp \left[I t_{A} \Omega^{A}(x, \theta)\right] \Phi(x, \theta)$,
$\Gamma(x, \theta) \rightarrow \exp \left[I t_{A} \Omega^{A \dagger}(x, \theta)\right] \Gamma(x, \theta) \exp \left[-I t_{A} \Omega^{A}(x, \theta)\right]$ with any left-chiral superfields $\Omega^{A}(x, \theta)$.
We are extending $\Lambda^{A}\left(x_{+}\right)$to $\Omega^{A}(x, \theta)=\Lambda^{A}\left(x_{+}\right)-\sqrt{2} \theta_{L}^{T} E \psi_{\Lambda L}\left(x_{+}\right)+\theta_{L}^{T} E \theta_{L} \mathscr{F}_{\Lambda_{+}}\left(x_{+}\right)$in compact form on page 107.
$\Phi(x, \theta)$ is left-chiral (depends on x_{+}, θ_{L} only), so cannot introduce x_{-}or θ_{R} in $\Omega^{A}(x, \theta)$.

Hermitian connection: $\Gamma(x, \theta)=\Gamma^{\dagger}(x, \theta)$. Take $\Gamma \rightarrow \frac{1}{2}\left(\Gamma+\Gamma^{\dagger}\right)$ or $\frac{1}{2 I}\left(\Gamma-\Gamma^{\dagger}\right)$, note Γ, Γ^{\dagger} have same transformation.
Connection from gauge superfields: $\Gamma(x, \theta)=\exp \left[-2 t_{A} V^{A}(x, \theta)\right]$, with real gauge superfields V_{A}.
Form preserved by gauge transformation of gauge connection above, new V^{A} independent of t_{A} representation.
See Baker-Hausdorff formula on page 9 .

Extended gauge transformation of gauge superfields: $V^{A}(x, \theta) \rightarrow V^{A}(x, \theta)+\frac{I}{2}\left[\Omega^{A}(x, \theta)-\Omega^{A \dagger}(x, \theta)\right]+$ where "..." = commutators of generators, which vanish for zero coupling and in $\mathrm{U}(1)$ (Abelian).

From extended gauge transformations and definition of gauge superfields above.
Gauge superfields in terms of components: $V^{A}(x, \theta)=C^{A}(x)-I \bar{\theta} \gamma_{5} \omega^{A}(x)-\frac{I}{2} \bar{\theta} \gamma_{5} \theta M^{A}(x)-\frac{1}{2} \bar{\theta} \theta N^{A}(x)$

$$
+\frac{I}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta V_{\mu}^{A}(x)-I \bar{\theta} \gamma_{5} \theta \bar{\theta}\left[\lambda^{A}(x)+\frac{1}{2} \not \partial \omega^{A}(x)\right]-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2}\left(D^{A}(x)+\frac{1}{2} \partial^{2} C^{A}(x)\right)
$$

From general form of superfield on page 103.
Transformation superfields in terms of components: $\Omega^{A}(x, \theta)=W^{A}(x)-\sqrt{2 \theta} P_{L} w^{A}(x)+\mathscr{W}^{A}(x) \bar{\theta} P_{L} \theta$

$$
+\frac{1}{2} \bar{\theta} \gamma_{5} \gamma_{\mu} \theta \partial^{\mu} W^{A}(x)-\frac{1}{\sqrt{2}} \bar{\theta} \gamma_{5} \theta \bar{\theta} \not \partial P_{L} w^{A}(x)-\frac{1}{8}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} \partial^{2} W^{A}(x)
$$

From chiral superfield decomposition on page 106, taking left-chiral part (Φ^{+}there).
Transformation of gauge supermultiplet fields: $C^{A}(x) \rightarrow C^{A}(x)-\operatorname{Im} W^{A}(x)+\ldots$,

$$
\omega^{A}(x) \rightarrow \omega^{A}(x)+\frac{1}{\sqrt{2}} w^{A}(x)+\ldots, V_{\mu}^{A}(x) \rightarrow V_{\mu}^{A}(x)+\partial_{\mu} \operatorname{Re} W^{A}(x)+\ldots, M^{A}(x) \rightarrow M^{A}(x)-\operatorname{Re} \mathscr{W}^{A}(x)+\ldots,
$$

$$
N^{A}(x) \rightarrow N^{A}(x)+\operatorname{Im} \mathscr{W}^{A}(x)+\ldots, \lambda^{A}(x) \rightarrow \lambda^{A}(x)+\ldots, D^{A}(x) \rightarrow D^{A}(x)+\ldots
$$

From all 3 above results. Again, ". . ." = commutators of generators, which vanish for zero coupling and in U(1) (Abelian).

Wess-Zumino gauge: $C^{A}, \omega^{A}, M^{A}, N^{A}=0 \rightarrow V^{A}(x, \theta)=\frac{I}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta V_{\mu}^{A}(x)-I \bar{\theta} \gamma_{5} \theta \bar{\theta} \lambda^{A}(x)-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} D^{A}(x)$.
Transformation of supermultiplet fields on page 132: take $\operatorname{Im} W^{A}(x)=C^{A}(x), w^{A}(x)=-\sqrt{2} \omega^{A}(x), \mathscr{W}^{A}(x)=M^{A}(x)-I N^{A}(x)$. Sufficient for Abelian case because "..." $=0$. For non-Abelian case, add nth order (in gauge couplings) terms to $\operatorname{Im} W^{A}(x), w^{A}(x), \mathscr{W}^{A}(x)$ to cancel nth order terms from commutators of $m \leq n-1$ th order terms.

Wess-Zumino gauge is not supersymmetric.
Ensuring $\delta C^{A}, \delta \omega^{A}, \delta M^{A}, \delta N^{A}=0$ in component field transformations on page 104, requires also having $V_{\mu}^{A}, \lambda^{A}=0$,
which requires $\delta V_{\mu}^{A}, \delta \lambda^{A}=0 . \delta V_{\mu}^{A}=0$ satisfied, but $\delta \lambda^{A}=0$ requires $D^{A}=0$, i.e. $V^{A}=0$.

Gauge invariant \mathscr{L} for chiral supermultiplet: $\frac{1}{2}\left[\Phi^{\dagger} \Gamma \Phi\right]_{D}=-\frac{1}{2}\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi-\frac{1}{2} \bar{\psi}_{L} \gamma^{\mu} D_{\mu} \psi_{L}+\frac{1}{2} \mathscr{F}^{\dagger} \mathscr{F}$
$+I \sqrt{2 \psi}_{L} t_{A} \lambda^{A} \phi-\frac{1}{2} D^{A} \phi^{\dagger} t_{A} \phi+$ h.c., where covariant derivative $D_{\mu}=\partial_{\mu}-I t_{A} V_{\mu}^{A}$
(gauge transformation for gauge superfield derived next on page 134).
In Wess-Zumino gauge, $\Gamma(x, \theta)=1-I \bar{\theta} \gamma_{5} \gamma_{\mu} \theta t_{A} V_{\mu}^{A}(x)-\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta \bar{\theta} \gamma_{5} \gamma^{\nu} \theta t_{A} t_{B} V_{\mu}^{A}(x) V_{\nu}^{B}(x)+2 I \bar{\theta} \gamma_{5} \theta t_{A} \bar{\theta} \lambda^{A}(x)+\frac{1}{2}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} t_{A} D^{A}(x)$.
Then use left-chiral superfield in chiral superfield decomposition on page 106.
Note D term is coefficient of $-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2}$ minus $\frac{1}{2} \partial^{2} \times$ first " ϕ " term.

Gauge transformation of gauge supermultiplet fields: $\delta_{\text {gauge }} V_{\mu}^{A}(x)=C_{A B C} V_{\mu}^{B}(x) \Lambda^{C}(x)+\partial_{\mu} \Lambda^{A}(x)$

(which is infinitesimal version of transformation of gauge fields on page 66), and
$\delta_{\text {gauge }} \lambda^{A}(x)=C_{A B C} \lambda^{B}(x) \Lambda^{C}(x), \delta_{\text {gauge }} D^{A}(x)=C_{A B C} D^{B}(x) \Lambda^{C}(x)$ (i.e. λ^{A}, D^{A} in adjoint representation).
Firstly $\Lambda^{A}\left(x_{+}\right)=\Lambda^{A}(x)+\frac{1}{2}\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right) \partial^{\mu} \Lambda^{A}(x)-\frac{1}{8}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} \partial^{2} \Lambda^{A}(x)$. Then gauge transformation of gauge connection on page 131
(using connection from gauge superfields) reads $\exp \left[-2 t_{A} V^{A \prime}(x, \theta)\right]=\exp \left[I t_{A} \Lambda^{A \dagger}\left(x_{+}\right)\right] \exp \left[-2 t_{A} V^{A}(x, \theta)\right] \exp \left[-I t_{A} \Lambda^{A}\left(x_{+}\right)\right]$.
Write as $\exp \left[-2 t_{A} V^{A \prime}(x, \theta)\right]=e^{a} e^{X} e^{b}$ where $X=-2 t_{A} V^{A}(x, \theta)=-2 t_{A}\left[\frac{I}{2} \bar{\theta} \gamma_{5} \gamma_{\mu} \theta V_{\mu}^{A}(x)-I \bar{\theta} \gamma_{5} \theta \bar{\theta} \lambda^{A}(x)-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} D^{A}(x)\right]$, and
small quantities $b+a=2 t_{A} \operatorname{Im} \Lambda^{A}\left(x_{+}\right)=-I \bar{\theta} \gamma_{5} \gamma_{\mu} \theta t_{A} \partial^{\mu} \Lambda^{A}(x), b-a=-2 I t_{A} \operatorname{Re} \Lambda^{A}\left(x_{+}\right)=-2 I t_{A}\left[\Lambda^{A}(x)-\frac{1}{8}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} \partial^{2} \Lambda^{A}(x)\right]$.

as well as terms of $O\left(X^{n}\right) O(b-a)$ with integer $n \geq 2$ which vanish:
since $\left(\mathbf{1}, \gamma_{5}\right)=P_{L} \pm P_{R}, X \sim \theta_{L} \theta_{R}(\times$ further θ factors $)$, while $b+a \sim \theta_{L} \theta_{R}$, so $O\left(X^{2}\right) O(b-a) \sim \theta_{L}^{3} \theta_{R}^{3}(\times \ldots)=0$.
So $V^{A \prime}(x, \theta)=V^{A}(x, \theta)+C_{A B C} V^{B}(x, \theta) \Lambda^{C}(x)+\frac{I}{2} \bar{\theta} \gamma_{5} \gamma_{\mu} \theta \partial^{\mu} \Lambda^{A}(x)$,
compare superfield expansion in Wess-Zumino gauge on page 133.
Wess-Zumino gauge is gauge invariant under ordinary gauge transformations.

Last underlined equation above shows that $\delta C^{A}=\delta \omega^{A}=\delta M^{A}=\delta N^{A}=0$.

3.10.1 Gauge-invariant Lagrangians

Construct gauge-invariant Lagrangian from
Gauge-covariant spinor superfield: $2 t_{A} W_{L \alpha}^{A}(x, \theta)=\mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[2 t_{A} V^{A}(x, \theta)\right] \mathscr{D}_{+\alpha} \exp \left[-2 t_{A} V^{A}(x, \theta)\right]$
which is left-chiral because $\mathscr{D}_{-} W_{L}=0\left(\mathscr{D}_{\alpha-} \mathscr{D}_{\beta-} \mathscr{D}_{\gamma_{-}}=0\right)$, i.e.
Extended gauge transformation of $W_{L}^{A}: 2 t_{A} W_{L \alpha}^{A}(x, \theta) \rightarrow \exp \left[I t_{A} \Omega^{A}(x, \theta)\right] 2 t_{A} W_{L \alpha}^{A}(x, \theta) \exp \left[-I t_{A} \Omega^{A}(x, \theta)\right]$.
From extended gauge transformations and connection from gauge superfields on page 131,
$2 t_{A} W_{L \alpha}^{A} \rightarrow \mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[I t_{A} \Omega^{A}\right] \exp \left[2 t_{A} V^{A}\right] \exp \left[-I t_{A} \Omega^{A \dagger}\right] \mathscr{D}_{+\alpha} \exp \left[I t_{A} \Omega^{A \dagger}\right] \exp \left[-2 t_{A} V^{A}\right] \exp \left[-I t_{A} \Omega^{A}\right]$.
Use product rule for the $\mathscr{D}_{ \pm}$here. Since Ω^{A} is left-chiral, $\mathscr{D}_{-} \Omega^{A}=\mathscr{D}_{+} \Omega^{A \dagger}=0$.
Then $2 t_{A} W_{L \alpha}^{A} \rightarrow \exp \left[I t_{A} \Omega^{A}\right] \mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[2 t_{A} V^{A}\right] \exp \left[-I t_{A} \Omega^{A \dagger}\right] \exp \left[I t_{A} \Omega^{A \dagger}\right] \mathscr{D}_{+\alpha} \exp \left[-2 t_{A} V^{A}\right] \exp \left[-I t_{A} \Omega^{A}\right]$
$=\exp \left[I t_{A} \Omega^{A}\right] \mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[2 t_{A} V^{A}\right] \underline{\mathscr{D}_{+\alpha}} \exp \left[-2 t_{A} V^{A}\right] \underline{\exp \left[-I t_{A} \Omega^{A}\right]}$. Not finished, because $\underline{\mathscr{D}_{+\alpha} \exp \left[-I t_{A} \Omega^{A}\right]} \neq 0$
(however, $\mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[-I t_{A} \Omega^{A}\right]$ does vanish). But $\mathscr{D}_{-}^{T} E \mathscr{D}_{-} \mathscr{D}_{+\alpha}=\mathscr{D}_{+\alpha} \mathscr{D}_{-}^{T} E \mathscr{D}_{-}-4\left[P_{L} \not \mathscr{D}_{-}\right]_{\alpha}$, so $\mathscr{D}_{-}^{T} E \mathscr{D}_{-} \mathscr{D}_{+\alpha} \exp \left[-I t_{A} \Omega^{A}\right]=0$.
So $2 t_{A} W_{L \alpha}^{A} \rightarrow \exp \left[I t_{A} \Omega^{A}\right]\left\{\mathscr{D}_{-}^{T} E \mathscr{D}_{-} \exp \left[2 t_{A} V^{A}\right] \mathscr{D}_{+\alpha} \exp \left[-2 t_{A} V^{A}\right]\right\} \exp \left[-I t_{A} \Omega^{A}\right]$,
where all derivatives in quantity between $\{$ and $\}$ evaluated before multiplying on left / right with $\exp \left[\pm I t_{A} \Omega^{A}\right]$.

Form of $W_{L}^{A}: W_{L}^{A}(x, \theta)=\lambda_{L}^{A}\left(x_{+}\right)+\frac{1}{2} \gamma^{\mu} \gamma^{\nu} \theta_{L} F_{\mu \nu}^{A}\left(x_{+}\right)+\theta_{L}^{T} E \theta_{L} \not D \lambda_{R}^{A}\left(x_{+}\right)-I \theta_{L} D^{A}\left(x_{+}\right)$.
Note $\exp \left[-2 t_{A} V^{A}(x, \theta)\right]=1-I \bar{\theta} \gamma_{5} \gamma_{\mu} \theta t_{A} V_{\mu}^{A}(x)-\frac{1}{2} \bar{\theta} \gamma_{5} \gamma^{\mu} \theta \bar{\theta} \gamma_{5} \gamma^{\nu} \theta t_{A} t_{B} V_{\mu}^{A}(x) V_{\nu}^{B}(x)+2 I \bar{\theta} \gamma_{5} \theta t_{A} \bar{\theta} \lambda^{A}(x)+\frac{1}{2}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} t_{A} D^{A}(x)$.
After performing all $\mathscr{D}_{ \pm}$in gauge-covariant spinor superfield on page 135 , choose gauge where $V_{\mu}^{A}(X)=0$ at given $x=X$, gives $W_{L}^{A}(X, \theta)=\lambda_{L}^{A}\left(X_{+}\right)+\frac{1}{2} \gamma^{\mu} \gamma^{\nu} \theta_{L}\left(\partial_{\mu} V_{\nu}^{A}\left(X_{+}\right)-\partial_{\nu} V_{\mu}^{A}\left(X_{+}\right)\right)+\theta_{L}^{T} E \theta_{L} \not \partial \lambda_{R}^{A}\left(X_{+}\right)-I \theta_{L} D^{A}\left(X_{+}\right)$. Then convert to gauge covariant form consistent with this, i.e. $\partial_{\mu} V_{\nu}^{A}-\partial_{\nu} V_{\mu}^{A} \rightarrow F_{\mu \nu}^{A}$ (the non-Abelian field strength of page 67) and $\not \square \rightarrow \not D$.

Alternative form of $W_{L}^{A}: \mathscr{D}_{+} E W_{L}^{A}=\mathscr{D}_{-} E W_{R}^{A}$ with $\not D \rightarrow \not \partial, \epsilon^{\mu \nu \rho \sigma} \partial_{\rho} f_{\mu \nu}=0$.
Note W_{R}^{A} from W_{L}^{A} via $x_{+} \rightarrow x_{-}, R \leftrightarrow L, E \rightarrow-E$. Implies form of W_{L}^{A} above, by direct calculation.
Gauge supermultiplet Lagrangian:

$$
\mathscr{L}_{\text {gauge }}=-\frac{1}{2} \operatorname{Re}\left(\left[W_{L}^{A T} E W_{L}^{A}\right]_{\mathscr{F}}\right)=-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}-\frac{1}{2} \bar{\lambda}^{A}(D D \lambda)^{A}+\frac{1}{2} D^{A} D^{A} .
$$

From form of W_{L}^{A} above.
Additional non perturbative part: $\mathscr{L}_{\theta}=-\frac{g^{2} \theta}{16 \pi^{2}} \operatorname{Im}\left(\left[W_{L}^{A T} E W_{L}^{A}\right]_{\mathscr{F}}\right)=-\frac{g^{2} \theta}{16 \pi^{2}}\left(I \bar{\lambda}^{A} D D \gamma_{5} \lambda^{A}-\frac{1}{4} \epsilon_{\mu \nu \rho \sigma} F^{A \mu \nu} F^{A \rho \sigma}\right)$,
where g is coupling appearing in t_{A}.
Fayet-Iliopolis term: $\mathscr{L}_{\mathrm{FI}}=\xi D$, where ξ is arbitrary constant, D is for Abelian supermultiplet..

Corresponding action is supersymmetric, because $\delta D=I \bar{\alpha} \gamma_{5} \not \partial \lambda$ is derivative.

Explicit check that action from gauge supermultiplet Lagrangian $\mathscr{L}_{\text {gauge }}$ on page 136 is supersymmetric.
In $V_{\mu}^{A}(X)=0$ gauge, component field transformations on page 104 at $x=X: \delta V_{\mu}^{A}=\bar{\alpha} \gamma_{\mu} \lambda^{A}, \delta D^{A}=I \bar{\alpha} \gamma_{5} \not \lambda^{A}$, and $\delta \lambda^{A}=\left(\frac{1}{4} F_{\mu \nu}^{A}\left[\gamma^{\nu}, \gamma^{\mu}\right]+I \gamma_{5} D^{A}\right) \alpha$ where $F_{\mu \nu}^{A}=\partial_{\mu} V_{\nu}^{A}-\partial_{\nu} V_{\mu}^{A}+C_{A B C} V_{\mu}^{B} V_{\nu}^{C}$ is non-Abelian field strength of page 67. Then using $\delta\left(F_{\mu \nu}^{A} F^{A \mu \nu}\right)=2 F_{\mu \nu}^{A} \delta F^{A \mu \nu}$ etc., $\underline{\delta\left(F_{\mu \nu}^{A} F^{A \mu \nu}\right)=2 F^{A \mu \nu} \bar{\alpha}\left(\gamma_{\nu} \partial_{\mu}-\gamma_{\mu} \partial_{\nu}\right) \lambda^{A}}, \underline{\delta\left(D^{A} D^{A}\right)=2 I D^{A} \bar{\alpha} \gamma_{5} \not \lambda^{A}}$ and $\underline{\delta\left(\bar{\lambda}^{A} D_{A B} \lambda^{B}\right)=\left(\delta \bar{\lambda}^{A}\right) D_{A B} \lambda^{B}+\bar{\lambda}^{A} D_{A B} \delta \lambda^{B}+\bar{\lambda}^{A}\left(\delta D_{A B}\right) \lambda^{B}=2 \bar{\alpha}\left[\frac{1}{4} F_{\mu \nu}^{A}\left[\gamma^{\mu}, \gamma^{\nu}\right]+I \gamma_{5} D\right] \not \partial \lambda^{A}+C_{A B C} \bar{\lambda}^{A} \delta\left(V^{B}\right) \lambda^{C}}$ (we will show $C_{A B C} \bar{\lambda}^{A} \delta\left(V^{B}\right) \lambda^{C}=0$ later). For this last expression, use $\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma^{\rho}=-2 g^{\mu \rho} \gamma^{\nu}+2 g^{\nu \rho} \gamma^{\mu}-2 I \epsilon^{\mu \nu \rho \sigma} \gamma_{\sigma} \gamma^{5}$ (expand in 16 matrices on page 45, Lorentz and space inversion invariance limits this to these three terms.

1st coefficient by taking $\mu \nu \rho=121$: $\left[\gamma^{1}, \gamma^{2}\right] \gamma^{1}=-2 g^{11} \gamma^{2}$, correct because from anticommutation relations for γ^{μ} on page 44, $\gamma^{1} \gamma^{2}=-\gamma^{2} \gamma^{1}$ and $\gamma^{12}=2$. Similarly for $\mu \nu \rho=211$ to get 2nd coefficient. 3rd coefficient from $\mu \nu \rho=123$: $\left[\gamma^{1}, \gamma^{2}\right] \gamma^{3}=-2 I \epsilon^{1230} \gamma_{0} \gamma_{5}$, LHS is $\left.2 \gamma^{1} \gamma^{2} \gamma^{3}=-2 \gamma_{0} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-2 I \gamma_{0} \gamma_{5}\right)$.

So $\delta\left(\bar{\lambda}^{A} \not \partial \lambda^{A}\right)=-F^{A \mu \nu} \bar{\alpha}\left(\gamma_{\nu} \partial_{\mu}-\gamma_{\mu} \partial_{\nu}\right) \lambda^{A}-I \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{A} \bar{\alpha} \gamma_{\sigma} \gamma_{5} \partial_{\rho} \lambda^{A}+2 I D^{A} \bar{\alpha} \gamma_{5} \not \partial \lambda^{A}$. 2nd term replaceable, after integration by parts, by $I \epsilon^{\mu \nu \rho \sigma}\left(\partial_{\rho} F_{\mu \nu}^{A}\right) \bar{\alpha} \gamma_{\sigma} \gamma_{5} \lambda^{A}$, which vanishes since e.g. $\epsilon^{\mu \nu \rho \sigma} \partial_{\rho} \partial_{\mu} V_{\nu}^{A}=0$, 1st and 3rd terms cancel with $\delta\left(F_{\mu \nu}^{A} F^{A \mu \nu}\right)$ and $\delta\left(D^{A} D^{A}\right)$. Thus we are left with $C_{A B C} \bar{\lambda}^{A} \delta\left(V^{B}\right) \lambda^{C}=C_{A B C} \bar{\lambda}^{A} \gamma_{\mu} \lambda^{C} \bar{\alpha} \gamma^{\mu} \lambda^{B}=0$,
where antisymmetry of $C_{A B C}$ used in 1st step. Last step requires explicit calculation.

Lagrangian for chiral and gauge supermultiplet fields:

$$
\mathscr{L}=-\left(D_{\mu} \phi\right)_{n}^{\dagger}\left(D^{\mu} \phi\right)_{n}-\frac{1}{2} \bar{\psi}_{n L} \gamma^{\mu}\left(D_{\mu} \psi_{L}\right)_{n}+\frac{1}{2} D_{\mu} \bar{\psi}_{n L} \gamma^{\mu} \psi_{n L}-\frac{1}{2} \frac{\partial^{2} f}{\partial \phi_{n} \partial \phi_{m}} \psi_{n L}^{T} E \psi_{m L}-\frac{1}{2}\left(\frac{\partial^{2} f}{\partial \phi_{n} \partial \phi_{m}}\right)^{*}\left(\psi_{n L}^{T} E \psi_{m L}\right)^{*}
$$

$$
-V(\phi)+I \sqrt{2 \psi}_{n L}\left(t_{A}\right)_{n m} \lambda^{A} \phi_{m}-I \sqrt{2} \phi_{n}^{\dagger} \bar{\lambda}^{A}\left(t_{A}\right)_{n m} \psi_{m L}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}-\frac{1}{2} \bar{\lambda}^{A}(D D \lambda)^{A}+\frac{g^{2} \theta}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F^{A \mu \nu} F^{A \rho \sigma},
$$

where potential $V(\phi)=\frac{\partial f(\phi)}{\partial \phi_{n}}\left(\frac{\partial f(\phi)}{\partial \phi_{n}}\right)^{*}+\frac{1}{2}\left(\xi^{A}+\phi_{n}^{*}\left(t_{A}\right)_{n m} \phi_{m}\right)\left(\xi^{A}+\phi_{k}^{*}\left(t_{A}\right)_{k l} \phi_{l}\right)$.
Sum of gauge invariant \mathscr{L} for chiral supermultiplet on page 133, superpotential part of \mathscr{L} on page 113 and 3 Lagrangians on page 136 gives $\mathscr{L}=\frac{1}{2}\left[\Phi^{\dagger} \exp \left(-2 t_{A} V^{A}\right) \Phi\right]_{D}+2 \operatorname{Re}[f(\Phi)]_{\mathscr{F}}-\frac{1}{2} \operatorname{Re}\left(W_{L}^{A T} E W_{L}^{A}\right)_{\mathscr{F}}-\xi^{A} D^{A}-\frac{g^{2} \theta}{16 \pi^{2}} \operatorname{Im}\left(W_{L}^{A T} E W_{L}^{A}\right)_{\mathscr{F}}$, or explicitly (using Majorana conjugation on page 96, e.g. $\bar{\psi}_{R}=\psi^{\dagger} P_{R} \beta=\bar{\psi} P_{L}=\psi^{T} E \gamma_{5} P_{L}=\psi^{T} P_{L} E \gamma_{5}=\psi_{L}^{T} E \gamma_{5}$) $\mathscr{L}=-\left(D_{\mu} \phi\right)_{n}^{\dagger}\left(D^{\mu} \phi\right)_{n}-\frac{1}{2} \bar{\psi}_{n} \gamma^{\mu}\left(D_{\mu} \psi\right)_{n}+\mathscr{F}_{n}^{\dagger} \mathscr{F}_{n}-\operatorname{Re} \frac{\partial^{2} f}{\partial \phi_{n} \partial \phi_{m}} \psi_{n}^{T} E \psi_{m}+2 \operatorname{Re} \frac{\partial f(\phi)}{\partial \phi_{n}} \mathscr{F}_{n}-2 \sqrt{2} \operatorname{Im}\left(t_{A}\right)_{n m} \bar{\psi}_{n L} \lambda^{A} \phi_{m}$ $+2 \sqrt{2} \operatorname{Im}\left(t_{A}\right)_{m n} \bar{\psi}_{n R} \lambda^{A} \phi_{m}^{\dagger}-\phi_{n}^{\dagger}\left(t_{A}\right)_{n m} \phi_{m} D^{A}-\xi^{A} D^{A}+\frac{1}{2} D^{A} D^{A}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}-\frac{1}{2} \bar{\lambda}^{A}(D \lambda)^{A}+\frac{g^{2} \theta}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F^{A \mu \nu} F^{A \rho \sigma}$.

Then use field equations for auxiliary fields: $\mathscr{F}_{n}=-\left(\frac{\partial f(\phi)}{\partial \phi_{n}}\right)^{\dagger}$ and $D^{A}=\xi^{A}+\phi_{n}^{*}\left(t_{A}\right)_{n m} \phi_{m}$.

3.10.2 Spontaneous supersymmetry breaking in gauge theories

Unbroken SUSY vacuum: $\mathscr{F}_{n 0}=-\left[\frac{\partial f(\phi)}{\partial \phi_{n}}\right]_{\phi=\phi_{0}}=0, D_{0}^{A}=\xi^{A}+\phi_{n 0}^{*}\left(t_{A}\right)_{n m} \phi_{m 0}=0 \Longleftrightarrow V(\phi)=0$.
Can write $V=\mathscr{F}_{n}^{*} \mathscr{F}_{n}+D^{A} D^{A}>0$, so $V=0$ (if allowed) is a minimum. In this case, $\mathscr{F}_{n 0}=D_{0}^{A}=0$.
From left / right transformation on page 107 and component field transformations on page 104,
$\langle 0| \delta \psi_{L}=\delta \mathscr{F}=\delta \phi=\delta \lambda|0\rangle=0$. Argument holds in reverse.
Note: no overconstraining on $M \phi$ components: $\mathscr{F}_{n 0}=D_{0}^{A}=0$ is M conditions, not $M+D$, where D is dimensionality of group, i.e. $A=1, \ldots, D$,
because only $M-D$ conditions needed to satisfy $\mathscr{F}_{n 0}=\left.\frac{\partial f(\phi)}{\partial \phi}\right|_{\phi=\phi_{0}}=0: f(\Phi)$ invariant under extended gauge transformations on page 131, $\frac{\partial f(\Phi)}{\partial \Omega^{A}}=0=\left.\frac{\partial f(\Phi)}{\partial \Phi_{n}} \frac{\left.\partial\left(e^{l t_{B} \Omega^{B}}\right]_{n m} \Phi_{m}\right)}{\partial \Omega^{A}}\right|_{\Omega^{C}=0}=\frac{\partial f(\Phi)}{\partial \Phi_{n}}\left(I t_{A} \Phi\right)_{n}$, i.e. $\frac{\partial f(\phi)}{\partial \phi_{n}}\left(t_{A} \phi\right)_{n}=0$, which is already D conditions.

Existence of any supersymmetric field configuration \Longrightarrow unbroken SUSY vacuum.

From above, SUSY field configuration has $V=0$, which is absolute minimum so lower than V for non SUSY field configuration.
(Now let $\xi^{A}=0$.) To check vacuum is unbroken SUSY, enough to check that $\frac{\partial f(\phi)}{\partial \phi_{n}}=0$ can be satisfied.
$f(\phi)$ has no ϕ^{\dagger}, so invariant under $\phi \rightarrow e^{I \Lambda^{A} t_{A}} \phi$ with Λ^{A} complex. If $\frac{\partial f(\phi)}{\partial \phi_{n}}=0$ true for $\widetilde{\phi}$, true for $\phi^{\Lambda}=e^{I \Lambda^{A} t_{A}} \widetilde{\phi}$.
Choose Λ^{A} such that $\phi^{\Lambda \dagger} \phi^{\Lambda}$ minimum (which exists because it is real and positive), i.e. $\frac{\partial}{\partial \Lambda^{A}}\left(\phi^{\Lambda \dagger} \phi^{\Lambda}\right) \propto \phi_{n}^{\Lambda \dagger}\left(t_{A}\right)_{n m} \phi_{m}^{\Lambda}=0$,
i.e. there exists a field configuration such that $D^{A}=0$, so unbroken SUSY vacuum condition obeyed.

So break SUSY by

1. Making $\frac{\partial f}{\partial \phi}=0$ impossible (already considered on page 128)
or
2. Fayet-Iliopoulos term ξD. Simple example:

2 left-chiral $\Phi^{ \pm}$with $\mathrm{U}(1)$ quantum numbers $\pm e$,
so spinor components are left-handed parts of electron / positron.
Then only possibility is $f(\Phi)=m \Phi^{+} \Phi^{-}$,
so from V defined on page 138, $V\left(\phi^{+}, \phi^{-}\right)=m^{2}\left|\phi^{+}\right|^{2}+m^{2}\left|\phi^{-}\right|^{2}+\left(\xi+e^{2}\left|\phi^{+}\right|^{2}-e^{2}\left|\phi^{-}\right|^{2}\right)^{2}$, which cannot vanish for $\xi \neq 0$, so SUSY broken.

Note $\mathrm{U}(1)$ symmetry intact for $|\xi|<\frac{m^{2}}{2 e^{2}}$, since minimum at $\phi^{+}=\phi^{-}=0$.

Tree-level mass sum rule: $\mathscr{C}=0$, where $\mathscr{C}=\sum_{\text {fermions }} m^{2}-\sum_{\text {bosons }} m^{2}$. For unbroken/broken SUSY.
Take new scalar fields $\Delta \phi_{n}=\phi_{n}-\phi_{n 0}$. Then quadratic part of V defined on page 138 in unitarity gauge $\phi^{\dagger}\left(t_{A} \phi_{0}\right)=0$ is
$V_{\text {quad }}=\frac{1}{2}\binom{\Delta \phi}{\Delta \phi^{*}}^{\dagger} M_{0}^{2}\binom{\Delta \phi}{\Delta \phi^{*}}$, where $M_{0}^{2}=\left(\begin{array}{cc}\mathscr{M}^{*} \mathscr{M}+\left(t_{A} \phi_{0}\right)\left(t_{A} \phi_{0}\right)^{\dagger}+D_{0}^{A} t_{A} & \\ \cdots & \mathscr{M}^{\mathscr{M}^{*}}+\left(\left(t_{A} \phi_{0}\right)\left(t_{A} \phi_{0}\right)^{\dagger}\right)^{*}+D_{0}^{A} t_{A}^{T}\end{array}\right)$
(\mathscr{M} defined in tree-level expansion of V on page 114). From Lagrangian for chiral and gauge supermultiplet fields
on page 138, terms bilinear in fermion fields are $\mathscr{L}_{1 / 2}=-\frac{1}{2}\binom{\psi_{L}}{\lambda}^{T} M\binom{\psi_{L}}{\lambda}$, where $M=\left(\begin{array}{cc}\mathscr{M} & I \sqrt{2}\left(t_{A} \phi_{0}\right)^{*} \\ I \sqrt{2}\left(t_{A} \phi_{0}\right)^{*} & 0\end{array}\right)$,
so $\underline{M^{\dagger} M=\left(\begin{array}{cc}\mathscr{M}^{\dagger} \mathscr{M}+2\left(t_{A} \phi_{0}\right)\left(t_{A} \phi_{0}\right)^{\dagger} & \ldots \\ \ldots & 2 \phi_{0}^{\dagger} t_{B} t_{A} \phi_{0}\end{array}\right)}$. For gauge fields, $\mathscr{L}_{V}=-V_{\mu}^{A}\left(M_{V}^{2}\right)_{A B} V^{B \mu}$ where $\underline{\left(M_{V}^{2}\right)_{A B}=\phi_{0}^{\dagger}\left\{t_{B}, t_{A}\right\} \phi_{0}}$.
Underlined results above give $\operatorname{Tr} M_{0}^{2}=2 \operatorname{Tr}\left(\mathscr{M}^{*} \mathscr{M}\right)+\operatorname{Tr} M_{V}^{2}+2 D_{0}^{A} \operatorname{Tr} t_{A}$ and $\operatorname{Tr}\left(M^{\dagger} M\right)=\operatorname{Tr}\left(\mathscr{M}^{*} \mathscr{M}\right)+2 \operatorname{Tr} M_{V}^{2}$.
Eliminate $\operatorname{Tr}\left(\mathscr{M}^{*} \mathscr{M}\right)$ to get $\operatorname{Tr} M_{0}^{2}-2 \operatorname{Tr}\left(M^{\dagger} M\right)+3 \operatorname{Tr} M_{V}^{2}=2 D_{0}^{A} \operatorname{Tr} t_{A}$.
But trace $=\sum$ eigenvalues, so $\sum_{\text {spin } 0}$ mass $^{2}-2 \sum_{\text {spin } \frac{1}{2}}$ mass $^{2}+3 \sum_{\text {spin } 1} \operatorname{mass}^{2}=2 D_{0}^{A} \operatorname{Tr} t_{A}$.
1 spin- 3 component for scalar boson, 2 for spin- $\frac{1}{2}$ fermion, 3 for spin- 1 gauge boson,
i.e. $\sum_{\text {fermions }} m^{2}-\sum_{\text {bosons }} m^{2}=2 D_{0}^{A} \operatorname{Tr} t_{A}$

In non-Abelian theories, $\operatorname{Trt}_{A}=0$. Can have $\operatorname{Trt}_{A} \neq 0$ for $\mathrm{U}(1)$ but gives graviton-graviton- $\mathrm{U}(1)$ anomaly.
\mathscr{C} is coefficient of quadratic divergence in vacuum energy, i.e. breaking SUSY does not affect UV structure.

4 The Minimally Supersymmetric Standard Model

4.1 Left-chiral superfields

Assign left-handed SM fermions to left-chiral superfields according to table 4.1.1.
Table 4.1.1: MSSM equivalent of table 2.9.1 on page 68 , for the left-chiral superfields. Supermultiplets for e.g. U are written u_{L} for the left-handed up quark and \tilde{u}_{L} for its scalar superpartner, the up squark. Likewise for \bar{U} we write u_{R}^{\dagger} and \tilde{u}_{R}^{\dagger}.

Names	Label	Representation under $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$
(S)quarks	$Q=(U, D)$	$\left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right)$
	\bar{U}	$\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{2}{3}\right)$
	\bar{D}	$\left(\overline{\left.\mathbf{3}, 1, \frac{1}{3}\right)}\right.$
(S)leptons	$L=(N, E)$	$\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right)$
	\bar{E}	$(\mathbf{1}, \mathbf{1}, 1)$

Baryon / lepton number violating terms:
$\left[Q_{a}^{K}\left(\epsilon L^{M}\right)_{a} \bar{D}^{N}\right]_{\mathscr{F}}=\left[\left(D^{K} N^{M}-U^{K} E^{M}\right) \bar{D}^{N}\right]_{\mathscr{F}},\left[\left(E^{K} N^{M}-N^{K} E^{M}\right) \bar{E}^{N}\right]_{\mathscr{F}},\left[\bar{D}^{K} \bar{D}^{M} \bar{U}^{N}\right]_{\mathscr{F}}$,
$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ invariant terms not in SM ,
allows proton decay $p \rightarrow \pi^{0}+e^{+}$in \sim minutes, while experiment gives $>10^{32}$ years.
Relevant processes are $u_{R} d_{R} \rightarrow\left(\tilde{s}_{R}^{*}\right.$ or $\left.\tilde{b}_{R}^{*}\right) \rightarrow \bar{e}_{L} \bar{u}_{L}$ and $u_{L} \rightarrow u_{L}$. (No $u_{R} d_{R} \rightarrow \tilde{d}_{R}^{*}$: coupling is $\lambda_{K M N} \bar{D}^{K} \bar{D}^{M} \bar{U}^{N}$ with $\lambda_{K M N}$ antisymmetric in $K M$ since $\bar{D}^{K} \bar{D}^{M}$ antisymmetric in colour indices to get colour singlet coupling.)

Rule out some / all baryon lepton number violating terms on page 143 by symmetry, e.g.:
1.) Rule out all by baryon number (B) and lepton number (L) assignments

$$
B_{U, \bar{U}}=B_{D, \bar{D}}= \pm \frac{1}{3}, L_{U, \bar{U}}=L_{D, \bar{D}}=0, B_{N, \bar{N}}=B_{E, \bar{E}}=0, L_{N, \bar{N}}=L_{E, \bar{E}}= \pm 1, B_{\theta_{L}}=B_{\theta_{R}}=L_{\theta_{L / R}}=0
$$

Or rule out some by requiring only conservation of linear combination, e.g. $L, B, B-L$ etc.
2.) Rule out $\left[\bar{D}^{K} \bar{D}^{M} \bar{U}^{N}\right]_{\mathscr{F}}$ by $L_{N}=L_{E}=0, L_{U}=L_{D}=L_{\bar{U}}=L_{\bar{D}}=-1, L_{\bar{E}}=-2$.
"Conventional" L for quarks, leptons by taking $L_{\theta_{L / R}}= \pm 1 . L$ for squarks, sleptons is then unconventional.

But continuous global symmetries are dubious in string theories.
3.) Rule out all by R parity, a discrete global symmetry, $=1$ for SM particles and $=-1$ for their superpartners,
i.e. $\Pi_{R}=(-1)^{2 s}(-1)^{3(B-L)}$. Lightest SUSY particle (LSP) (lightest particle with $\Pi_{R}=-1$) completely stable.

Cannot decay into other $\Pi_{R}=-1$ particles (heavier), or into $\Pi_{R}=1$ particles only (violates R-parity conservation).
Colliders: sparticles produced in pairs.
Non-zero vacuum expectation values for scalar components of $N^{K} \rightarrow$ charged lepton, charge $-\frac{e}{3}$ quark masses via 1st, 2 nd terms in baryon / lepton number violating terms on page 143 , but charge $\frac{2 e}{3}$ quarks remain massless.

Spontaneous breakdown of $\mathrm{SU}(2) \times \mathrm{U}(1)$ for massive quarks, leptons, $W^{ \pm}, Z$ by Higgs superfields in table 4.1.2:
Table 4.1.2: Required Higgs superfields in the MSSM.

Names	Label	Representation under $\operatorname{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$
Higgs(ino)	$H_{1}=\left(H_{1}^{0}, H_{1}^{-}\right)$	$\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right)$
	$H_{2}=\left(H_{2}^{+}, H_{2}^{0}\right)$	$\left(\mathbf{1}, \mathbf{2}, \frac{1}{2}\right)$

Higgs-chiral superfield couplings in superpotential $[f(\Phi)]_{\mathscr{F}}:(K, M=$ generation $)$

$$
h_{K M}^{D}\left[\left(D^{K} H_{1}^{0}-U^{K} H_{1}^{-}\right) \bar{D}^{M}\right]_{\mathscr{F}}, h_{K M}^{E}\left[\left(E^{K} H_{1}^{0}-N^{K} H_{1}^{-}\right) \bar{E}^{M}\right]_{\mathscr{F}}, h_{K M}^{U}\left[\left(D^{K} H_{2}^{+}-U^{K} H_{2}^{0}\right) \bar{U}^{M}\right]_{\mathscr{F}} .
$$

E.g. last term is just $Q_{a}\left(\epsilon H_{2}\right)_{a} \bar{U}$, leads to $-G_{u}^{K M} \overline{\mathscr{D}}_{L a}^{K}{ }_{a}\left(\epsilon \phi_{H}\right)_{a}^{\dagger} u_{R}^{M}$ term in $\mathscr{L}_{\text {Higgs-fermion }}$ on page 70 .

Note second Higgs H_{2} needed for last term, because we need a ($1,2, \frac{1}{2}$) left-chiral superfield. (H_{1}^{\dagger} is $\left(\mathbf{1}, 2, \frac{1}{2}\right)$, but is right-chiral.) $\langle 0| \phi_{H_{1}^{0}}|0\rangle \neq 0$ gives mass to d-type quarks and charged leptons, $\langle 0| \phi_{H_{2}^{0}}|0\rangle \neq 0$ gives mass to u-type quarks.

In superpotential part of \mathscr{L} on page 113, fermions get mass from first term $-\frac{1}{2} \frac{\partial^{2} f(\phi)}{\partial \phi_{n} \partial \phi_{m}} \bar{\psi}_{n R} \psi_{m L}$.
So from e.g. first term of Higgs-chiral superfield couplings in superpotential $[f(\Phi)] \mathscr{F}$ above,
mass term for d^{K} from $\frac{\partial^{2} f(\phi)}{\partial d_{L}^{K} \partial d_{R}^{K}} \bar{d}_{R}^{K} d_{L}^{K}=\phi_{H_{1}^{0}} \bar{d}_{R}^{K} d_{L}^{K}$.
For more Higgs superfields, number of H_{1} and H_{2} type superfields must be equal.
Higgsinos produce $\operatorname{SU}(2)-\mathrm{SU}(2)-\mathrm{U}(1)$ anomalies: For H_{1}, anomaly $\propto \sum t_{3}^{2} y=\left(\frac{1}{2} g\right)^{2}\left(\frac{1}{2} g^{\prime}\right)+\left(-\frac{1}{2} g\right)^{2}\left(\frac{1}{2} g^{\prime}\right)=\frac{1}{2} g^{2} g^{\prime}$,
for H_{2}, anomaly $\propto \sum t_{3}^{2} y=\left(\frac{1}{2} g\right)^{2}\left(-\frac{1}{2} g^{\prime}\right)+\left(-\frac{1}{2} g\right)^{2}\left(-\frac{1}{2} g^{\prime}\right)=-\frac{1}{2} g^{2} g^{\prime}$. No anomalies from gauginos, in adjoint representation.

Most general renormalizable Lagrangian for a gauge theory with R parity or $B-L$ conserved consists of

1. sum of $\left[\Phi^{*} \exp (-V) \Phi\right]_{D}$ terms for quark, lepton and Higgs chiral superfields,
2. sum of $\left[\epsilon_{\alpha \beta} W_{\alpha} W_{\beta}\right]_{\mathscr{F}}$ for gauge superfields,
3. sum of Higgs-chiral superfield couplings in superpotential $[f(\Phi)]_{\mathscr{F}}$ on page 145 , and
4. μ term: $\mathscr{L}_{\mu}=\mu\left[H_{1}^{T} \epsilon H_{2}\right]_{\mathscr{F}}=\mu\left[H_{2}^{+} H_{1}^{-}-H_{2}^{0} H_{1}^{0}\right]_{\mathscr{F}}$.
μ has no radiative corrections due to perturbative non-renormalization theorem for \mathscr{F} term on page 123.

Gauge hierarchy problem on page 80 explicitly solved as follows:
Unbroken SUSY: 1-loop correction to Higgs mass from any particle cancelled by that particle's superpartner.
For broken SUSY, replace $\Lambda_{\mathrm{UV}}^{2}$ with $\sim \Delta$ mass 2 of supermultiplet,
so 1-loop correction to Higgs mass from top is $\frac{\left|\kappa_{t}\right|^{2}}{8 \pi^{2}} \Delta m_{s}^{2}$, where Δm_{s}^{2} is mass splitting between top and stop.
No fine-tuning if this is $\lesssim 1 \mathrm{TeV}$, so since $\left|\kappa_{t}\right|^{2} \sim 1$, stop mass is $<\sqrt{8 \pi^{2}} \sim 10 \mathrm{TeV}$.
Flavour changing processes suppressed to below experimental bounds if squark masses \sim equal,
so if gauge hierarchy problem solved by SUSY, all squark masses $<10 \mathrm{TeV}$.

4.2 Supersymmetry and strong-electroweak unification

Mentioned in grand unification subsubsection, page 76. Assume SUSY unbroken in most of range $<M_{X}$.
1-loop modifications to SM $\beta_{i}\left(g_{i}\left(\mu_{r}\right)\right)=\mu_{r} \frac{d}{d \mu_{r}} g_{i}\left(\mu_{r}\right)$ from new SUSY particles, with n_{s} Higgs chiral superfields:
$\beta_{1}=\frac{5 n_{g} g^{\prime 3}}{36 \pi^{2}} \rightarrow \frac{g^{\prime 3}}{4 \pi^{2}}\left(\frac{5 n_{g}}{6}+\frac{n_{s}}{8}\right) \Longrightarrow \frac{1}{g^{\prime 2}\left(\mu_{r}\right)}=\frac{1}{g^{\prime 2}\left(M_{X}\right)}+\frac{1}{2 \pi^{2}}\left(\frac{5 n_{g}}{6}+\frac{n_{s}}{8}\right) \ln \left(\frac{M_{X}}{\mu_{r}}\right)$
$\beta_{2}=\frac{g^{3}}{4 \pi^{2}}\left(-\frac{11}{6}+\frac{n_{g}}{3}\right) \rightarrow \frac{g^{3}}{4 \pi^{2}}\left(-\frac{9}{6}+\frac{n_{g}}{2}+\frac{n_{s}}{8}\right) \Longrightarrow \frac{1}{g^{2}\left(\mu_{r}\right)}=\frac{1}{g^{2}\left(M_{X}\right)}+\frac{1}{2 \pi^{2}}\left(-\frac{3}{2}+\frac{n_{g}}{2}+\frac{n_{s}}{8}\right) \ln \left(\frac{M_{X}}{\mu_{r}}\right)$
$\beta_{3}=\frac{g_{s}^{3}}{4 \pi^{2}}\left(-\frac{11}{4}+\frac{n_{g}}{3}\right) \rightarrow \frac{g_{s}^{3}}{4 \pi^{2}}\left(-\frac{9}{4}+\frac{n_{g}}{2}\right) \Longrightarrow \frac{1}{g_{s}^{2}\left(\mu_{r}\right)}=\frac{1}{g_{s}^{2}\left(M_{X}\right)}+\frac{1}{2 \pi^{2}}\left(-\frac{9}{4}+\frac{n_{g}}{2}\right) \ln \left(\frac{M_{X}}{\mu_{r}}\right)$.
Take $\mu_{r}=m_{Z}$, set $\sqrt{\frac{5}{3}} g^{\prime}\left(M_{X}\right)=g\left(M_{X}\right)=g_{s}\left(M_{X}\right)$, solution (where e defined on page $72, \sin ^{2} \theta_{W}$ on page 71)

1. $\sin ^{2} \theta_{W}\left(m_{Z}\right)=\frac{18+3 n_{s}+\frac{e^{2}\left(m_{Z}\right)}{\frac{s_{s}^{2}}{\left(m_{Z}\right)}}\left(60-2 n_{s}\right)}{108+6 n_{s}}$
2. $\ln \left(\frac{M_{X}}{m_{Z}}\right)=\frac{8 \pi^{2}}{e^{2}\left(m_{Z}\right)} \frac{1-\frac{8 e^{2}\left(m_{Z}\right)}{3 g_{s}^{2}\left(m_{Z}\right)}}{18+n_{s}}$.

For measured values $\sin ^{2} \theta_{W}=0.231, \frac{e^{2}\left(m_{Z}\right)}{4 \pi}=(128)^{-1}, \frac{g_{s}^{2}\left(m_{Z}\right)}{4 \pi}=0.118, m_{Z}=91.2 \mathrm{GeV}$,
equation 1. above gives $n_{s}=2$, then equation 2. above gives $M_{X}=2 \times 10^{16} \mathrm{GeV}$.

Figure 4.1: 2-loop RG evolution of inverse of $\alpha_{i}=\frac{g_{2}^{2}}{4 \pi}$ in the SM (dashed) and MSSM (solid). $\alpha_{3}\left(m_{Z}\right)$ is varied between 0.113 and 0.123 , sparticle mass thresholds between 250 GeV and 1 TeV .

4.3 Supersymmetry breaking in the MSSM

In effective MSSM Lagrangian, SUSY must be broken.
SUSY breaking terms must not reintroduce hierarchy problem.
Terms with coupling's mass dimension $\leq 0 \rightarrow\left|\kappa_{\psi}\right|^{2}-\lambda_{\phi}=O\left(\ln \Lambda_{U V}\right)$ (see page 80), so $\delta m_{H}^{2} \sim \Lambda_{U V}^{2} \ln \Lambda_{U V}$. Superrenormalizable terms (coupling's mass dimension $>0, \sim$ power of some M) $\rightarrow \delta m_{H}^{2} \sim M^{2} \ln \Lambda_{U V}$, OK provided $M \sim m_{\text {SUSY }} \lesssim 10 \mathrm{TeV}$. So SUSY breaking terms must be superrenormalizable, called soft terms.

Soft SUSY breaking R parity $/ B-L$ conserving SM invariant terms:
(Sum over $\mathrm{SU}(2), \mathrm{SU}(3)$ indices and generations K, M)

1. $\mathscr{L}_{\mathrm{SR}} \supset \sum_{S}-M_{K M}^{S 2} \phi_{S}^{K \dagger} \phi_{S}^{M}$, where $S=Q, \bar{U}, \bar{D}, L, \bar{E}$ superfields and ϕ_{S} their component scalars,
2. $\mathscr{L}_{\mathrm{SR}} \supset \sum_{X} \bar{\lambda}_{X} m_{X} \lambda_{X}$, where $X=$ gluino, wino, bino,
3. Trilinear terms: $\mathscr{L}_{\text {SR }} \supset-A_{K M}^{D} h_{K M}^{D}\left(\phi_{Q}^{K}\right)^{T} \epsilon \phi_{H_{1}} \phi_{\bar{D}}^{M}-C_{K M}^{D} h_{K M}^{D}\left(\phi_{Q}^{K}\right)^{T} \phi_{H_{2}}^{*} \phi_{\bar{D}}^{M}$

$$
\begin{aligned}
& -A_{K M}^{E} h_{K M}^{E}\left(\phi_{L}^{K}\right)^{T} \epsilon \phi_{H_{1}} \phi \frac{M}{\bar{E}}-C_{K M}^{E} h_{K M}^{E}\left(\phi_{L}^{K}\right)^{T} \phi_{H_{2}}^{*} \phi_{\bar{E}}^{M} \\
& -A_{K M}^{U} h_{K M}^{U}\left(\phi_{Q}^{K}\right)^{T} \epsilon \phi_{H_{2}} \phi \frac{M}{\bar{U}}-C_{K M}^{U} h_{K M}^{U}\left(\phi_{Q}^{K}\right)^{T} \phi_{H_{1}}^{*} \phi \frac{M}{\bar{U}}
\end{aligned}
$$

where $h_{K M}^{D, E, U}$ defined in Higgs-chiral superfield couplings in superpotential $[f(\Phi)]_{\mathscr{F}}$ on page 145,
4. $\mathscr{L}_{\mathrm{SR}} \supset-\frac{1}{2} B \mu \phi_{H_{2}}^{T} \epsilon \phi_{H_{1}}-\frac{1}{2} m_{H_{1}}^{2} \phi_{H_{1}}^{\dagger} \phi_{H_{1}}-\frac{1}{2} m_{H_{2}}^{2} \phi_{H_{2}}^{\dagger} \phi_{H_{2}}$ where μ defined in μ term on page 146.

Recall Hermitian conjugate is added to \mathscr{L}. So $\mathscr{L}_{\text {SR }} \supset-\operatorname{Re}\left\{B \mu \phi_{H_{2}}^{T} \epsilon \phi_{H_{1}}\right\}-m_{H_{1}}^{2} \phi_{H_{1}}^{\dagger} \phi_{H_{1}}-m_{H_{2}}^{2} \phi_{H_{2}}^{\dagger} \phi_{H_{2}}$.
Choose H_{1}, H_{2} superfields' phases so $B \mu$ real, positive: $\mathscr{L}_{\text {SR }} \supset-B \mu \operatorname{Re}\left\{\phi_{H_{2}}^{T} \epsilon \phi_{H_{1}}\right\}-m_{H_{1}}^{2} \phi_{H_{1}}^{\dagger} \phi_{H_{1}}-m_{H_{2}}^{2} \phi_{H_{2}}^{\dagger} \phi_{H_{2}}$

To respect approximate symmetries, choose $A_{K M}^{S}, B \sim 1$:
$A_{K M}^{S}$ for chiral symmetry: Reflected by small Yukawa coupling of light quarks.
B for Peccei-Quinn symmetry: Reflected by small μ term on page 146 .
$C_{K M}^{S}$ terms involve scalar components of left- and right-chiral superfields,
\rightarrow quadratic divergences \Longrightarrow fine-tuning and hierarchy problems.
In fact these divergences from scalar tadpole graphs which disappear into vacuum, cannot occur since no SM invariant scalars.

Note SM superpartners acquire mass even if no electroweak symmetry breaking (i.e. if SM particles massless).
$A_{K M}^{S}, B, C_{K M}^{S}$ are arbitrary and complex $\rightarrow>100$ parameters even without $C_{K M}^{S}$ terms.
But expect soft terms to arise from some underlying principle.

SUSY breaking at tree-level for 3 generations ruled out.
Tree-level mass sum rule on page 142 holds for each set of colour and charge values.
Gives e.g. $2\left(m_{d}^{2}+m_{s}^{2}+m_{b}^{2}\right) \simeq 2(5 \mathrm{GeV})^{2}=\sum$ of all masses for bosonic degrees of freedom with charge $-e / 3$.
So each squark mass is $<\sqrt{2} 5 \mathrm{GeV} \simeq 7 \mathrm{GeV}$.

Predicts squark mass(es) too small, would have effect in accurately measured $e^{+} e^{-} \rightarrow$ hadrons.
This is good, otherwise get fine-tuning: tree-level SUSY breaking would require mass parameter M in Lagrangian.
Would affect all SM masses, so M must coincidentally be \sim electroweak symmetry breaking scale $v=246 \mathrm{GeV}$.

No SUSY breaking at tree-level implies no SUSY breaking at all orders.

SUSY breaking at tree-level for ≥ 3 generations ruled out.
General argument against tree-level SUSY breaking: Consider first underlined equation on page 142.
To conserve colour and charge, only allowed non-zero D_{0}^{A} terms are for y of $\mathrm{U}(1)\left(D_{1}\right)$ and t_{3} of $\operatorname{SU}(2)\left(D_{2}\right)$.
Squarks are colour triplets, so have zero vacuum expectation values. So for $\left(\tilde{u}_{L}, \tilde{u}_{R}\right)$,
$M_{0 U}^{2}=\left(\begin{array}{cc}\mathscr{M}_{U}^{*} \mathscr{M}_{U}-g^{\prime} \frac{1}{6} D_{1}+g \frac{1}{2} D_{2} & \ldots \\ \cdots & \mathscr{M}_{U} \mathscr{M}_{U}^{*}+\frac{2}{3} g^{\prime} D_{1}\end{array}\right)$. For $\left(\tilde{d}_{L}, \tilde{d}_{R}\right), M_{0 D}^{2}=\left(\begin{array}{cc}\mathscr{M}_{D}^{*} \mathscr{M}_{D}-g^{\prime} \frac{1}{6} D_{1}-g^{\frac{1}{2}} D_{2} & \ldots \\ \ldots & \mathscr{M}_{D} \mathscr{M}_{D}^{*}-\frac{1}{3} g^{\prime} D_{1}\end{array}\right)$.
Second underlined equation on page 142 gives mass-squared matrix $\mathscr{M}_{U}^{*} \mathscr{M}_{U}$ for charge $\frac{2 e}{3}$ quarks and $\mathscr{M}_{D}^{*} \mathscr{M}_{D}$ for charge $-\frac{e}{3}$ quarks. Let $v_{x}, x=u, d$ be unit eigenvector for quark of lowest mass, i.e. $\mathscr{M}_{X}^{*} \mathscr{M}_{X} v_{x}=m_{x}^{2} v_{x}$.

Then mass ${ }^{2}$ of lightest charge $\frac{2 e}{3}$ squark $<\binom{0}{v_{u^{*}}}^{\dagger} M_{0 U}^{2}\binom{0}{v_{u} *}=m_{u}^{2}+\frac{2}{3} g^{\prime} D_{1}$,
mass 2 of lightest charge $-\frac{e}{3}$ squark $<\binom{0}{v_{d^{*}}}^{\dagger} M_{0 D}^{2}\binom{0}{v_{d^{*}}}=m_{d}^{2}-\frac{1}{3} g^{\prime} D_{1}$,
so regardless of value / sign of D_{1} there is at least one squark lighter than u or d quark.
In fact, since $D_{1} \sim m_{\text {SUSY }}^{2}$, get squark with negative mass which breaks colour and charge conservation.
Possible solution is new $\mathrm{U}(1)$ gauge superfield, so mass ${ }^{2}$ of lightest charge $\left(\frac{2 e}{3},-\frac{e}{3}\right)$ squark $<\left(m_{u}^{2}+\frac{2}{3} g^{\prime} D_{1}, m_{d}^{2}-\frac{1}{3} g^{\prime} D_{1}\right)+\tilde{g} \tilde{D}$.

Alternative breaking: Introduce new strong-force-like gauge field, asymptotically free coupling $\frac{\operatorname{simon} \text { amail.desy.de }{ }^{2}\left(\mu_{r}\right)}{8 \pi^{2}} \simeq \frac{b}{\ln \mu_{r} / m_{\text {SUSY }}}$, so $\mu_{r} \gg m_{\text {SUSY }}$ gives $\mathscr{G}\left(\mu_{r}\right) \ll 1$ (SUSY unbroken), $\mu_{r} \sim m_{\text {SUSY }}$ gives $\mathscr{G}\left(\mu_{r}\right) \sim 1$ (SUSY broken).

Allows for $m_{\text {SUSY }} \ll M_{X}$ without introducing M_{X} into theory as new mass scale.
SUSY broken either non-perturbatively or by scalar field potential with non-zero vacuum expectation value.
To get $m_{\text {SUSY }} \sim 10 \mathrm{TeV} \ll M_{X}, \mathscr{G}\left(M_{X}\right)$ does not have to be very small (no fine-tuning).
New force clearly does not interact with SM particles,
so SUSY breaking occurs via $\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle \neq 0$ in hidden sector of particles that interact via new force, communicated to observed particles by interactions felt by both hidden and observed particles, namely gravity (gravity-mediated SUSY breaking) or SM interactions (gauge-mediated SUSY breaking):

1. Gravity-mediated SUSY breaking: $m_{\text {SUSY }} \sim \frac{\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle}{M_{P}} \Longrightarrow \sqrt{\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle} \sim 10^{11} \mathrm{GeV}$. (No $C_{K M}^{S}$ terms.)

From dimensional analysis, subject to "no SUSY breaking conditions" $m_{\text {SUSY }} \rightarrow 0$ as $\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle \rightarrow 0$ or $M_{P} \rightarrow \infty$.
2. Gauge-mediated SUSY breaking: Messenger particle of mass $M_{\text {messenger couples to }\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle}$
and to MSSM particles via SM interactions (loops). Then $m_{\text {SUSY }} \sim \frac{\alpha_{i}}{4 \pi} \frac{\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle}{M_{\text {messenger }}}$
For $\sqrt{\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle} \sim M_{\text {messenger }}, \Longrightarrow \sqrt{\langle 0| \mathscr{F}_{\text {hidden }}|0\rangle} \sim 10^{5} \mathrm{GeV}$. (Very small $C_{K M}^{S}$ terms.)

Flavour blindness of above SUSY breaking mechanisms simplifies soft terms in Lagrangian at $\mu_{r}=M_{X}$.
E.g. in minimal supergravity (mSUGRA), K on page 112 , which appears in supergravity Lagrangian,
is diagonal for hidden and observed sectors, i.e. $K=\sum_{i=\text { observed, hidden }}\left|\Phi_{i}\right|^{2}$.
Gives organising principle (for mSUGRA) (recall $S=Q, \bar{D}, \bar{U}, L, \bar{E}$)
$M_{K M}^{S 2}=m_{0}^{2} \delta_{K M}, \quad m_{H_{1}}^{2}=m_{H_{2}}^{2}=m_{0}^{2}, \quad m_{\text {gluino }}=m_{\text {wino }}=m_{\text {bino }}=m_{1 / 2}, \quad A_{K M}^{S}=A_{0} \delta_{K M}, \quad C_{K M}^{S}=0$.
This or similar principle expected: small experimental upper bounds on flavour changing, $C P$ violating processes.

Flavour changing processes allowed because squark, slepton mass matrices not necessarily diagonalised
in same basis as quark, lepton mass matrices.
Most stringent limits for quarks are on $K^{0}-\bar{K}^{0}$ transitions involving $d_{L} \rightarrow$ gluino $+\tilde{d}_{L}^{K}, \tilde{d}_{L}^{K} \rightarrow$ gluino $+s_{L}$, most stringent limits for leptons are on $\mu \rightarrow e \gamma$ decays.
$\underline{C P}$ violating processes allowed due to many new phases in MSSM, can have large effect at low SM energies.
Upper bound on electric dipole moments of neutron and atoms and molecules requires $C P$ violating phases $\lesssim 10^{-2}$ or some superpartner masses $\gtrsim 1 \mathrm{TeV}$.

4.4 Electroweak symmetry breaking in the MSSM

Consider Higgs H_{1} and H_{2} superfields' scalar components $\phi_{H_{1}}=\left(\phi_{H_{1}^{0}}, \phi_{H_{1}^{-}}\right)^{T}$ and $\phi_{H_{2}}=\left(\phi_{H_{2}^{+}}, \phi_{H_{2}^{0}}\right)^{T}$.

Scalar Higgs potential: $V=\frac{g^{2}}{2}\left|\phi_{H_{1}}^{\dagger} \phi_{H_{2}}\right|^{2}+\frac{g^{2}+g^{\prime 2}}{8}\left(\phi_{H_{1}}^{\dagger} \phi_{H_{1}}-\phi_{H_{2}}^{\dagger} \phi_{H_{2}}\right)^{2}$

$$
+\left(m_{H_{1}}^{2}+|\mu|^{2}\right) \phi_{H_{1}}^{\dagger} \phi_{H_{1}}+\left(m_{H_{2}}^{2}+|\mu|^{2}\right) \phi_{H_{2}}^{\dagger} \phi_{H_{2}}+B \mu \operatorname{Re}\left(\phi_{H_{1}}^{T} \epsilon \phi_{H_{2}}\right) .
$$

From potential in Lagrangian for chiral and gauge supermultiplet fields page 138,
with $\xi^{A}=0$ and $f\left(H_{1}, H_{2}\right)=\mu H_{1}^{T} \epsilon H_{2}$ (the μ term on page 146),
together with part 4. of $\mathscr{L}_{\text {SR }}$ in soft SUSY breaking terms on page 150 .
V bounded from below: $2|\mu|^{2}+m_{H_{1}}^{2}+m_{H_{2}}^{2} \geq B \mu$.
Terms in V which are quartic in $\phi_{H_{1}}$ and $\phi_{H_{2}}$ are positive or zero. When positive, V has a minimum.
However, quartic terms vanish when $\phi_{H_{1}}=(\phi, 0)^{T}$ and $\phi_{H_{2}}=(0, \phi)^{T}$, and then $V=\left(2|\mu|^{2}+m_{H_{1}}^{2}+m_{H_{2}}^{2}\right)|\phi|^{2}-B \mu \operatorname{Re}\left(\phi^{2}\right)$, which must not go to $-\infty$ as $|\phi| \rightarrow \infty$.

Definition of vacuum: $\langle 0| \phi_{H_{2}^{+}}|0\rangle=\langle 0| \phi_{H_{1}^{-}}|0\rangle=0,\langle 0| \phi_{H_{i}^{0}}|0\rangle=v_{i}$ real,
so $\left(m_{H_{1}}^{2}+|\mu|^{2}\right) v_{1}+\frac{g^{2}+g^{\prime 2}}{4}\left(v_{1}^{2}-v_{2}^{2}\right) v_{1}-\frac{1}{2} B \mu v_{2}=0$ and $1 \leftrightarrow 2$. Around vacuum, $\phi_{H_{i}^{0}}=v_{i}+\phi_{i}$.
Define $V^{\text {neutral }}=V$ when charged $\phi_{H_{1}^{-}}=\phi_{H_{2}^{+}}=0$.
Choose minimum $\phi_{H_{2}^{+}}=0$ by $\mathrm{SU}(2)$ rotation. $\frac{\partial V}{\partial \phi_{H_{2}^{+}}}=0 \Longrightarrow \phi_{H_{1}^{-}}=0$ (or $B \mu=-\frac{g^{2}}{2} \phi_{H_{1}^{\circ}}^{\dagger} \phi_{H_{2}^{0}}^{\dagger}$, but then $v_{i}=0$).
Then $V=V^{\text {neutral }}$, where $V^{\text {neutral }}=\frac{g^{2}+g^{\prime \prime}}{8}\left(\left|\phi_{H_{1}^{0}}\right|^{2}-\left|\phi_{H_{2}^{0}}\right|^{2}\right)^{2}+\left(m_{H_{1}}^{2}+|\mu|^{2}\right)\left|\phi_{H_{1}^{0}}\right|^{2}+\left(m_{H_{2}}^{2}+|\mu|^{2}\right)\left|\phi_{H_{2}^{0}}\right|^{2}-B \mu \operatorname{Re}\left(\phi_{H_{1}^{0}} \phi_{H_{2}^{0}}\right)$.
Let stationary point of $V^{\text {neutral }}$ be at $\phi_{H_{i}^{0}}=v_{i}$, i.e. for $\phi_{H_{i}^{0}}=v_{i}+\phi_{i}$, must have $\left.\frac{\partial V^{\text {neutral }}}{\partial \phi_{i}}\right|_{\phi_{i}=0}=0$,
i.e. coefficient of term $\propto \phi_{i}$ vanishes. Gives $\left(m_{H_{1}}^{2}+|\mu|^{2}\right) v_{1}^{*}+\frac{g^{2}+g^{\prime 2}}{4}\left(v_{1}^{2}-v_{2}^{2}\right) v_{1}^{*}-\frac{1}{2} B \mu v_{2}=0$ and $1 \leftrightarrow 2$.

Last result implies v_{2} real if v_{1} real. Adjust relative phase between $\phi_{H_{1}^{0}}$ and $\phi_{H_{2}^{0}}$ so that v_{1} is real.
Parameter relations with v_{1} and $v_{2}: B \mu=m_{A}^{2} \sin 2 \beta$ where $\tan \beta=\frac{v_{2}}{v_{1}}, m_{A}^{2}=2|\mu|^{2}+m_{H_{1}}^{2}+m_{H_{2}}^{2}$, and
$m_{H_{1}}^{2}+|\mu|^{2}=\frac{1}{2} m_{A}^{2}-\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}\right) \cos 2 \beta, m_{H_{2}}^{2}+|\mu|^{2}=\frac{1}{2} m_{A}^{2}+\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}\right) \cos 2 \beta$ with $m_{Z}^{2}=\frac{1}{2}\left(g^{2}+g^{\prime 2}\right)\left(v_{1}^{2}+v_{2}^{2}\right)$
From definition of vacuum above. Compare m_{Z} here with m_{Z} on page 71 .
Limit on $\beta: 0 \leq \beta \leq \frac{\pi}{2} . \quad B \mu=m_{A}^{2} \sin 2 \beta$ above, but V bounded from below on page 157 is $m_{A}^{2} \geq B \mu$, so $0 \leq \sin 2 \beta \leq 1$.
$+\frac{1}{2} m_{A}^{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)-\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}\right) \cos 2 \beta\left(\left|\phi_{1}\right|^{2}-\left|\phi_{2}\right|^{2}\right)-m_{A}^{2} \sin 2 \beta \operatorname{Re}\left(\phi_{1} \phi_{2}\right)$.

Neutral Higgs particle masses: $m_{A}^{2}, 0, m_{H}^{2}=\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}+\sqrt{\left(m_{A}^{2}-m_{Z}^{2}\right)^{2}+4 m_{A}^{2} m_{Z}^{2} \sin ^{2} 2 \beta}\right)$, $m_{h}^{2}=\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}-\sqrt{\left(m_{A}^{2}-m_{Z}^{2}\right)^{2}+4 m_{A}^{2} m_{Z}^{2} \sin ^{2} 2 \beta}\right)$ (zero mass particle is Goldstone boson).

Real, imaginary parts of ϕ_{i} decouple in $V_{\text {quad }}^{\text {neutral }}$ (no terms like e.g. $\left.\operatorname{Re}\left(\phi_{1}\right) \operatorname{Im}\left(\phi_{2}\right)\right)$.
First two masses associated with $\operatorname{Im}(\phi)=\left(\operatorname{Im}\left(\phi_{1}\right), \operatorname{Im}\left(\phi_{2}\right)\right)$: Write $\operatorname{Im}(\phi)$ dependence of $V_{\text {quad }}^{\text {neutral }}$ as $\operatorname{Im}(\phi)^{T} M_{\operatorname{Im}(\phi)}^{2} \operatorname{Im}(\phi)$,
then $M_{\operatorname{Im}(\phi)}^{2}=\left(\begin{array}{cc}\frac{1}{2} m_{A}^{2}(1-\cos 2 \beta) & \frac{1}{2} m_{A}^{2} \sin 2 \beta \\ \frac{1}{2} m_{A}^{2} \sin 2 \beta & \frac{1}{2} m_{A}^{2}(1+\cos 2 \beta)\end{array}\right)$. Eigenvalues are m_{A}^{2} and 0 , corresponding eigenstates C odd.
So m_{A}^{2} must be positive to ensure $\phi_{i}=0$ is local minimum, i.e. that eigenvalues of $\frac{\partial^{2} V}{\partial \phi_{i} \partial \phi_{j}}$ positive. Similarly,
last two masses are eigenvalues of $M_{\operatorname{Re}(\phi)}^{2}=\left(\begin{array}{cc}\frac{1}{2} m_{A}^{2}(1-\cos 2 \beta)+\frac{1}{2} m_{Z}^{2}(1+\cos 2 \beta) & -\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}\right) \sin 2 \beta \\ -\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}\right) \sin 2 \beta & \frac{1}{2} m_{A}^{2}(1+\cos 2 \beta)+\frac{1}{2} m_{Z}^{2}(1-\cos 2 \beta)\end{array}\right)$.
Heaviest neutral scalar: $m_{H}^{2}>m_{A}^{2}, m_{Z}^{2}$. Lightest neutral scalar: $m_{h}^{2}<m_{A}^{2}, m_{Z}^{2}$.
Large top to bottom quark mass ratio suggests large $\tan \beta=\frac{v_{2}}{v_{1}} \rightarrow m_{H}^{2} \simeq \operatorname{Max}\left(m_{A}^{2}, m_{Z}^{2}\right), m_{h}^{2} \simeq \operatorname{Min}\left(m_{A}^{2}, m_{Z}^{2}\right)$.

Define $V^{\text {charged }}=V$ when $\phi_{1}=\phi_{2}=0$.

Quadratic (mass) terms in $V^{\text {charged. }}$

$$
V_{\text {quad }}^{\text {charged }}=\frac{1}{2}\left(m_{W}^{2}+m_{A}^{2}\right)\left(\left|\phi_{H_{1}^{-}}\right|^{2}(1-\cos 2 \beta)+\left|\phi_{H_{2}^{+}}\right|^{2}(1+\cos 2 \beta)+2 \sin 2 \beta \operatorname{Re}\left(\phi_{H_{1}^{-}} \phi_{H_{2}^{+}}\right)\right), \text {with } m_{W}^{2}=\frac{1}{2} g^{2}\left(v_{1}^{2}+v_{2}^{2}\right) .
$$

Compare m_{W} here with m_{W} on page 71 .

Charged Higgs particle masses: $0, m_{C}^{2}=m_{W}^{2}+m_{A}^{2}$.

$$
V_{\text {quad }}^{\text {charged }}=\left(\phi_{H_{1}^{-}}, \phi_{H_{2}^{+}}\right) M_{C}^{2}\left(\phi_{H_{1}^{-}}^{*}, \phi_{H_{2}^{+}}^{*}\right)^{T}, \text { where } M_{C}^{2}=\frac{1}{2}\left(m_{W}^{2}+m_{A}^{2}\right)\left(\begin{array}{cc}
1-\cos 2 \beta & \sin 2 \beta \\
\sin 2 \beta & 1+\cos 2 \beta
\end{array}\right) .
$$

Above masses are eigenvalues of M_{C}^{2}.
Results for neutral and charged scalar fields modified most significantly by radiative corrections from top quark, which has largest Yukawa couplings to Higgs. Most significant modification to above results are the increases

$$
m_{H}^{2}=\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}+\Delta_{t}+\sqrt{\left(\left(m_{A}^{2}-m_{Z}^{2}\right) \cos 2 \beta+\Delta_{t}\right)^{2}+\left(m_{A}^{2}+m_{Z}^{2}\right)^{2} \sin ^{2} 2 \beta}\right)
$$

$m_{h}^{2}=\frac{1}{2}\left(m_{A}^{2}+m_{Z}^{2}+\Delta_{t}-\sqrt{\left(\left(m_{A}^{2}-m_{Z}^{2}\right) \cos 2 \beta+\Delta_{t}\right)^{2}+\left(m_{A}^{2}+m_{Z}^{2}\right)^{2} \sin ^{2} 2 \beta}\right)$, where $\Delta_{t}=\frac{3 \sqrt{2} m_{t}^{4} G_{F}}{2 \pi^{2} \sin ^{2} \beta} \ln \frac{M_{\mathrm{st}}^{2}}{m_{t}^{2}}$.
By taking stop mass $M_{\text {st }}>300 \mathrm{GeV}, \tan \beta>10$, get $m_{h}>m_{Z}$.

Condition which leads to electroweak symmetry breaking: $4\left(m_{H_{1}}^{2}+|\mu|^{2}\right)\left(m_{H_{2}}^{2}+|\mu|^{2}\right) \leq(B \mu)^{2}$.
From parameter relations with v_{1} and v_{2} on page $158,4\left(m_{H_{1}}^{2}+|\mu|^{2}\right)\left(m_{H_{2}}^{2}+|\mu|^{2}\right)=m_{A}^{4} \sin ^{2} 2 \beta-m_{Z}^{2}\left(m_{Z}^{2}+2 m_{A}^{2}\right) \cos ^{2} 2 \beta$.
But $B \mu=m_{A}^{2} \sin 2 \beta$, so $4\left(m_{H_{1}}^{2}+|\mu|^{2}\right)\left(m_{H_{2}}^{2}+|\mu|^{2}\right)=(B \mu)^{2}-m_{Z}^{2}\left(m_{Z}^{2}+2 m_{A}^{2}\right) \cos ^{2} 2 \beta$, so inequality follows.
These inequalities mean that second derivative matrix of V has negative eigenvalue at $\mathrm{SU}(2)$ respecting point $\phi_{H_{1}}=\phi_{H_{2}}=0$,
i.e. V unstable (not minimum) there: Quadratic part of scalar Higgs potential on page 157 can be written as four terms
$\tilde{\phi}^{T} M_{\phi}^{2} \tilde{\phi}$, where $\tilde{\phi}$ is separately the imainary and real parts of $\left(\phi_{H_{1}^{-}}, \phi_{H_{2}^{+}}\right)$and $\left(\phi_{H_{1}^{0}}, \phi_{H_{2}^{0}}\right)$, and $M_{\phi}^{2}=\left(\begin{array}{cc}m_{H_{1}}^{2}+|\mu|^{2} & \pm \frac{1}{2} B \mu \\ \pm \frac{1}{2} B \mu & m_{H_{2}}^{2}+|\mu|^{2}\end{array}\right)$
So mass eigenvalues m^{2} obey $\left(m_{H_{1}}^{2}+|\mu|^{2}-m^{2}\right)\left(m_{H_{2}}^{2}+|\mu|^{2}-m^{2}\right)-\frac{1}{4}(B \mu)^{2}=0$, solutions are $2 m^{2}=2|\mu|^{2}+m_{H_{1}}^{2}+m_{H_{2}}^{2} \pm \sqrt{\left(2|\mu|^{2}+m_{H_{1}}^{2}+m_{H_{2}}^{2}\right)^{2}+(B \mu)^{2}-4\left(m_{H_{1}}^{2}+|\mu|^{2}\right)\left(m_{H_{2}}^{2}+|\mu|^{2}\right)}$.

Inequality above implies one of these solutions is negative.
Example: For $\tan \beta=\infty\left(\beta=\frac{\pi}{2}\right)$, parameter relations with v_{1} and v_{2} on page 158 imply $m_{H_{1}}^{2}+|\mu|^{2}>0$ and $m_{H_{2}}^{2}+|\mu|^{2}<0$, so electroweak symmetry broken.

Alternatively, radiative corrections give $\frac{d}{d \ln \mu_{r}} m_{H_{2}}^{2}=x h_{33}^{U}+\ldots\left(h_{33}^{U}\right.$ is top quark Yukawa coupling), $x>0$.
(Similarly for stop masses, smaller x.) So although $m_{H_{2}}^{2}>0$ at $\mu_{r}=M_{X}$, may have $m_{H_{2}}^{2}<(\ll) 0$ at $\mu_{r}=v$.

4.5 Sparticle mass eigenstates

Consider gauginos and higgsinos. Particles with different $\mathrm{SU}(2) \times \mathrm{U}(1)$
but same $\mathrm{U}(1)_{\text {e.m. }}$. transformation properties can mix after electroweak symmetry breaking.

Neutralinos: 4 neutral fermionic mass eigenstates $\widetilde{\chi}_{i}^{0}, i=1$ (lightest), $\ldots, 4$,
mixtures of bino, neutral wino, neutral higgsinos.
Bilinear terms in these fields appearing in Lagrangian can be written $-\frac{1}{2}\left(\lambda^{0}\right)^{T} M_{\tilde{\chi}^{0}} \lambda^{0}$, where $\lambda^{0}=\left(\lambda_{\text {bino }}, \lambda_{\text {neutralwino }}, \lambda_{H_{1}^{0}}, \lambda_{H_{2}^{0}}\right)$,

$$
M_{\tilde{\chi}^{0}}=\left(\begin{array}{cccc}
m_{\text {bino }} & 0 & -c_{\beta} s_{W} m_{Z} & s_{\beta} s_{W} m_{Z} \\
0 & m_{\text {wino }} & c_{\beta} c_{W} m_{Z} & -s_{\beta} s_{W} m_{Z} \\
-c_{\beta} s_{W} m_{Z} & c_{\beta} c_{W} m_{Z} & 0 & -\mu \\
s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & -\mu & 0
\end{array}\right)\left(s_{\beta}=\sin \beta \text { etc. }\right) . \mu \text { dependent part from } \mu \text { term on page } 146 .
$$

m_{Z} dependent part from 1. for $\Phi=H_{i}$ and $V=\mathrm{SU}(2) \times \mathrm{U}(1)$ fields after electroweak symmetry breaking on page 146.
$m_{\text {bino }}, m_{\text {wino }}$ dependent terms from SUSY breaking terms for gauginos from 2 . on page 150 .
$M_{\tilde{\chi} 0}$ symmetric, diagonalized by unitary matrix.
$\widetilde{\chi}_{1}^{0}$ can be LSP, and therefore candidate for cold dark matter.

Charginos: 4 charged fermionic mass eigenstates $\widetilde{\chi}_{i}^{ \pm}, i=1,2$, mixtures of charged winos and charged higgsinos.
Bilinear terms in these fields appearing in Lagrangian can be written $-\frac{1}{2}\left(\lambda^{+}\right)^{T} M_{\tilde{\chi}^{c}} \lambda^{-}$,
where $\lambda^{+}=\left(\lambda_{\text {charged wino }}^{+}, \lambda_{H_{2}^{+}}\right), \lambda^{-}=\left(\lambda_{\text {charged wino }}^{-}, \lambda_{H_{1}^{-}}\right), M_{\tilde{\chi}^{c}}=\left(\begin{array}{cc}m_{\text {wino }} & I \sqrt{2} m_{W} s_{\beta} \\ I \sqrt{2} m_{W} c_{\beta} & \mu\end{array}\right)$.
Define $\lambda^{c}=\left(\lambda^{+}, \lambda^{-}\right)^{T}, \mathscr{M}_{\tilde{\chi}^{c}}=\left(\begin{array}{cc}0 & M_{\tilde{\chi}^{c}}^{\dagger} \\ M_{\tilde{\chi}^{c}} & 0\end{array}\right)$, so contribution to Lagrangian including hermitian conjugate
is $-\frac{1}{2}\left(\lambda^{c}\right)^{T} \mathscr{M}_{\tilde{\chi}^{c}} \lambda^{c}$. Squared mass eigenvalues can be obtained from diagonalization of $\mathscr{M}_{\tilde{\chi}^{c}}^{2}=\left(\begin{array}{cc}M_{\tilde{\chi}^{c}}^{\dagger} M_{\tilde{\chi}^{c}} & 0 \\ 0 & M_{\tilde{\chi}^{c}} M_{\tilde{\chi}^{c}}^{\dagger}\end{array}\right)$,
gives $m_{\tilde{\chi}_{1,2}}^{2}=m_{\tilde{\chi}_{1,2}}^{2}=\frac{1}{2}\left(m_{\text {wino }}^{2}+2 m_{W}^{2}+|\mu|^{2} \pm \sqrt{\left(m_{\text {wino }}^{2}-|\mu|^{2}\right)^{2}+4 m_{W}^{4} \cos ^{2} 2 \beta+4 m_{W}^{2}\left(m_{\text {wino }}^{2}+|\mu|^{2}-2 m_{\text {wino }} \operatorname{Re}(\mu \sin 2 \beta)\right)}\right)$.
$\underline{\text { Slepton, squark }}$ mass matrix: $m_{\text {squark }}^{2}=\left(\begin{array}{cc}m_{L \text { squark }}^{2} & m_{L R s q u a r k}^{T 2} \\ m_{L R s q u a r k}^{2} & m_{R s q u a r k}^{2}\end{array}\right)$,
where $m_{L / R \text { squark, } K M}^{2}=M_{K M}^{Q / \bar{U} 2}+\left(m_{\text {quark, }, K}^{2}+m_{Z}^{2}\left(T_{3}-Q \sin ^{2} \theta_{W}\right) \cos 2 \beta\right) \delta_{K M}$ (no K sum),
$M_{K M}^{S 2}$ from 1. on page 150, $m_{\text {quark }}$ from unbroken SUSY condition $m_{\text {squark }, K K}=m_{\text {quark }, K}$ (no K sum), and term proportional to m_{Z}^{2} from Higgs-chiral superfield couplings in superpotential $[f(\Phi)]_{\mathscr{F}}$ on page 145.
$m_{L R \text { squark }, K M}^{2}=\left(A_{K M}^{U}-\delta_{K M} m_{\text {quark }} \mu \tan \beta\right) m_{\text {quark }}$.

First term from 3. on page 150, second term from $\left|\frac{\partial f}{\partial \phi_{H_{1}^{0}}}\right|^{2}$.

Further reading

Stephen P. Martin, hep-ph/9709356 Very topical (not much basics)

- helps you understand what people are talking about

Ian J. R. Aitchison, hep-ph/0505105 Complete derivations up to and including the MSSM

Michael E. Peskin, 0801.1928 [hep-ph] Recent, readable

Steven Weinberg, The Quantum Theory Of Fields III Very complete derivations, quite formal but clear

5 Supergravity

5.1 Spinors in curved spacetime

Gravity formulated in terms of integer rank matter tensors
and the metric tensor $g_{\mu \nu}$ for coordinates x_{μ} over whole of curved spacetime.

Supergravity also involves matter spinors, not generalizable to arbitrary coordinate systems.

So, describe spinor at point X using locally inertial coordinates $y_{X}^{a}(x), a=0,1,2,3$,
which transform as $y^{a} \rightarrow y^{\prime a}=\Lambda^{a}{ }_{b}(x) y^{b}$ (Lorentz transformation)
and have "flat" metric tensor $\eta_{a b}=\operatorname{diag}(1,1,1,-1)$.

Principle of equivalence \Longrightarrow action can be expressed in terms of

1. matter spinors, 2. integer rank matter tensors in $y_{X}^{a}(x)$,
and 3. transformation between locally inertial and general coordinates, described by vierbein:

Vierbein: $e^{a}{ }_{\mu}(X)=\left.\frac{\partial y_{X}^{a}(x)}{\partial x^{\mu}}\right|_{x=X}$.

Vierbein-metric tensor relation: $g_{\mu \nu}(x)=\eta_{a b} e^{a}{ }_{\mu}(x) e^{b}{ }_{\nu}(x)$.

Curved space transformation of vierbein: $e_{\mu}^{\prime a}\left(x^{\prime}\right)=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} e^{a}{ }_{\mu}(x)$.

Lorentz transformation of vierbein: $e^{a}{ }_{\mu}(x) \rightarrow \Lambda_{b}^{a}(x) e^{b}{ }_{\mu}(x)$.

A vector may be described by quantities $V^{a}(x)$
transforming as a vector under local Lorentz transformations $\left(V^{a}(x) \rightarrow \Lambda_{b}^{a}(x) V^{b}(x)\right)$
and as a scalar under general coordinate transformations,
or quantities v^{μ} which transform vice versa.
Two types of quantities related by $V^{a}=e^{a}{ }_{\mu} v^{\mu}$.
Generalize to integer rank tensors.

A spinor may be described by quantities $\psi_{\alpha}(x)$
transforming as a spinor under local Lorentz transformations $\left(\psi_{\alpha}(x) \rightarrow D_{\alpha \beta}(\Lambda(x)) \psi_{\beta}(x)\right)$
but necessarily as a scalar under general coordinate transformations.

Define covariant derivative of object ψ with a spinor index, $\mathscr{D}{ }_{\mu} \psi$, to obey

Transformation of covariant derivative: $\mathscr{D}_{\mu} \psi \rightarrow D(\Lambda) \mathscr{D}_{\mu} \psi$ under local Lorentz transformations,
$\mathscr{D}_{\mu} \psi \rightarrow \frac{\partial x^{\nu}}{\partial x^{\prime} \mu} \mathscr{D}_{\nu} \psi$ under general coordinate transformations.

Achieve this by writing

Covariant derivative of object ψ with a spinor index: $\mathscr{D}_{\mu} \psi=\psi_{; \mu}+\Omega_{\mu} \psi$,
where $\left[\Omega_{\mu}\right]_{\alpha \beta}(x)=\frac{1}{2} I\left[\mathscr{J}_{a b}\right]_{\alpha \beta} \omega_{\mu}^{a b}(x)$,
with $\mathscr{J}_{a b}$ the matrix generators of the Lorentz group and $\omega_{\mu}^{a b}(x)$ the spin connection.
and using

Choice of spin connection: $\omega_{\mu}^{a b}=g^{\nu \lambda} e^{a}{ }_{\nu} e^{b}{ }_{\lambda ; \mu}$.
Results in the transformation of covariant derivative above.

5.2 Weak field supergravity

Work in weak field limit, i.e. $e^{a}{ }_{\mu}(x) \simeq \delta_{\mu}^{a}$, then $a \rightarrow \mu$ etc.
Weak field representation: $e_{\mu \nu}(x)=\eta_{\mu \nu}+2 \kappa \phi_{\mu \nu}$, i.e. $g_{\mu \nu}(x)=\eta_{\mu \nu}+2 \kappa\left(\phi_{\mu \nu}+\phi_{\nu \mu}\right)$, where $\kappa=\sqrt{8 \pi G}$.

Infinitesimal curved space transformation: $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}(x)$.
Infinitesimal Lorentz transformation: $\Lambda_{b}{ }_{b}(x)=\delta^{a}{ }_{b}+\omega^{a}{ }_{b}(x)$.

Particle content of supergravity: spin-2 graviton $h_{\mu \nu}=\phi_{\mu \nu}+\phi_{\nu \mu}$ and spin- $\frac{3}{2}$ gravitino ψ_{μ}.
Graviton transformation: $\phi_{\mu \nu}(x) \rightarrow \phi_{\mu \nu}(x)+\frac{1}{2 \kappa}\left[-\frac{\partial \xi_{\mu}(x)}{\partial x_{\nu}}+\omega_{\mu \nu}(x)\right]$ so $h_{\mu \nu}(x) \rightarrow h_{\mu \nu}(x)+\frac{1}{\kappa}\left[-\frac{\partial \xi_{\mu}(x)}{\partial x_{\nu}}\right]$.
Follows from performing infinitessimal curved space and Lorentz transformations above.
Gravitino transformation: $\psi_{\mu}(x) \rightarrow \psi_{\mu}(x)+\partial_{\mu} \psi(x)$.
Required for low energy interactions, similar to requirement of invariance under $A^{\mu}(x) \rightarrow A^{\mu}(x)+\partial^{\mu} \alpha(x)$ found on page 55 .

Goal: Put $\phi_{\mu \nu}, \psi_{\mu}$ into one superfield, ξ_{μ}, ψ into another.

Graviton, gravitino as functions of supermultiplet components of
Metric superfield: $H_{\mu}(x, \theta)=C_{\mu}^{H}(x)-I\left[\bar{\theta} \gamma_{5}\right] \omega_{\mu}^{H}(x)-\frac{I}{2}\left[\bar{\theta} \gamma_{5} \theta\right] M_{\mu}^{H}(x)-\frac{1}{2}[\bar{\theta} \theta] N_{\mu}^{H}(x)+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \gamma_{\nu} \theta\right] V_{\mu}^{H}{ }^{\nu}(x)$

$$
-I\left[\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta}\right]\left(\lambda_{\mu}^{H}(x)+\frac{1}{2} \not \partial \omega_{\mu}^{H}(x)\right)-\frac{1}{4}\left[\bar{\theta} \gamma_{5} \theta\right]^{2}\left(D_{\mu}^{H}(x)+\frac{1}{2} \partial^{2} C_{\mu}^{H}(x)\right),
$$

This is general form of superfield on page 103, but with extra spacetime index μ.

Specifically,
Graviton, gravitino components of metric superfield $H_{\mu}: \phi_{\mu \nu}(x)=V_{\mu \nu}^{H}(x)-\frac{1}{3} \eta_{\mu \nu} V_{\lambda}^{H \lambda}(x)$,

$$
\frac{1}{2} \psi_{\mu}(x)=\lambda_{\mu}^{H}-\frac{1}{3} \gamma_{\mu} \gamma^{\rho} \lambda_{\rho}^{H}(x)-\frac{1}{3} \gamma_{\mu} \partial^{\rho} \omega_{\rho}^{H}(x)
$$

Graviton, gravitino transformations on page 168 equivalent to
Transformation of metric superfield: $H_{\mu}(x, \theta) \rightarrow H_{\mu}(x, \theta)+\Delta_{\mu}(x, \theta)$, where

Transformation superfield:

$$
\Delta_{\mu}(x, \theta)=C_{\mu}^{\Delta}(x)-I\left[\bar{\theta} \gamma_{5}\right] \omega_{\mu}^{\Delta}(x)-\frac{I}{2}\left[\bar{\theta} \gamma_{5} \theta\right] M_{\mu}^{\Delta}(x)-\frac{1}{2}[\bar{\theta} \theta] N_{\mu}^{\Delta}(x)+\frac{I}{2}\left[\bar{\theta} \gamma_{5} \gamma_{\nu} \theta\right] V_{\mu}^{\Delta \nu}(x)
$$

$$
-I\left[\left(\bar{\theta} \gamma_{5} \theta\right) \bar{\theta}\right]\left(\lambda_{\mu}^{\Delta}(x)+\frac{1}{2} \not \partial \omega_{\mu}^{\Delta}(x)\right)-\frac{1}{4}\left[\bar{\theta} \gamma_{5} \theta\right]^{2}\left(D_{\mu}^{\Delta}(x)+\frac{1}{2} \partial^{2} C_{\mu}^{\Delta}(x)\right)
$$

See later for dependence of these fields on ψ, ξ_{μ} of graviton, gravitino transformations on page 168.

Gravity-matter coupling: $\mathscr{A}_{\text {int }}=2 \kappa \int d^{4} x\left[H_{\mu} \Theta^{\mu}\right]_{D}$, where
Supercurrent from left-chiral superfields: $\Theta_{\mu}=\frac{I}{12}\left[4 \Phi_{n}^{\dagger} \partial_{\mu} \Phi_{n}-4 \Phi_{n} \partial_{\mu} \Phi_{n}^{\dagger}+\left(\overline{\mathscr{D}} \Phi_{n}^{\dagger}\right) \gamma_{\mu}\left(\mathscr{D} \Phi_{n}\right)\right]$.
Supercurrent is a superfield, contains conserved current and energy momentum tensor:
Supercurrent conservation law: $\gamma^{\mu} \mathscr{D} \Theta_{\mu}=\mathscr{D} \frac{2}{3} \operatorname{Im}\left[M \frac{\partial f(\Phi)}{\partial M}\right]$. Use the field equations $\left(\overline{\mathscr{D}}_{L} \mathscr{D}_{L}\right) \Phi_{n}=-4\left(\frac{\partial f(\Phi)}{\partial \Phi_{n}}\right)^{*}$.
M here defined as follows: Each coupling constant λ_{i} in f is written $\lambda_{i}=M^{d_{M}\left(\lambda_{i}\right)} \tilde{\lambda}_{i}$, where $\tilde{\lambda}_{i}$ dimensionless.
SUSY current from supercurrent components: $S^{\mu}=-2 \omega^{\Theta \mu}+2 \gamma^{\mu} \gamma^{\nu} \omega_{\nu}^{\Theta}$.
Note S^{μ} is alternative SUSY current on page 127.
Energy-momentum tensor from supercurrent components: $T_{\mu \nu}=-\frac{1}{2} V_{\mu \nu}^{\Theta}-\frac{1}{2} V_{\nu \mu}^{\Theta}+\eta_{\mu \nu} V_{\lambda}^{\Theta \lambda}$, obeys
Energy-momentum tensor conservation law: $\partial_{\mu} T^{\mu \nu}=0 . \quad$ Follows from supercurrent conservation law above.
Relation between energy-momentum tensor and momentum: $\int d^{3} x T^{0 \nu}=P^{\nu}$.
Follows from SUSY transformation of ω_{μ}^{Θ}, take time component and integrate over $x: I\left\{\int d^{3} x S^{0}, \bar{Q}\right\}=2 \gamma_{\nu} \int d^{3} x T^{0 \nu}$. But $\int d^{3} x S^{0}=Q$ (as in bosonic generator case), then use relation with momentum for any N on page 87 .

Constraint on transformation superfield $\Delta_{\mu}: \Delta_{\mu}=\overline{\mathscr{D}} \gamma_{\mu} \Xi$, where Ξ obeys $\frac{\text { simon@mail.desy.de }}{(\mathscr{D} \mathscr{D})(\mathscr{D} \Xi)=0 .}$
Ensures $\mathscr{A}_{\text {int }}$ in gravity-matter coupling on page 170 is invariant under transformation of metric superfield on page 169,
follows from supercurrent conservation law on page 170: Let $X=\frac{2}{3} \operatorname{Im}\left[M \frac{\partial f(\Phi)}{\partial M}\right]$.
Then $\delta \mathscr{A}_{\text {int }}=\int d^{4} x\left[\Theta^{\mu}\left(\overline{\mathscr{D}} \gamma_{\mu} \Xi\right)\right]_{D}=-\int d^{4} x\left[\left(\overline{\mathscr{D}} \Theta^{\mu}\right) \gamma_{\mu} \Xi\right]_{D}=-\int[(\overline{\mathscr{D}} X) \Xi]_{D}$.
But X is a chiral superfield, can be written $X=(\overline{\mathscr{D}} \mathscr{D}) \Omega$ where Ω is a general superfield.
So $\delta \mathscr{A}_{\text {int }}=\int d^{4} x[\Omega(\overline{\mathscr{D}} \mathscr{D})(\overline{\mathscr{D}} \Xi)]_{D}=0$.

Recall transformation parameters ξ_{μ}, ψ in graviton, gravitino transformations on page 168.
Transformation parameter components of transformation superfield:
$V_{\mu \nu}^{\Delta}+V_{\nu \mu}^{\Delta}=-\frac{1}{2 \kappa}\left[\frac{\partial \xi_{\mu}}{\partial x_{\nu}}+\frac{\partial \xi_{\nu}}{\partial x_{\mu}}-2 \eta_{\mu \nu} \frac{\partial \xi^{\lambda}}{\partial x^{\lambda}}\right], \lambda_{\mu}^{\Delta}-\frac{1}{3} \gamma_{\mu} \gamma^{\rho} \lambda_{\rho}^{\Delta}-\frac{1}{3} \gamma_{\mu} \partial^{\rho} \omega_{\rho}^{\Delta}=\frac{1}{2} \partial_{\mu} \psi$.
From constraint on transformation superfield Δ_{μ} on page 171, and graviton, gravitino transformations on page 168.
Further constraints on components of transformation superfield: $-\frac{1}{2} \epsilon^{\nu \mu \kappa \sigma} \partial_{\kappa} V_{\nu \mu}^{\Delta}=D^{\Delta \sigma}+\partial^{\sigma} \partial^{\rho} C_{\rho}^{\Delta}$, $\partial^{\mu} M_{\mu}^{\Delta}=\partial^{\mu} N_{\mu}^{\Delta}=0$.

Again, from constraint on transformation superfield Δ_{μ} on page 171.
Auxiliary fields: $b^{\sigma}=D^{H \sigma}+\frac{1}{2} \epsilon^{\nu \mu \kappa \sigma} \partial_{\kappa} V_{\nu \mu}^{H}+\partial^{\sigma} \partial^{\rho} C_{\rho}^{H}, s=\partial^{\mu} M_{\mu}^{H}, p=\partial^{\mu} N_{\mu}^{H}$, invariant.
From further constraints on components of transformation superfield above.

Choose $C_{\mu}^{H}=V_{\mu \nu}^{H}-V_{\nu \mu}^{H}=\phi_{\mu \nu}-\phi_{\nu \mu}=\omega_{\nu}^{H}=0$. Then $h_{\mu \nu}=2 \phi_{\mu \nu}$.
Can be done by suitable choice of $C_{\mu}^{\Delta}, V_{\mu \nu}^{\Delta}-V_{\nu \mu}^{\Delta}, \omega_{\nu}^{\Delta}$ in transformation of metric superfield on page 169 .

To summarize, components of superfields are:

$$
\Theta_{\mu} \ni T^{\kappa \sigma}, S^{\sigma}, \mathscr{R}_{\sigma}, \mathscr{M}, \mathscr{N}, \quad H_{\mu} \ni h_{\kappa \sigma}, \psi_{\sigma}, b^{\sigma}, s, p, \quad \text { where } \mathscr{R}^{\mu}=2 C^{\Theta \mu}, M_{\mu}^{\Theta}=\partial_{\mu} \mathscr{M}, N_{\mu}^{\Theta}=\partial_{\mu} \mathscr{N}
$$

Gravity-matter coupling in terms of components: $\mathscr{A}_{\text {int }}=\kappa \int d^{4} x\left[T^{\kappa \sigma} h_{\kappa \sigma}+\frac{1}{2} \bar{S}^{\sigma} \psi_{\sigma}+\mathscr{R}_{\sigma} b^{\sigma}-2 \mathscr{M} s-2 \mathscr{N} p\right]$

For dynamic part of gravitational action, use:
Einstein superfield $E_{\mu}: C_{\mu}^{E}=b_{\mu}, \omega_{\mu}^{E}=\frac{3}{2} L_{\mu}-\frac{1}{2} \gamma_{\mu} \gamma^{\nu} L_{\nu}, M_{\mu}^{E}=\partial_{\mu} s, N_{\mu}^{E}=\partial_{\mu} p$,

$$
V_{\mu \nu}^{E}=-\frac{3}{2} E_{\mu \nu}+\frac{1}{2} \eta_{\mu \nu} E_{\rho}^{\rho}+\frac{1}{2} \epsilon_{\nu \mu \sigma \rho} \partial^{\sigma} b^{\rho}, \lambda_{\mu}^{E}=\partial_{\mu} \gamma^{\nu} \omega_{\nu}^{E}-\not \partial \omega_{\mu}^{E}, D_{\mu}^{E}=\partial_{\mu} \partial^{\nu} b_{\nu}-\partial^{2} b_{\mu}, \text { where } L^{\nu}=I \epsilon^{\nu \mu \kappa \rho} \gamma_{5} \gamma_{\mu} \partial_{\kappa} \psi_{\rho},
$$

and linearized Einstein tensor $E_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \partial_{\nu} h_{\lambda}^{\lambda}+\partial^{2} h_{\mu \nu}-\partial_{\mu} \partial^{\lambda} h_{\lambda \nu}-\partial_{\nu} \partial^{\lambda} h_{\lambda \mu}-\eta_{\mu \nu} \partial^{2} h_{\lambda}^{\lambda}+\eta_{\mu \nu} \partial^{\lambda} \partial^{\rho} h_{\lambda \rho}\right)$

$$
=\frac{1}{2 \kappa}\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right) .
$$

Dynamic part of gravitational Lagrangian: $\mathscr{L}_{E}=\frac{4}{3}\left[E_{\mu} H^{\mu}\right]_{D}=E_{\mu \nu} h^{\mu \nu}-\frac{1}{2} \bar{\psi}_{\mu} L^{\mu}-\frac{4}{3}\left(s^{2}+p^{2}-b_{\mu} b^{\mu}\right)$.
Invariant under transformation of metric superfield on page 169.

Now put together matter Lagrangian \mathscr{L}_{M}, and \mathscr{L}_{E} and integrand of $\mathscr{A}_{\text {int }}$ above and eliminate auxiliary fields:
Lagrangian of nature: $\mathscr{L}=\mathscr{L}_{M}+E_{\mu \nu} h^{\mu \nu}-\frac{1}{2} \bar{\psi}_{\mu} L^{\mu}+\kappa\left[T^{\kappa \sigma} h_{\kappa \sigma}+\frac{1}{2} \bar{S}^{\sigma} \psi_{\sigma}\right]+\frac{3}{4} \kappa^{2}\left(\mathscr{M}^{2}+\mathscr{N}^{2}-\frac{1}{4} \mathscr{R}_{\mu} \mathscr{R}^{\mu}\right)$.
Field equations give $s=-6 \kappa \mathscr{M} / 8, p=-6 \kappa \mathscr{N} / 8, b_{\mu}=-6 \kappa \mathscr{R}_{\mu} / 16$.
Everything except \mathscr{L}_{M} is of order κ^{2}.

Vacuum energy density: $\rho_{\mathrm{VAC}}=-\mathscr{L}_{\mathrm{VAC}}=-\mathscr{L}_{\mathrm{M} V A C}-\frac{3}{4} \kappa^{2}\left(\mathscr{M}^{2}+\mathscr{N}^{2}\right)$.
Only s and p can acquire vacuum expectation values.

Solution to Einstein field equations (ρ_{VAC} uniform) for $\rho_{\mathrm{VAC}} \gtrless 0$ is de Sitter / anti de Sitter space: spacetime embedded in 5-D space with $x_{5}^{2} \pm \eta_{\mu \nu} x^{\mu} x^{\nu}=R^{2}$ and $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu} \pm d x_{5}^{2}$ for $\rho_{\mathrm{VAC}} \gtrless 0$. $\rho_{\mathrm{VAC}}<0$ corresponds to $\mathrm{O}(3,2)$, which includes $N=1$ SUSY, but $\rho_{\mathrm{VAC}}>0$ corresponds to $\mathrm{O}(4,1)$, which excludes unbroken $N=1$ SUSY.

In unbroken SUSY, $\mathscr{L}_{\mathrm{M} \text { VAC }}=0$ so from vacuum energy density above, $\rho_{\mathrm{VAC}}<0$.
$\rho_{\mathrm{VAC}}<0$ is unstable. However, anti de Sitter space cannot form
since positive energy $S_{1}>\left|\rho_{\mathrm{VAC}}\right|$ is needed for its surface tension.

Local supersymmetry: α in definition of superfield on page 101 becomes dependent on x.
Only change is to matter action: $\delta \int d^{4} x \mathscr{L}_{M}=-\int d^{4} x \bar{S}^{\mu}(x) \partial_{\mu} \alpha(x)$ (usual definition of current). Cancelled by term $\kappa \int d^{4} x \frac{1}{2} \bar{S}^{\sigma} \psi_{\sigma}$ in gravity-matter coupling in terms of components on page 172 if SUSY transformation of gravitino modified to: $\delta \psi_{\mu} \rightarrow \delta \psi_{\mu}+\frac{2}{\kappa} \partial_{\mu} \alpha$.

But $\psi_{\mu} \rightarrow \psi_{\mu}+\frac{2}{\kappa} \partial_{\mu} \alpha$ is of same form as gravitino transformation on page 168,
i.e. leaves term $-\frac{1}{2} \bar{\psi}_{\mu} L^{\mu}$ in dynamic part of gravitational Lagrangian \mathscr{L}_{E} on page 173 unchanged.

So supersymmetric gravity is locally supersymmetric.

5.3 Supergravity to all orders

Lagrangian of nature (page 173) not supersymmetric at $O(\kappa)$ (from matter - gravity supermultiplet interaction).
Solution: keep adding terms of higher order in κ to SUSY transformations until SUSY, local Lorentz and general coordinate transformations form closed algebra, then keep adding terms to action till it is invariant under all these transformations.

$$
\text { Define } \mathscr{D}_{\mu}=\partial_{\mu}+\frac{1}{8}\left[\gamma_{a}, \gamma_{b}\right] \omega_{\mu}^{a b}, \omega_{\mu}^{a b}=e_{\lambda}^{a} e^{b}{ }_{\nu ; \mu} g^{\lambda \nu}+\frac{\kappa^{2}}{4}\left[e^{b}{ }_{\nu}\left(\bar{\psi}_{\mu} \gamma^{a} \psi^{\nu}\right)+e_{\nu}^{a} e^{b}{ }_{\rho}\left(\bar{\psi}_{\nu} \gamma_{\mu} \psi^{\rho}\right)-e^{a}{ }_{\nu}\left(\bar{\psi}_{\mu} \gamma^{b} \psi^{\nu}\right)\right],
$$

This is the covariant derivative on page 167, with a gravitino-dependent term added to the spin connection, and we have used $\left[\mathscr{J}_{a b}\right]_{\alpha \beta}=-\frac{I}{4}\left[\gamma_{a}, \gamma_{b}\right]$. in the Dirac representation. $\gamma_{\mu}=e^{a}{ }_{\mu} \gamma_{a}, e=\sqrt{\operatorname{Det} g}, L^{\mu}=I \gamma_{5} \gamma_{\nu} D_{\rho} \psi_{\sigma} \epsilon^{\mu \nu \rho \sigma}$.

Local SUSY transformation of gravity: $\delta \psi_{\mu}=\frac{2}{\kappa} \mathscr{D}_{\mu} \alpha+2 I \gamma_{5}\left(b_{\mu}-\frac{1}{3} \gamma_{\mu} \gamma_{\rho} b^{\rho}\right) \alpha+\frac{2}{3} \gamma_{\mu}\left(s-I \gamma_{5} p\right) \alpha$,

$$
\delta s=\frac{1}{4 e}\left(\bar{\alpha} \gamma_{\mu} L^{\mu}\right)+\frac{\kappa}{2}\left(\bar{\alpha}\left[I \gamma_{5} b^{\nu}-s \gamma^{\nu}-I p \gamma_{5} \gamma^{\nu}\right] \psi_{\nu}\right), \delta p=-\frac{I}{4 e}\left(\bar{\alpha} \gamma_{5} \gamma_{\mu} L^{\mu}\right)+\frac{\kappa}{2}\left(\bar{\alpha}\left[b^{\nu}+I s \gamma_{5} \gamma^{\nu}-p \gamma^{\nu}\right] \psi_{\nu}\right)
$$

$$
\delta b_{\mu}=\frac{3 I}{4 e}\left(\bar{\alpha} \gamma_{5}\left(L_{\mu}-\frac{1}{3} \gamma_{\mu} \gamma_{\rho} L^{\rho}\right)\right)+\frac{\kappa}{2} b_{\nu}\left(\bar{\alpha} \gamma^{\nu} \psi_{\mu}\right)+\frac{I \kappa}{2}\left(\bar{\psi}_{\mu} \gamma_{5}\left(s-I \gamma_{5} p\right) \alpha\right)-\frac{I \kappa}{4} \epsilon_{\mu \nu \kappa \sigma} b^{\nu}\left(\bar{\alpha} \gamma_{5} \gamma^{\kappa} \psi^{\sigma}\right), \delta e^{a}=\kappa\left(\bar{\alpha} \gamma^{a} \psi_{\mu}\right)
$$

Action for pure supergravity: $I_{\text {SUGRA }}=\int d^{4} x\left[-\frac{e}{2 \kappa^{2}} R-\frac{1}{2} \bar{\psi}_{\mu} L^{\mu}-\frac{4 e}{3}\left(s^{2}+p^{2}-b_{\mu} b^{\mu}\right)\right]$.

$$
s=p=b_{\mu}=0 \text { gives action in absence of matter. }
$$

Vierbein curvature tensor from spin connection: $R_{\mu \nu}^{a b}=\omega_{\mu, \nu}^{a b}-\omega_{\nu, \mu}^{a b}+\omega_{\nu}^{a c} \omega_{\mu c}^{b}-\omega_{\mu}^{a c} \omega_{\nu c}^{b}$.
Vierbein and Riemann-Christoffel curvature tensors: $R_{\mu \nu}^{a b}=e^{a}{ }_{k} e^{b}{ }_{\lambda} R_{\mu \nu}{ }^{\kappa \lambda}$.

For matter superfields, first consider general scalar superfield:
First we define
Covariant derivatives: $\mathscr{D}_{a} C=e_{a}^{\mu}\left[\partial_{\mu} C-\frac{I \kappa}{2}\left(\bar{\psi}_{\mu} \gamma_{5} \omega\right)\right]$,

$$
\mathscr{D}_{a} \omega=e_{a}^{\mu}\left[\partial_{\mu} \omega+\frac{1}{8} \omega_{\mu}^{c b}\left[\gamma_{c}, \gamma_{b}\right] \omega-I \kappa b_{\mu} \gamma_{5} \omega-\frac{\kappa}{2}\left(V-I \gamma_{5} \not \partial C-M+I \gamma_{5} N\right) \psi_{\mu}\right]
$$

$\mathscr{D}_{a} \lambda=e_{a}^{\mu}\left[\partial_{\mu} \lambda+\frac{1}{8} \omega_{\mu}^{c b}\left[\gamma_{c}, \gamma_{b}\right] \lambda+I \kappa b_{\mu} \gamma_{5} \lambda+\frac{\kappa}{8}\left[\gamma_{b}, \gamma_{c}\right] \psi_{\mu} F_{b c}-\frac{I \kappa}{2} \gamma_{5} D \psi_{\mu}\right]$,
$F_{a b}=e_{a}^{\mu} e_{b}^{\nu}\left[\partial_{\mu} V_{\nu}+\frac{\kappa}{2} \partial_{\mu}\left(\bar{\psi}_{\nu} \omega\right)-\frac{\kappa}{2}\left(\bar{\psi}_{\mu} \gamma_{\nu} \lambda\right)\right]-a \leftrightarrow b$,
then

Local SUSY transformation of scalar supermultiplet:

$$
\delta C=I\left(\bar{\alpha} \gamma_{5} \omega\right), \delta \omega=\left[-I \gamma_{5} \not D C-M+I \gamma_{5} N+V\right] \alpha,
$$

$$
\delta M=-(\bar{\alpha}[\lambda+\not D \omega])+\frac{2 \kappa}{3}\left(\bar{\alpha}\left[s-I \gamma_{5} p+I \gamma_{5} \not b\right] \omega\right), \delta N=I\left(\bar{\alpha} \gamma_{5}[\lambda+\not D \omega]\right)+\frac{2 I \kappa}{3}\left(\bar{\alpha}\left[s-I \gamma_{5} p+I \gamma_{5} \not b\right] \gamma_{5} \omega\right)
$$

$$
\delta V_{a}=\left(\bar{\alpha} \gamma_{a} \lambda\right)+\left(\bar{\alpha} \mathscr{D}_{a} \omega\right)+\frac{\kappa}{3}\left(\bar{\alpha}\left[s-I \gamma_{5} p+I \gamma_{5} \not b\right] \gamma_{a} \omega\right), \delta \lambda=-\frac{1}{4}\left[\gamma^{a}, \gamma^{b}\right] \alpha F_{a b}+I D \gamma_{5} \alpha, \delta D=I\left(\bar{\alpha} \gamma_{5} \mathscr{D} \lambda\right)
$$

Chiral superfield: $\lambda=D=0, V_{\nu}+\frac{1}{2} \kappa\left(\bar{\psi}_{\nu} \omega\right)=\partial_{\nu} Z$.

Compare with definition of chiral superfield on page 106.
From local SUSY transformation of scalar supermultiplet on page $178, F_{a b}=0$ so $\delta \lambda=0$, and $\mathscr{D}_{a} \lambda=0$ so $\delta D=0$.
Finally $\delta\left[V_{\nu}+\frac{1}{2} \kappa\left(\bar{\psi}_{\nu} \omega\right)\right]=\partial_{\nu}(\bar{\alpha} \omega)$.

Otherwise, define left-chiral supermultiplet as on page 106.

Local SUSY transformation of left-chiral supermultiplet: $\delta \phi=\sqrt{2}\left(\bar{\alpha} \psi_{L}\right)$,

$$
\delta \psi_{L}=\sqrt{2}(\not \partial \phi) \alpha_{R}-\kappa \gamma^{\mu}\left(\bar{\psi}_{\mu} \psi_{L}\right) \alpha_{R}+\sqrt{2} \mathscr{F} \alpha_{L}, \delta \mathscr{F}=\sqrt{2}\left(\bar{\alpha} \not \supset \psi_{L}\right)-\frac{2 \kappa}{3}\left(\bar{\alpha}[s-I p-I \not b] \psi_{L}\right)
$$

From local SUSY transformation of scalar supermultiplet on page 178.
Recall $\omega=-I \gamma_{5} \psi$ so $\mathscr{D} \psi_{L}$ from $\mathscr{D} \omega$ from covariant derivatives on page 178.
D and \mathscr{F} terms not locally supersymmetric.
Instead use
Modified D-term: $[S]_{\text {modified } D}=e\left[D^{S}-\frac{I \kappa}{2}\left(\bar{\psi}^{\mu} \gamma_{\mu} \gamma_{5} \lambda^{S}\right)+\frac{4 \kappa}{3}\left[-s N^{S}+p M^{S}-b^{\mu} V_{\mu}^{S}\right]\right.$
$\left.-\frac{I \kappa}{3}\left(\overline{\omega^{S}} \gamma_{5} \not \subset\right)-\frac{\kappa^{2}}{4} \epsilon^{\mu \rho \sigma \tau} V_{\sigma}^{S}\left(\bar{\psi}_{\rho} \gamma_{\tau} \psi_{\mu}\right) \frac{\kappa^{2}}{8} \epsilon^{\mu \rho \sigma \tau}\left(\overline{\omega^{S}} \psi_{\sigma}\right)\left(\bar{\psi}_{\rho} \gamma_{\tau} \psi_{\mu}\right)\right]-\frac{2 \kappa^{2}}{3} C^{S} \mathscr{L}_{\text {SUGRA }}$
and
Modified \mathscr{F}-term: $[X]_{\text {modified }} \mathscr{F}=e\left[\mathscr{F}^{X}+\frac{\kappa}{\sqrt{2}}\left(\bar{\psi}_{\mu R} \gamma^{\mu} \psi_{L}^{X}\right)+\frac{\kappa^{2}}{4}\left(\bar{\psi}_{\mu R}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi_{\nu R}\right) \phi^{X}+2 \kappa(s-I p) \phi^{X}\right]$
Then
Local SUSY Lagrangian with matter: $\mathscr{L}=\mathscr{L}_{\text {SUGRA }}+\frac{1}{2}\left[K\left(\Phi, \Phi^{*}\right)\right]_{\text {modified } D}+2 \operatorname{Re}[f(\Phi)]_{\text {modified }} \mathscr{F}$.
Compare with supersymmetric Lagrangian from chiral superfields on page 111.

Consider other possibilities to add to the Lagrangian.

Supermultiplet \mathbf{I} with $C=1$, all other fields zero: $[\mathbf{I}]_{\text {modified } D}=-\frac{2 \kappa^{2}}{3} \mathscr{L}_{\text {SUGRA }}$, i.e. nothing new.

Left-chiral supermultiplet \mathbf{I} with $\phi=1$, all other fields zero: $\operatorname{Re}\left([\mathbf{I}]_{\text {modified }} \mathscr{F}\right)=e\left[\frac{\kappa^{2}}{4}\left(\bar{\psi}_{\mu}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi_{\nu}\right)+4 \kappa s\right]$.

Gives gravitino mass $m_{g}=c \kappa^{2}$ and

Vacuum energy density: $-3 \kappa^{2} c^{2}$.

Add $c \int d^{4} x \operatorname{Re}\left([\mathbf{I}]_{\text {modified }} \mathscr{F}\right)$ to action for pure supergravity on page 177 , minimize with respect to s, p, b^{μ}.
Then $s=3 c \kappa / 2, p=b^{\mu}=0$, so $c \int d^{4} x \operatorname{Re}\left([\mathbf{I}]_{\text {modified }} \mathscr{F}\right)=3 \kappa^{2} c^{2} \int d^{4} x e$.

Can be used to cancel positive vacuum energy density ρ_{VAC} due to SUSY breaking, making vacuum Lorentz-invariant, which fixes the relation between gravitino mass m_{g} and ρ_{VAC} to $m_{g}=\sqrt{8 \pi G \rho_{\mathrm{VAC}} / 3}$.

Let $\tilde{g}_{\mu \nu}=\left(1-\kappa^{2} K / 3\right) g_{\mu \nu}$ (called a Weyl transformation).
Let $\tilde{R}_{\mu \nu}$ be the curvature tensor calculated using metric $\tilde{g}_{\mu \nu}, \tilde{e}=\sqrt{\operatorname{Det} \tilde{g}}$.

We define the modified Kahler potential d via $1-\frac{\kappa^{2}}{3} d=\exp \left(-\frac{\kappa^{2} d}{3}\right)$, then define $g_{n m}=\frac{\partial^{2} d}{\partial \phi_{n} \partial \phi_{m}^{*}}, L_{m}=\frac{\partial f}{\partial \phi_{m}}+\kappa^{2} f \frac{\partial d}{\partial \phi_{m}}$ and the potential $V=\exp \left(\kappa^{2} d\right)\left[\left(g^{-1}\right)_{n m} L_{m} L_{n}^{*}-3 \kappa^{2}|f|^{2}\right]$.

Bosonic part of local SUSY Lagrangian with matter: $\mathscr{L}_{\text {bosonic }} / \tilde{e}=-\frac{1}{2 \kappa^{2}} \tilde{R}_{\mu}^{\mu}-g_{n m} D_{\mu} \phi_{n} D^{\mu} \phi_{m}^{*}-V$.
From local SUSY Lagrangian with matter on page 180, but with gauge fields included.
Modification with gauge fields: $V \rightarrow V+\frac{1}{2} \operatorname{Re}\left(f^{-1}\right)_{A B} \frac{\partial d}{\partial \phi_{n}} t_{n m}^{A} \phi_{m}\left(\frac{\partial d}{\partial \phi_{k}} t_{k l}^{B} \phi_{l}\right)^{*}$
and $\mathscr{L}_{\text {bosonic }} / \tilde{e} \rightarrow \mathscr{L}_{\text {bosonic }} / \tilde{e}-\frac{1}{4} \operatorname{Re}\left(f_{A B} F_{\mu \nu}^{A} F^{B \mu \nu}\right)-\frac{1}{8} \operatorname{Im}\left(f_{A B} F_{\mu \nu}^{A} F_{\rho \sigma}^{B} \epsilon^{\mu \nu \rho \sigma}\right)$.
Terms quadratic in gaugino fields: $\mathscr{L}_{\text {gaugino }}^{(2)} / \tilde{e}=-\frac{1}{2} \operatorname{Re} f_{A B} \bar{\lambda}_{A} I D \lambda_{B}+\frac{1}{2} \exp \left(\kappa^{2} d\right) \operatorname{Re}\left(g^{-1}\right)_{n m} L_{m}\left(\frac{\partial f_{A B}}{\partial \phi_{n}}\right)^{*} \bar{\lambda}_{A} \lambda_{B}$.

5.4 Anomaly-mediated SUSY breaking

$O(\kappa)$ effect only, results in gaugino masses and $A_{i j}$ and B.

Generalize X defined on page 171 to include gauge superfields W, i.e. $X=\frac{2}{3} \operatorname{Im}\left[M \frac{\partial f(\Phi, W)}{\partial M}\right]$.
Applies also to dimensionless couplings with scale dependence coming from quantum mechanical anomaly.

In gravity-matter coupling in terms of components on page 172, give non-zero expectation values to s and p, so
1st order SUSY-breaking interaction:

$$
\mathscr{L}_{\text {int }}=-\frac{4}{3} \kappa \operatorname{Re}\left[(\langle s\rangle+I\langle p\rangle) M \frac{\partial f\left(\phi, \lambda_{L}\right)}{\partial M}\right] .
$$

A^{X} and B^{X} are A - and B - components of X defined in chiral superfield decomposition on page 106.
Then use supercurrent conservation law on page 170 to get $\mathscr{M}=B^{X}$ and $\mathscr{N}=-A^{X}$.
Then $\mathscr{L}_{\text {int }}=2 \kappa \operatorname{Im}\left[(\langle s\rangle+I\langle p\rangle) A^{X}+I B^{X}\right]$. Use $A^{X}+I B^{X}=\phi^{X}=\left.X\right|_{\theta=0}=\frac{2 M}{3 I} \frac{\partial f\left(\phi, \lambda_{L}\right)}{\partial M}$.

Gaugino-mass term: $\mathscr{L}_{\text {gaugino mass }}=\operatorname{Re}\left[\tilde{m}_{\text {gaugino }} \lambda_{L}^{A} E \lambda_{L}^{A}\right]$, where $\tilde{m}_{\text {gaugino }}=-\frac{\beta(g)}{g} \frac{2 \kappa}{3}(\langle s\rangle+I\langle p\rangle)$.
Use gauge supermultiplet Lagrangian on page 136 and 1st order SUSY-breaking interaction above.

5.5 Gravity-mediated SUSY breaking

Includes squark and slepton squared masses, which are of $O\left(\kappa^{2}\right)$.

Assume a new strong force, group G, with scale $m_{W} \ll \Lambda \ll m_{\mathrm{Pl}}$, weak at scale m_{Pl}, but strong at scale $\ll m_{\mathrm{Pl}}$.
Φ_{r} : includes MSSM superfields, invariant under G,
Z_{k} : hidden sector superfields neutral under SM gauge group, not under G.
In any term in the superpotential, must be at least two of ϕ_{r} or Z_{k} for invariance under the groups, so form of superpotential (cubic in superfields) must be $f(\Phi)+\tilde{f}(Z)$.

SUSY breaking 1: Scalar fields in Z_{k} of $O(\Lambda)$, makes $\phi_{r}=O\left(\kappa \Lambda^{2}\right)$.
Cancellation of large vacuum energy requires some fine-tuning in \tilde{f} at minimum.
Superpotential contains soft SUSY breaking terms, with $B=O(1)$ and A, C small.
Leading non-renormalizable term of $O\left(\kappa \Phi^{2} Z^{2}\right)$, gives μ-term on page 146 with $\mu=O\left(\kappa \Lambda^{2}\right)$.
For $\kappa \Lambda^{2}=O(1) \mathrm{TeV}$ (MSSM scale),
$\Lambda=O\left(10^{11}\right) \mathrm{GeV}$ in range of scales for Peccei-Quinn symmetry breaking
allowed by astronomical observations to resolve the strong CP problem.

SUSY breaking 2: Hidden sector gauge couplings gives non-perturbative superpotential
for scalar fields y of modular superfields Y,
which could be e.g. low energy $\left(\ll O\left(\kappa^{-1}\right)\right)$ parameters describing compactified extra dimensions of radius $O(\kappa)$.
After imposing various symmetries $f(\Phi, Y, Z)=f_{r s t}(\kappa Y) \Phi_{r} \Phi_{s} \Phi_{t}+f_{k l m}(\kappa Y) Z_{k} Z_{l} Z_{m}+$ higher powers in Φ, Z. Gives negligible $C_{K M}^{D, E, U}$ in trilinear terms on page 150.

For $\Lambda=O\left(10^{13}\right) \mathrm{GeV}$ (almost OK), gives desired $\mu=O\left(\kappa^{2} \Lambda^{3}\right)$.
Gaugino masses similar to slepton and squark masses.

However, gauge-mediated SUSY breaking yields generation-independent squark and slepton masses.

6 Higher dimensions

6.1 Spinors in higher dimensions

Lie algebra of $O(d-1,1): I\left[J^{\rho \sigma}, J^{\mu \nu}\right]=-g^{\sigma \nu} J^{\rho \mu}-g^{\rho \mu} J^{\sigma \nu}+g^{\sigma \mu} J^{\rho \nu}+g^{\rho \nu} J^{\sigma \mu}$.
(Homogeneous) Lorentz group on page 21.

Fundamental spinor representation of $O(d-1,1)$: $J^{\mu \nu}=-\frac{I}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right]$,
where γ_{μ} obey Clifford algebra $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}$.
This choice obeys Lie algebra of $O(d-1,1)$ above.

Creation/annihilation matrices from $\gamma_{\mu}: a_{u}=\frac{1}{2}\left(\gamma_{2 u-1}+I \gamma_{2 u}\right), u=1,2, \ldots, n$.
We are defining $\gamma_{2 n}=-I \gamma_{0}$. Creation/annihilation properties $\left\{a_{u}, a_{v}^{\dagger}\right\}=\delta_{u v}$ and $\left\{a_{u}, a_{v}\right\}=\left\{a_{u}^{\dagger}, a_{v}^{\dagger}\right\}=0$
follow from Clifford algebra of the $\gamma_{\mu} \cdot a_{u}$ and a_{u}^{\dagger} form alternative basis to γ_{μ}.
Dimensionality of Clifford algebra space: γ_{μ} are $2^{n} \times 2^{n}$ matrices.
Define vectors $|0\rangle$ such that $a_{u}^{\dagger}|0\rangle=0$ and $\left|s_{1}, s_{2}, \ldots s_{n}\right\rangle=a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{n}^{s_{n}}|0\rangle$.
Because $a_{u}^{2}=0, s_{i}=0$ and 1 only, so there are 2^{n} independent vectors.
$J^{\mu \nu}$ are reducible, sum of 2 irreducible representations $J_{ \pm}^{\mu \nu}=J^{\mu \nu}\left(\frac{1 \pm \gamma_{2 n+1}}{2}\right)$.
Define $\gamma_{2 n+1}=I^{n} \gamma_{1} \gamma_{2} \ldots \gamma_{2 n}$ (generalization of γ_{5} in $d=4$).
$\gamma_{2 n+1}^{2}=1$ so use representation in which states have with eigenvalues ± 1 of $\gamma_{2 n+1}$.
Using $\left\{\gamma_{2 n+1}, \gamma_{\mu}\right\}=0$ for $\mu=1,2, \ldots, 2 n-1,0$ (from Clifford algebra), $\left[\gamma_{2 n+1}, J^{\mu \nu}\right]=0$,
i.e. no mixing between $\gamma_{2 n+1}= \pm 1$ states when acting with $J^{\mu \nu}$.

In this representation we have block diagonal $J^{\mu \nu}=J_{+}^{\mu \nu} \oplus J_{-}^{\mu \nu}$.

$$
d=2 n+1
$$

Exactly as for $d=2 n$, and now Lorentz generators furnish irreducible representation of Lorentz group.
Everything is as before: $J^{\mu \nu}, \gamma^{\mu}$ are the same $2^{n} \times 2^{n}$ matrices as for $d=2 n$ with $\mu, \nu=1,2, \ldots, 2 n-1,0,2 n+1$ and again $\gamma_{2 n+1}=I^{n} \gamma_{1} \gamma_{2} \ldots \gamma_{2 n}$.

Now the " γ_{5} " matrix $\gamma_{1} \gamma_{2} \ldots \gamma_{2 n} \gamma_{2 n+1}=I^{n}$, i.e. no non-trivial matrix that commutes with $J^{\mu \nu}$.

6.2 Algebra

In d dimensions, work in Euclidean space (set $x^{d}=I x^{0}$), group is $O(d)$ with unitary representations.
Then for $\mu(1) \nu(1)=d 1, \mu(2) \nu(2)=23, \mu(3) \nu(3)=45, \ldots$, we have $\left[J_{\mu(\alpha) \nu(\alpha)}, J_{\mu(\beta) \nu(\beta)}\right]=0$.
See Poincaré algebra on page 21.
Take any subset Q_{n} of the fermionic generators that form complete representation of Lorentz group.
Can combine Q_{n} so that $\left[J_{\mu(\alpha) \nu(\alpha)}, Q\right]=-\sigma^{\mu(\alpha) \nu(\alpha)} Q\left(Q\right.$ is each of the $\left.Q_{n}\right)$ with $\sigma^{\mu(\alpha) \nu(\alpha)}$ real numbers.
Q belongs to Q_{n}, where Q_{n} forms complete representation of Lorentz group,
so $\left[J_{d 1}, Q_{i}\right]=-\sigma_{i j}^{d 1} Q_{j},\left[J_{23}, Q_{i}\right]=-\sigma_{i j}^{23} Q_{j}, \ldots$, where matrices $\sigma^{A B}$ are Hermitian. Then $\left[J_{23},\left[J_{d 1}, Q_{i}\right]\right]=\sigma_{i j}^{d 1} \sigma_{j k}^{23} Q_{k}$.
Because $\left[J_{d 1}, J_{23}\right]=0$, this is equal to $\left[J_{d 1},\left[J_{23}, Q_{i}\right]\right]=\sigma_{i j}^{23} \sigma_{j k}^{d 1} Q_{k}$, i.e. $\sigma^{23} \sigma^{d 1}=\sigma^{d 1} \sigma^{23}$.
Diagonalize $\sigma^{d 1}$ with unitary matrix U, i.e. $U^{\dagger} \sigma^{d 1} U=\Lambda$, where $\Lambda_{i j}=\lambda_{i} \delta_{i j}$ (no sum).
Then $\sigma^{23} U \Lambda U^{\dagger}=U \Lambda U^{\dagger} \sigma^{23}$ or $\tilde{\Lambda} \Lambda=\Lambda \tilde{\Lambda}$ where $\tilde{\Lambda}=U^{\dagger} \sigma^{23} U$, or $\lambda_{i} \tilde{\Lambda}_{i j}=\lambda_{j} \tilde{\Lambda}_{i j}$ (no sum).
If $\lambda_{i} \neq \lambda_{j}, \tilde{\Lambda}_{i j}=0$, i.e. $\tilde{\Lambda}_{i j}$ is also diagonal.

Fermionic symmetry generator Q is in fundamental spinor representation of Lorentz group.
Let operator O be of weight w when $\left[J_{d 1}, O\right]=-w O$. So from underlined equation on page 190, Q has $w=\sigma_{d 1}$.
In Minkowski space $\left(J_{01}=I J_{d 1}\right),\left[J_{01}, O\right]=-I w O$. Because $J_{01}^{\dagger}=J_{01},-\left[J_{01}, O^{\dagger}\right]=I w O^{\dagger}$, i.e. O^{\dagger} also has weight w.
So $\left\{Q, Q^{\dagger}\right\}$ has weight $2 \sigma_{d 1}$. From CM theorem, $\left\{Q, Q^{\dagger}\right\}$ is linear combination of scalars, P_{μ} and $J_{\mu \nu}$.
But w (scalars) $=0$, and from Poincaré algebra on page 21 (with i, j such that $2 \leq i, j \leq d-1$),
$w\left(P_{0} \pm P_{1}\right)=w\left(J_{0 i} \pm J_{1 i}\right)= \pm 1, w\left(P_{i}\right)=w\left(J_{i j}\right)=w\left(J_{10}\right)=0$,
so $2 \sigma_{d 1}= \pm 1$ (not zero, which is excluded by spin-statistics), i.e. $\sigma_{d 1}= \pm 1 / 2$.
In Euclidean formalism, rotational invariance applied to underlined equation above implies all $\sigma_{\mu(\alpha) \nu(\alpha)}=\sigma_{d 1}$.
So Q must belong to (direct sum of) fundamental spinor representation(s).

Commutation with momentum: $\left[Q, P^{\mu}\right]=0$.
$\left[P_{0} \pm P_{1},\left[P_{0} \pm P_{1}, Q\right]\right]=0$ because $|w|=3 / 2$ or $5 / 2$. So with $Q_{ \pm}=\left[P_{0} \pm P_{1}, Q\right],\left[P_{0} \pm P_{1},\left[P_{0} \pm P_{1},\left\{Q, Q^{\dagger}\right\}\right]\right]=-2\left\{Q_{ \pm}, Q_{ \pm}^{\dagger}\right\}$.
But $\left\{Q, Q^{\dagger}\right\}$ is linear combination of the scalars, P_{μ} and $J_{\mu \nu}$, and $P_{0} \pm P_{1}$ commutes with the scalars and P_{μ},
while $\left[P_{0} \pm P_{1}, J_{\mu \nu}\right]$ forms linear combinations of P_{μ} which commutes with the other $P_{0} \pm P_{1}$ in the underlined equation,
so $\left\{Q_{ \pm}, Q_{ \pm}^{\dagger}\right\}=0$ so $Q_{ \pm}=0$, i.e. all Q commute with P_{0}, P_{1} and by Lorentz invariance all P_{μ}.

General anticommutation relations: $\left\{Q_{n}, Q_{m}\right\}=\Gamma_{n m}^{\mu} P_{\mu}+Z_{n m}$.
$\left[P_{\mu},\left\{Q_{n}, Q_{m}\right\}\right]=0$. But $\left[J_{\mu \nu}, P_{\rho}\right] \neq 0$ so $\left\{Q_{n}, Q_{m}\right\}$ contains no linear combinations of $J_{\mu \nu}$.
$Z_{n m}$ are the central charges, conserved scalar generators that commute with everything.
$Z_{n m}$ are scalars, so commute with P_{μ} and $J_{\mu \nu}$. From general anticommutation relations (page 192), Poincaré algebra (page 21), $\left[J_{d 1},\left\{Q_{n}, Q_{m}\right\}\right]$ is $-\left(w\left(Q_{n}\right)+w\left(Q_{m}\right)\right)\left\{Q_{n}, Q_{m}\right\}=\Gamma_{0 n m} P_{1}-\Gamma_{1 n m} P_{0}$, or $-\left(w\left(Q_{n}\right)+w\left(Q_{m}\right)\right)\left[\Gamma_{n m}^{\mu} P_{\mu}+Z_{n m}\right]=\Gamma_{0 n m} P_{1}-\Gamma_{1 n m} P_{0}$.

Terms in last expression of weight $w=0$ give $-\left(w\left(Q_{n}\right)+w\left(Q_{m}\right)\right)\left[Z_{n m}+\sum_{i=2}^{d-1} \Gamma_{n m}^{i} P_{i}\right]=0$.
Spatial rotation of last expression gives $-\left(w\left(Q_{n}\right)+w\left(Q_{m}\right)\right) Z_{n m}=0$. So to allow $Z_{n m} \neq 0$, must have $w\left(Q_{n}\right)=-w\left(Q_{m}\right)$.
Now let $\left|w\left(Q_{l}\right)\right| \neq\left|w\left(Q_{n(m)}\right)\right|\left(Q_{l}\right.$ exists in each irreducible representation for $\left.d \geq 4\right)$.
From super-Jacobi identity $\left[Q_{l},\left\{Q_{m}, Q_{n}\right\}\right]+\left[Q_{m},\left\{Q_{n}, Q_{l}\right\}\right]+\left[Q_{n},\left\{Q_{l}, Q_{m}\right\}\right]=0$.
Last 2 terms vanish because $\left\{Q_{n(m)}, Q_{l}\right\}$ have some $\sigma \neq 0$, i.e. are linear combinations of P 's but not Z 's,
and P 's commute with Q 's. So $\left[Q_{l},\left\{Q_{m}, Q_{n}\right\}\right]=\left[Q_{l}, Z_{m n}\right]=0$.
But $Z_{m n}$ is a Lorentz scalar, so must commute with all Q 's in the irreducible representation.
So from general anticommutation relations the Z 's commute with each other.

Commutation of central charges and internal symmetry generators: $\left[t_{i}, Z_{r s}\right]=0$.

Same derivation as for commutation of central charges and internal symmetry generators on page 89.

6.3 Massless multiplets

$\left[Q, P^{\mu}\right]=0$, so use eigenstates of P^{μ}. Define little group (pages 24, 33) to leave $k=(0, \ldots, 0,1,1)$ invariant. "spin" j is maximum value of any $J_{\mu \nu}$. Impose condition $j \leq 2$ (as on page 56), and one $j=2$ particle.

In Hilbert space of little group, only need SUSY generators of weight $\sigma_{d 1}=1 / 2$.
Any SUSY generator Q has weight $\pm 1 / 2$, so $\left\{Q, Q^{\dagger}\right\}$ has weight ± 1 (Q^{\dagger} has same weight as Q from page 191),
i.e. $\left\{Q, Q^{\dagger}\right\} \propto P^{0} \pm P^{1}$. But in this Hilbert space $P^{0}-P^{1}=0$.

Further divide generators into two classes with $\sigma_{23}= \pm 1 / 2$.
Anticommutation of generators of the same $\sigma_{23}:\left\{Q_{\sigma_{23}= \pm 1 / 2}, Q_{\sigma_{23}= \pm 1 / 2}^{\prime}\right\}=0$.
Since all Q for the little group have $\sigma_{d 1}=1 / 2$ and $P^{0}+P^{1}$ has $\sigma_{d 1}=1,\left\{Q_{\sigma_{23}= \pm 1 / 2}, Q_{\sigma_{23}= \pm 1 / 2}^{\prime}\right\} \propto P^{0}+P^{1}$.
But $P^{0}+P^{1}$ has $\sigma_{23}=0$.

Limit on number of fermionic generators: $\mathscr{N} \leq 32$.

Consider state $|\lambda\rangle$ of spin j and eigenvalue $\lambda>0$ of J_{23}. Let state be annihilated by SUSY generators of $\sigma_{23}=-1 / 2$
(e.g., but not i.e., when $\lambda=j$). States with $J_{23}=\lambda-k / 2$ formed by acting on $|\lambda\rangle$ with k SUSY generators of $\sigma_{23}=1 / 2$.
(None of these states vanish because acting on them with the adjoints of the k SUSY generators gives back $|\lambda\rangle$.)
There are $\mathscr{N} / 4$ SUSY generators with $\sigma_{23}\left(=\sigma_{d 1}\right)=1 / 2$ which all anticommute
(see anticommutation of generators of the same σ_{23} on page 194).
Minimum J_{23} is then $\lambda-\mathscr{N} / 8$ (for $k=\mathscr{N} / 4$). Then impose $j \leq 2$ and $j-\mathscr{N} / 8 \geq-2$.

Limit on spacetime dimensionality: $d \leq 11$.

In $d=2 n$ or $2 n+1$ dimensions, a fundamental spinor representation like (a subset of) the SUSY generators has 2^{n} components.
For $2^{n} \leq 32$, need $n \leq 5$.

For $d=11$, must have $N=1$.
Construct massless multiplet by acting on state with J_{23} eigenvalue of 2, count number of degrees of freedom.
Gives one graviton and one gravitino. This may be the low energy limit of M-theory.

For $d=10$, get massless particle spectrum of 3 kinds of superstring:
$\underline{\text { Type IIA: } 16 \text { generators of each chirality }(\mathscr{N}=32), ~(x)}$

Type IIB: 32 generators of same chirality $(\mathscr{N}=32)$

Heterotic: 16 generators of same chirality $(\mathscr{N}=16)$

$6.4 \quad$-branes

Rank 1 gauge vector fields couple to particles,
but in general rank $p+1$ forms (antisymmetric tensors) couple to extended objects of spatial dimensionality p.
These $p+1$ forms are conserved bosonic quantities other than those allowed by CM theorem so they can appear on the RHS of the SUSY anticommutations.

But SUSY generators still belong to the fundamental spinor representations of the Lorentz group.
Let $A_{\text {... }}$ be a $p+1$ form. We now show that the weights of its components are 0 or ± 1.
Lorentz transform of $A_{\ldots \ldots 1 . .}$ (" 1 " can only appear once in $A_{\ldots . .}$ because it is antisymmetric)
is $\left[J_{1 d}, A_{\ldots 1 \ldots}\right]=\left(\ldots+\left(J_{1 d}\right)^{\mu}{ }_{1}+\ldots\right) A_{\ldots \mu \ldots .}$. But $\left(J_{1 d}\right)_{\mu \nu}= \pm 1$ when $\mu \nu=1 d$ or $d 1$, otherwise $\left(J_{1 d}\right)_{\mu \nu}=0$.
So $\left[J_{1 d}, A_{\ldots 1 \ldots]}\right]=A_{\ldots d \ldots}$. Likewise $\left[J_{1 d}, A_{\ldots d \ldots]}\right]=-A_{\ldots 1 \ldots}$. Thus $A_{\ldots d \ldots} \pm A_{\ldots 1 \ldots}$ has weight ± 1.
Also $\left[J_{1 d}, A_{\ldots 1 \ldots d . . .}\right]=0$ so $A_{\ldots 1 \ldots}$ has weight 0 .

Then as before the SUSY generators have weight $\pm 1 / 2$.

7 Extended SUSY

$N=2$ global SUSY, massless supermultiplets (or massive "short" supermultiplets discussed on page 94):
Contains supermultiplets (and their CPT-conjugates (helicities reversed)):

- 1 gauge boson of helicity $+1,2$ fermions of $+1 / 2$ as doublet under $\mathrm{SU}(2) R$-symmetry, 1 boson of 0 and hypermultiplets (and their CPT-conjugates):
- 2 fermions of each helicity $\pm 1 / 2,2$ bosons of 0 as doublet under $\operatorname{SU}(2) R$-symmetry

Supermultiplet mass limit for $N=2: M \geq\left|Z_{12}\right| / 2$.
Follows from lower mass bound in extended SUSY on page 94.

We will only consider "short" supermultiplets, so $N=2$ supermultiplet mass: $M=\left|Z_{12}\right| / 2$ exactly.
See discussion at end of page 94. Equality holds exactly because corrections cannot turn short multiplets into full multiplets.

Gauge Lagrangian for $N=2$: Start with general $N=1$ Lagrangian with fields of $N=2$ gauge supermultiplet.
An $N=2$ theory must have $N=1$ SUSY, i.e. $N=2$ is a special case of $N=1$.

To make this $N=1$ Lagrangian become $N=2$, impose 2 nd SUSY as discrete R-symmetry. We choose
R-symmetry for $N=2$ generators: $Q_{1} \rightarrow Q_{2}, Q_{2} \rightarrow-Q_{1}$.
Leaves result for anticommuting generators on page 88 invariant.
$N=2 \underline{\text { supermultiplet }} \equiv$ an $N=1$ chiral superfield $\Phi(\phi, \psi, \mathscr{F})+$ an $N=1$ gauge superfield $V\left(V^{\mu}, \lambda, D\right)$.
R-symmetry for $N=2$ generators above becomes
R-symmetry for $N=2$ fields: $\psi \rightarrow \lambda, \lambda \rightarrow-\psi$.

No superpotential is allowed.
Superpotential would depend only on Φ, not V,
so would give mass and interaction terms for ψ but not λ, not allowed by R-symmetry.

Define $\left(D_{\mu} X\right)_{A}=\partial_{\mu} X_{A}+C_{A B C} V_{B \mu} X_{C}$ for $X=\psi, \lambda, \phi$, and $f_{A \mu \nu}=\partial_{\mu} V_{A \nu}-\partial_{\nu} V_{A \mu}+C_{A B C} V_{B \mu} V_{C \nu}$.
Gauge-invariant Lagrangian for $N=2: \mathscr{L}=\left(D_{\mu} \phi\right)_{A}^{*}\left(D^{\mu} \phi\right)_{A}-\frac{1}{2} \overline{\psi_{A}}(D D)_{A}-\frac{1}{2} \overline{\lambda_{A}}(D D \lambda)_{A}-\frac{1}{4} f_{A \mu \nu} f_{A}^{\mu \nu}$

$$
+\sqrt{2} C_{A B C} \overline{\psi_{B}} \frac{1}{2}\left(1-\gamma_{5}\right) \lambda_{A} \phi_{C}-\sqrt{2} C_{A B C} \overline{\lambda_{A}} \frac{1}{2}\left(1+\gamma_{5}\right) \psi_{C} \phi_{B}^{*}-V\left(\phi, \phi^{*}\right)+\frac{g^{2} \theta}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} f_{A}^{\mu \nu} f_{A}^{\rho \sigma},
$$

where $V\left(\phi, \phi^{*}\right)=2 C_{A B C} \operatorname{Re} \phi_{B} \operatorname{Im} \phi_{C} C_{A D E} \operatorname{Re} \phi_{D} \operatorname{Im} \phi_{E}$ is real and positive.
Use $N=1$ Lagrangian for chiral and gauge supermultiplet fields on page 138,
combine each chiral and gauge supermultiplet into $N=2$ supermultiplet with R-symmetry imposed (i.e. $f=0$).
Then set auxiliary fields such that Lagrangian is stationary: $\mathscr{F}_{A}=0$ and, with $\xi_{A}=0, D_{A}=-I C_{A B C} \phi_{B}^{*} \phi_{C}$.
$N=2$ SUSY has $2 N=1$ SUSYs:
Lagrangian can be seen as $N=1$ SUSY with multiplets $(\phi, \psi, \mathscr{F})$ and $\left(V^{\mu}, \lambda, D\right)$, or as $N=1$ SUSY with multiplets $(\phi, \lambda, \mathscr{F})$ and $\left(V^{\mu},-\psi, D\right)$.

Use R-symmetry for $N=2$ fields on page 199 .
Minimum at $V=0$ when ϕ_{A} such that $C_{A B C} \operatorname{Re} \phi_{B} \operatorname{Im} \phi_{C}=0\left(\right.$ not only $\left.\phi_{A}=0\right)$.
Such values of ϕ not equivalent (e.g. give different masses to gauge bosons on breaking gauge symmetries).

Example: $\mathrm{SU}(2)$ gauge theory, $C_{A B C}=\epsilon_{A B C}$. Then
Lagrangian: $\frac{1}{e^{2}}\left[-\left(D_{\mu} \phi\right)_{A}^{*}\left(D^{\mu} \phi\right)_{A}-\frac{1}{2} \overline{\psi_{A}}(\not D \psi)_{A}-2 \sqrt{2} \operatorname{Re} \epsilon_{A B C} \lambda_{A L}^{T} \epsilon \psi_{C L} \phi_{B}^{*}-\frac{1}{2} \overline{\lambda_{A}}(\not D \lambda)_{A}\right]$
$+\frac{\theta}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} f_{a}^{\mu \nu} f_{A}^{\rho \sigma}-V\left(\phi, \phi^{*}\right)$, where $V=2 \epsilon_{A B C} \operatorname{Re} \phi_{B} \operatorname{Im} \phi_{C} \epsilon_{A D E} \operatorname{Re} \phi_{D} \operatorname{Im} \phi_{E}$.
From gauge-invariant Lagrangian for $N=2$ on page 200, with e absorbed into fields.
For $V=0$, consider $\phi_{1}=\phi_{2}=0, \phi_{3}=a$. Particles with index 1 and 2 have mass $2|a|$, index 3 is massless.
Naively removing massive fields, and dropping the index " 3 " from now on,
Massless Lagrangian: $\mathscr{L}=\frac{1}{e^{2}}\left[-\left(\partial_{\mu} a\right)^{*}\left(\partial^{\mu} a\right)-\frac{1}{2} \bar{\psi}(\not \partial \psi)-\frac{1}{4} f_{\mu \nu} f^{\mu \nu}-\frac{1}{2} \bar{\lambda} \not \partial \lambda\right]+\frac{\theta}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} f^{\mu \nu} f^{\rho \sigma}$.
Note this is a free field theory, because $N=2$ does not allow a superpotential, and there is now just one supermultiplet.

Properly integrating out massive degrees of freedom gives non-renormalizable terms, dominant contributions at tree-level from interactions of smallest number of fermions, auxilliary fields and derivatives in interaction:

Non-renormalizable low-energy Lagrangian: $\mathscr{L}=\frac{1}{2}\left[K\left(\Phi, \Phi^{*}\right)\right]_{D}-\frac{1}{2} \operatorname{Re}\left[T(\Phi)\left(W_{L}^{T} \epsilon W_{L}\right)\right]_{\mathscr{F}}$.
Gauge-covariant spinor superfield on page 135 relates W_{L} to V, and $\Phi=\Phi(a, \psi, \mathscr{F}), V=V\left(V_{\mu}, \lambda, D\right)$. Count
Feynman diagrams' energy powers with general $\mathscr{L}=\frac{1}{2}\left[K\left(\Phi, \Phi^{\dagger} e^{-2 t_{A} V_{A}}\right)\right]_{D}+2 \operatorname{Re}[f(\Phi)]_{\mathscr{F}}-\frac{1}{2} \operatorname{Re}\left[H_{A B}(\Phi)\left(W_{A L}^{T} \epsilon W_{B L}\right)\right]_{\mathscr{F}}$.

Low-energy Lagrangian: $\mathscr{L}=\frac{\partial^{2} K\left(a, a^{*}\right)}{\partial a \partial a^{*}}\left[-\frac{1}{2} \bar{\psi} \not \partial \psi+|\mathscr{F}|^{2}-\partial_{\mu} a \partial^{\mu} a^{*}\right]-\operatorname{Re}\left(\frac{\partial^{3} K\left(a, a^{*}\right)}{\partial^{2} a \partial a^{*}} \bar{\psi} \psi_{L} \mathscr{F}^{*}\right)$

$$
-\frac{1}{2} \operatorname{Re}\left(\frac{\partial^{3} K\left(a, a^{*}\right)}{\partial^{2} a \partial a^{*}} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \partial_{\mu} a\right)+\frac{1}{4} \frac{\partial^{4} K\left(a, a^{*}\right)}{\partial^{2} a \partial^{2} a^{*}} \bar{\psi} \psi_{L} \bar{\psi} \psi_{R}+\frac{1}{4} \operatorname{Re}\left(\bar{\lambda} \lambda_{L} \bar{\psi} \psi_{L} \frac{d^{2} T(a)}{d a^{2}}\right)-\frac{1}{2} \operatorname{Re}\left(\bar{\lambda} \lambda_{L} \mathscr{F} \frac{d T(a)}{d a}\right)
$$

$$
+\operatorname{Re}\left(T(a)\left[-\frac{1}{2} \bar{\lambda} \not \partial\left(1-\gamma_{5}\right) \lambda-\frac{1}{4} f_{\mu \nu} f^{\mu \nu}+\frac{1}{8} I \epsilon_{\mu \nu \rho \sigma} f^{\mu \nu} f^{\rho \sigma}+\frac{1}{2} D^{2}\right]\right)+\frac{\sqrt{2}}{4} \operatorname{Re}\left(\frac{d T(a)}{d a}\left[-\bar{\lambda} \gamma^{\mu} \gamma^{\nu} \psi_{L} f_{\mu \nu}+2 I \bar{\lambda} \psi_{L} D\right]\right)
$$

Component field expansion of non-renormalizable low-energy Lagrangian on page 201.
$N=2$ conditions: $(a, \psi, \mathscr{F}) \rightarrow\left(a, \lambda, \mathscr{F}^{*}\right),\left(V_{\mu}, \lambda, D\right) \rightarrow\left(V_{\mu},-\psi,-D\right)$ invariance, $T=\frac{1}{4 \pi I} \frac{d h}{d a}, K=\operatorname{Im}\left(\frac{a^{*} h}{4 \pi}\right)$.
Begin with requirement of invariance under $(\psi, \lambda) \rightarrow(\lambda,-\psi)$. So for coefficients of $\bar{\psi} \not \partial \psi$ and $\bar{\lambda} \not \partial \lambda$ to be equal,
require $\frac{\partial^{2} K\left(a, a^{*}\right)}{\partial a \partial a^{*}}=\operatorname{Re}(T(a))$, which is equivalent to expressions above for $T(a), K\left(a, a^{*}\right)$ in terms of some function $h(a)$.
Also insures equality of coefficients of $\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$ and $\bar{\lambda} \gamma^{\mu} \gamma_{5} \lambda$ (the latter appears after integration by parts of $\frac{1}{2} \operatorname{Re}\left(T(a) \bar{\lambda} \not \gamma_{5} \lambda\right)$).
Low-energy Lagrangian in $h: \mathscr{L}=\frac{1}{4 \pi} \operatorname{Im}\left\{\frac{d h}{d a}\left[-\frac{1}{2} \bar{\psi} \not \partial\left(1-\gamma_{5}\right) \psi-\frac{1}{2} \bar{\lambda} \not \partial\left(1-\gamma_{5}\right) \lambda-\partial_{\mu} a \partial^{\mu} a^{*}+|\mathscr{F}|^{2}\right.\right.$

$$
\left.\left.+\frac{1}{2} D^{2}-\frac{1}{4} f_{\mu \nu} f^{\mu \nu}+\frac{1}{8} I \epsilon_{\mu \nu \rho \sigma} f^{\mu \nu} f^{\rho \sigma}\right]+\frac{d^{2} h}{d a^{2}}\left[-\frac{1}{2} \bar{\psi} \psi_{L} \mathscr{F}^{*}-\frac{1}{2} \bar{\lambda} \lambda_{L} \mathscr{F}+\frac{1}{\sqrt{2}} I \bar{\lambda} \psi_{L} D-\frac{\sqrt{2}}{4} \bar{\lambda} \gamma^{\mu} \gamma^{\nu} \psi_{L} f_{\mu \nu}\right]+\frac{1}{4} \frac{d^{3} h}{d a^{3}} \bar{\lambda} \lambda_{L} \bar{\psi} \psi_{L}\right\}
$$

Tree-level h : $h=\left[\frac{4 \pi I}{e^{2}}+\frac{\theta}{2 \pi}\right] a$. Compare low-energy Lagrangian in h, page 202, with massless Lagrangian, page 201.

Low-energy action in $h: I=\frac{1}{8 \pi} \int d^{4} x \operatorname{Im}\left(\left[\Phi^{*} h(\Phi)\right]_{D}-\left[h^{\prime}(\Phi) W_{L}^{T} \epsilon W_{L}\right]_{\mathscr{F}}\right)$.
From non-renormalizable low-energy Lagrangian, page 201, and results for T, K from h in $N=2$ conditions, page 202.
Term for SUSY Maxwell equations: $\Delta I=\frac{1}{8 \pi} \int d^{4} x \tilde{V} \operatorname{Re}\left(\left[\mathscr{D}_{L}^{T} E W_{L}\right]_{D}\right)$, \tilde{V} is real superfield.
Gives SUSY Maxwell equations $\operatorname{Re}\left(\mathscr{D}_{L} E W_{L}^{A}\right)=0$, which is the alternative form of W_{L}^{A} on page 136.
Full effective action: $\tilde{I}=\frac{1}{8 \pi} \int d^{4} x \operatorname{Im}\left(\left[\frac{1}{h^{\prime}(\Phi)}\left(\tilde{W}_{L}^{T} E \tilde{W}_{L}\right)\right]_{\mathscr{F}}+\left[\Phi^{*} h(\Phi)\right]_{D}\right)$.
Integrate ΔI above by parts, gives $\Delta I=-\frac{1}{4 \pi} \int d^{4} x \operatorname{Im}\left(\left[\left(\tilde{W}_{L}^{T} E W_{L}\right)\right]_{\mathscr{F}}\right)$, where $\tilde{W}_{L}=\frac{I}{4}\left(\mathscr{D}_{R}^{T} E \mathscr{D}_{R}\right) \mathscr{D}_{L} \tilde{V}$.
Add to low-energy action in h above, integrate over W_{L} which amounts to setting $W_{L}=-\frac{\tilde{W}_{L}}{h^{\prime}(\Phi)}$.
Duality: $N=2$ effective field theory with scalar field value a and h function $h(a)$ is physically equivalent to one with scalar field value $a_{D}=h(a)$ and h function $\tilde{h}\left(a_{D}\right)=-a$.

Full effective action above can also be written $\tilde{I}=\frac{1}{8 \pi} \int d^{4} x \operatorname{Im}\left(\left[\tilde{h}^{\prime}(\tilde{\Phi})\left(\tilde{W}_{L}^{T} E \tilde{W}_{L}\right)\right]_{\mathscr{F}}+\left[\tilde{\Phi}^{*} \tilde{h}(\tilde{\Phi})\right]_{D}\right)$, where $\tilde{\Phi}=h(\Phi), \tilde{h}(\tilde{\Phi})=-\Phi$.

Tree-level dual $h: \tilde{h}\left(a_{D}\right)=-\frac{1}{\left[\frac{4 \pi I}{e^{2}}+\frac{\theta}{2 \pi}\right]} a_{D} . \quad$ From tree-level h on page 202.

